动态高优先权优先
指令调度名词解释__概述说明以及解释
指令调度名词解释概述说明以及解释1. 引言1.1 概述在计算机领域,在执行指令的过程中,指令调度起着重要的作用。
指令调度是操作系统对CPU处理器进行任务分配和进程管理的关键部分。
它通过合理安排和调度进程的执行顺序,可以提高CPU利用率、降低响应时间,并改善系统性能。
1.2 文章结构本文将首先对指令调度进行名词解释,包括定义、功能和作用,分类和特点等方面进行详细说明。
接着,将概述指令调度的背景与重要性,探讨其执行流程和原则,并介绍常见的调度算法及其评估标准。
然后,将解释指令调度的关键要点,包括就绪队列管理与进程优先级划分策略、时间片轮转算法以及抢占式调度策略等内容。
最后,在结论部分总结主要观点和结论,展望指令调度的发展前景和未来研究方向,并提出存在问题并给予建议。
1.3 目的本文旨在全面解释和说明指令调度相关的核心概念和原理,并深入分析其功能、作用以及应用场景。
通过本文的阐述,读者可以了解指令调度的重要性、优化策略和算法,并对当前的研究热点和未来发展进行展望。
同时,通过指出存在的问题并提供建议,为进一步研究和改善指令调度提供参考。
2. 指令调度名词解释2.1 定义:指令调度是操作系统中的一个重要概念,它是指根据一定的策略将处于就绪状态的进程分配给处理器执行的过程。
具体而言,指令调度负责选择哪个进程将被优先执行以及在多个进程竞争处理器时如何进行调度。
2.2 功能和作用:指令调度的主要功能是合理安排系统资源,提高计算机处理效率。
通过合适地安排进程之间的执行顺序,可以充分利用CPU,并确保各个进程得到公平的机会使用处理器。
同时,指令调度也能够有效地响应用户请求,并保证每个进程都能及时得到运行并完成任务。
2.3 分类和特点:根据不同的需求和策略,指令调度可以分为多种类型。
常见的几种调度算法包括先来先服务(First-Come-First-Served)、短作业优先(Shortest Job First)、最高优先权(Highest Priority)和时间片轮转(Round Robin)等。
进程调度算法总结
进程调度算法总结所谓进程,简单来说是计算机中的各种任务,那么计算机如何分配系统资源以供这些任务使⽤呢?此篇博客⽬的就是为⼤家整理⼀下⼏种常见进程调度算法。
进度调度就是按照⼀定的策略,动态地把处理机分配给处于就绪队列的进程,使之执⾏。
常见的进程调度算法:1、先来先服务和短作业(进程)优先调度算法2、⾼优先权优先调度算法3、基于时间⽚的轮转调度算法下⾯细说:1、先来先服务和短作业优先调度算法1.1、先来先服务调度算法这种调度算法由字⾯意思理解很直观,所谓先来先服务,就是谁先来先服务谁。
结合进程,先来先服务调度算法就是对于优先到达就绪队列的进程采取优先服务的策略,直到该进程运⾏结束或发⽣某事件导致阻塞才放弃处理机。
这种调度算法是⼀种最简单的调度算法,适⽤于作业和进程。
当⽤于作业时,先进⼊后备队列的作业先运⾏。
1.2、短作业(进程)优先调度算法短作业(进程)优先调度算法,是对短作业或短进程进⾏得调度算法。
何为短?就是估计运⾏时间短。
该算法从后备队列或就绪队列选择估计运⾏时间较短的作业或进程,将他们调⼊内存运⾏,直到该进程运⾏结束或发⽣某事件导致阻塞才放弃处理机重新进⾏调度。
2、⾼优先权优先调度算法2.1、优先权调度算法上述所说的两种调度算法,过于简单,当系统中有紧急作业或进程,且不满⾜先进队列或运⾏时间短时,这些作业或进程将很难得到资源。
那么对于这些作业或进程,⼜该怎么办呢?因此,⼜有了优先权调度算法,所谓优先权调度算法,顾名思义就是谁的优先权⾼,谁就西安得到资源得以运⾏。
进⼀步将算法分为以下两种:2.1.1、⾮抢占式优先权算法在这种⽅式下,系统⼀旦把处理机分配给就绪队列中优先权最⾼的进程后,该进程便⼀直执⾏下去,直⾄完成;或因发⽣某事件使该进程放弃处理机时,系统⽅可再将处理机重新分配给另⼀优先权最⾼的进程。
这种调度算法主要⽤于批处理系统中;也可⽤于某些对实时性要求不严的实时系统中。
2.1.2、抢占式优先权算法在这种⽅式下,系统同样是把处理机分配给优先权最⾼的进程,使之执⾏。
操作系统期末复习考点总结
第一章(1)操作系统(Operating System):操作系统是一组控制和管理计算机硬件和软件资源,合理地对各类作业进行调度,以及方便用户使用的程序的集合。
(2)操作系统最基本的特征:共享性、并发性(3)操作系统的特性:○1并发性:两个或多个事件在同一事件间隔发生;○2共享性:系统中的资源可供内存中多个并发进程共同使用,也称为资源共享或资源复用;○3虚拟技术:把一个物理实体变成若干个逻辑上的对应物;○4异步性:进程是以人们不可预知的速度,停停走走地向前推进的。
(4)OS的主要任务:为多道程序的运行提供良好的环境,保证多道程序能有条不紊地、高效地运行,并能最大程度地提高系统中各种资源的利用率和方便用户的使用。
(5)OS的功能:(1)处理机管理:对处理机进行分配,并对其运行进行有效的控制和管理;(6)存储器管理:内存分配、内存保护、地址映射(变换)、内存扩充;(3)设备管理:(4)文件管理:文件的存储空间管理、目录管理、文件的读/写管理和保护;(5)操作系统和用户之间的接口:命令接口、程序接口(系统调用组成)、图形接口(6)面向网络的服务功能(7)○1多道批处理系统(吞吐量、周转时间):多道性、宏观上并发、微观上串行、无序性、调度性;○2分时系统(响应时间):多路性、交互性、独占性、及时性;○3实时系统(实时性和可靠性):(8)多道程序设计技术是操作系统形成的标志(9)分时系统:响应时间= 用户数*时间片,时间片=切换时间+处理时间(10)实时系统:系统能及时响应外部事件的请求,在规定的时间内完成对该事件的处理,并控制所有实时任务协调一致地运行。
(11)并发:两个或多个事件在同一时间间隔发生;并行:两个或多个事件在同一时刻发生。
(12)虚拟:通过某种技术把一个物理实体变为若干个逻辑上的对应物。
(13)微内核OS结构:能实现OS核心功能的小型内核,并非一个完整的OS,与OS的服务进程(如文件服务器、作业服务器等)共同构成OS。
动态优先权进程调度算法模拟实验报告
动态优先权进程调度算法模拟实验报告动态优先权调度算法是一种动态调度算法,根据进程的优先级来决定下一个要执行的进程。
进程的优先级可以根据其紧迫性、重要性和资源需求等因素来确定。
本实验利用模拟算法来模拟动态优先权调度算法,并通过实例来说明该调度算法的工作原理和优缺点。
一、实验目的通过本实验,我们可以了解动态优先权调度算法的工作原理,掌握如何使用模拟算法来模拟进程的调度过程,进一步了解该调度算法的优缺点。
二、实验环境本实验使用C++编程语言来实现动态优先权调度算法的模拟。
编译器使用Dev-C++。
三、实验步骤1.设计进程控制块(PCB)的数据结构,包括进程优先级、进程标识、进程状态等信息。
2.设计模拟算法来模拟动态优先权调度算法。
具体算法如下:a.初始化就绪队列,将所有的进程按照优先级插入到就绪队列中。
b.选择优先级最高的进程执行,并更新该进程的优先级。
c.执行完毕后更新进程的状态,并将其从就绪队列中删除。
d.如果新的进程到达,将其插入到就绪队列中。
3.实现主函数,模拟进程的创建、调度和执行过程。
4.进行多个实例的测试,观察进程的调度顺序和执行结果。
5.总结实验结果,分析动态优先权调度算法的优缺点。
四、实验结果与分析通过多个实例的测试,我们可以观察到动态优先权调度算法的工作过程和效果。
该算法可以根据进程的优先级来确定下一个要执行的进程,从而可以更好地满足不同进程的需求。
同时,动态优先权调度算法可以确保优先级高的进程能够及时得到执行,提高系统的响应速度。
然而,动态优先权调度算法存在一些缺点。
首先,该算法对进程的优先级要求较高,需要合理设置进程的优先级。
如果优先级设置不合理,可能导致优先级高的进程一直占用CPU资源,而优先级低的进程无法得到执行,造成资源浪费。
其次,该算法没有考虑进程的等待时间和执行时间,容易导致饥饿现象的发生,即一些进程无法得到执行。
五、实验总结通过本实验,我们了解了动态优先权调度算法的工作原理和模拟方法。
计算机操作系统复习知识点汇总
计算机操作系统复习知识点汇总第一章绪论1、操作系统的定义、目标、作用1OS是配置在计算机硬件上的第一层软件;是对硬件系统的首次扩充..2OS的主要目标是:方便性;有效性;可扩充性和开放性.3OS的作用可表现为:a. OS作为用户与计算机硬件系统之间的接口;一般用户的观点b. OS作为计算机系统资源的管理者;资源管理的观点c. OS实现了对计算机资源的抽象.2、脱机输入输出方式和SPOOLing系统联机输入输出方式的联系和区别脱机输入输出技术Off-Line I/O是为了解决人机矛盾及CPU的高速性和I/O设备低速性间的矛盾而提出的.它减少了CPU的空闲等待时间;提高了I/O速度.由于程序和数据的输入和输出都是在外围机的控制下完成的;或者说;它们是在脱离主机的情况下进行的;故称为脱机输入输出方式;反之;在主机的直接控制下进行输入输出的方式称为联机输入输出方式联机输入输出技术也提高了I/O的速度;同时还将独占设备改造为共享设备;实现了虚拟设备功能..3、多道批处理系统需要解决的问题处理机管理问题、内存管理问题、I/O设备管理问题、文件管理问题、作业管理问题4、OS具有哪几个基本特征它的最基本特征是什么a. 并发性Concurrence;共享性Sharing;虚拟性Virtual;异步性Asynchronism.b. 其中最基本特征是并发和共享.c. 并发特征是操作系统最重要的特征;其它特征都是以并发特征为前提的..5、并行和并发并行性和并发性是既相似又有区别的两个概念;并行性是指两个或多个事件在同一时刻发生;而并发性是指两个或多少个事件在同一时间间隔内发生..6、操作系统的主要功能;各主要功能下的扩充功能a. 处理机管理功能:进程控制;进程同步;进程通信和调度.b. 存储管理功能:内存分配;内存保护;地址映像和内存扩充等c. 设备管理功能:缓冲管理;设备分配和设备处理;以及虚拟设备等d. 文件管理功能:对文件存储空间的管理;目录管理;文件的读写管理以及文档的共享和保护7、操作系统与用户之间的接口a. 用户接口:是给用户使用的接口;用户可通过该接口取得操作系统的服务b. 程序接口:是给程序员在编程时使用的接口;是用户程序取得操作系统服务的惟一途径..第二章进程管理1、进程的定义、特征;进程实体的组成1进程是进程实体的运行过程;是系统进行资源分配的一个独立单位..2进程具有结构特征、动态性、并发性、独立性和异步性..3进程实体由程序段、相关的数据段和PCB三部分构成..2、进程的三种基本状态及其转换运行中的进程可能具有就绪状态、执行状态、阻塞状态三个基本状态..3、引起进程进入挂起状态的原因如下:a. 终端用户的请求b. 父进程请求c. 负荷调节的需要d. 操作系统的需要具有挂起状态的进程转换图— P394、创建进程的主要步骤a. 为一个新进程创建PCB;并填写必要的管理信息..b. 把该进程转入就绪状态并插入就绪队列之中..5、进程控制块PCB的作用1系统为了管理进程设置的一个专门的数据结构;存放了用于描述该进程情况和控制进程运行所需的全部信息..2系统利用PCB来控制和管理进程;所以PCB是系统感知进程存在的唯一标志3进程与PCB是一一对应的为什么说PCB是进程存在的唯一标志在进程的整个生命周期中;系统总是通过其PCB对进程进行控制;系统是根据进程的PCB而不是任何别的什么而感知到该进程的存在的;所以说;PCB是进程存在的唯一标志..6、进程控制块的组织方式链接方式、索引方式7、原语的定义、组成、作用原语是由若干条指令组成的;用于完成一定功能的一个过程;与一般过程的区别在于:它们是“原子操作”;是一个不可分割的基本单位;在执行过程中不允许中断..原子操作在管态下执行;常驻内存..原语的作用是为了实现进程的通信和控制;系统对进程的控制如不使用原语;就会造成其状态的不稳定性;从而达不到进程控制的目的..8、引起创建进程的事件用户登录、作业调度、提供服务、应用请求9、引起进程终止的事件正常结束、异常结束、外界干预10、引起进程阻塞和唤醒的事件请求系统服务、启动某些操作、新数据尚未到达、无新工作可做11、临界资源和临界区1临界资源是指每次仅允许一个进程访问的资源..属于临界资源的硬件有打印机、磁带机等;软件有消息缓冲队列、变量、数组、缓冲区等..诸进程间应采取互斥方式;实现对这种资源的共享..2每个进程中访问临界资源的那段程序称为临界区Critical Section;不论是硬件临界资源;还是软件临界资源;多个进程必须互斥地对它进行访问..12、同步机制应遵循的规则空闲让进、忙则等待、有限等待、让权等待13、进程通信的类型进程间通信机制包括:共享内存系统、消息传递系统以及管道通信系统..14、线程的定义、属性在多线程OS中;通常一个进程中包含多个线程;每个线程都是作为利用CPU的基本单位;是花费最小开销的实体..线程具有下述属性:1轻型实体—线程中的实体基本上不拥有系统资源;只是有一点必不可少的、能保证其独立运行的资源..2独立调度和分派的基本单位3可并发执行..4共享进程资源..15、进程和线程的比较a. 调度性..在传统的操作系统中;拥有资源的基本单位和独立调度、分派的基本单位都是进程;在引入线程的OS中;则把线程作为调度和分派的基本单位;而把进程作为资源拥有的基本单位;b. 并发性..在引入线程的OS中;不仅进程之间可以并发执行;而且在一个进程中的多个线程之间;亦可并发执行;因而使OS具有更好的并发性;c. 拥有资源..无论是传统的操作系统;还是引入了线程的操作系统;进程始终是拥有资源的一个基本单位;而线程除了拥有一点在运行时必不可少的资源外;本身基本不拥有系统资源;但它可以访问其隶属进程的资源;d. 系统开销..由于创建或撤销进程时;系统都要为之分配和回收资源;如内存空间等;进程切换时所要保存和设置的现场信息也要明显地多于线程;因此;操作系统在创建、撤销和切换进程时所付出的开销将显着地大于线程..16.进程与程序的区别①程序是静态的;进程是动态的;②进程更能真实地描述并发;而程序不能;③进程具有创建其他进程的功能;而程序没有④进程只是一次执行过程;有生命周期;而程序可作为软件资源长期保存;是相对长久的;进程是系统分配调度的独立单位;能与其他进程并发执行;17.进程互斥与同步的基本概念i.进程互斥:由于各进程要求共享资源;而有些资源需要互斥使用;因此各进程间竞争使用这些资源;进程的这种关系为进程的互斥..ii.进程同步:在并发执行过程中;合作完成同一个任务的多个进程;在执行速度或某些时序点上必须相互协调的合作;这种制约性关系叫作进程同步..18、同步机制应遵循的规则空闲让进、忙则等待、有限等待、让权等待19.常用的几种信号量机制整型信号量、记录型信息量、AND型信息量、信号量集..第三章处理机调度1、高级调度与低级调度的区别高级调度又称为作业调度或长程调度;调度对象是作业;作业调度往往发生于一个批作业运行完毕;退出系统;而需要重新调入一个批作业进入内存时;故作业调度的周期长;低级调度又称为进程调度和短程调度;调度物件为进程或内核级线程;进程调度的运行频率最高;是最基本的一种调度;多道批处理、分时、实时三类OS中必须配置这种调度..引入中级调度的主要目的:是为了提高系统资源的利用率和系统吞吐量2、低级调度的功能保存处理机的现场信息、按某种算法选取进程、把处理器分配给进程3、进程调度方式1非抢占方式—实现简单、系统开销小、适用于大多数的批处理系统环境2抢占方式——原则:优先权原则、短作业进程优先原则、时间片原则4、同时具有三级调度的调度队列模型当在OS中引入中级调度后;人们可把进程的就绪状态分为内存就绪和外存就绪;类似的阻塞状态也可以同样划分..5、调度算法▲1、先来先服务FCFS2、短作业进程优先SJFSPF3、高优先权优先4、高响应比优先调度算法HRN..5、时间片轮转法1 要求:掌握算法思想..并能对前4种算法根据算法思想计算周转时间、平均周转时间、带权周转时间、平均带权周转时间;周转时间= 完成时间–到达时间=等待时间+服务时间2 掌握先来先服务、短作业进程优先、高响应优先调度算法三种算法性能评价:a.先来先服务算法即适合于作业调度也适用于进程调度;且算法较为简单;比较适合长作业或长进程不适合短作业或进程..b.短作业进程优先算法;能有效降低作业的平均等待时间;提高系统吞吐量..但该算法与用户做出的估计运行时间有很大的关系;对长作业进程不利;有利于短作业进程..c.高响应比优先调度算法;即照顾了短作业又考虑了长作业到达的先后次序;它不会使长作业长期得不到服务..6 高响应比优先调度算法优先权=等待时间+要求服务时间\要求服务时间响应比=等待时间+要求服务时间/要求服务时间=响应时间/要求服务时间7、最低松弛度优先调度算法即LLF算法该算法是根据任务紧急或松弛的程度;来确定任务的优先级..8、何谓死锁产生死锁的原因和必要条件是什么a.死锁是指多个进程因竞争资源而造成的一种僵局;若无外力作用;这些进程都将永远不能再向前推进;b.产生死锁的原因有二;一是竞争资源;二是进程推进顺序非法;c.必要条件是: 互斥条件;请求和保持条件;不剥夺条件和环路等待条件..互斥条件:一个资源一次只能被一个进程使用..请求和保持条件:保留已经得到的资源;还要求其它的资源..不剥夺条件:资源只能被占有者释放;不能被其它进程强行抢占..环路等待条件:系统中的进程形成了环形的资源请求链..9、处理死锁的基本方法1预防死锁—破坏产生死锁的四个必要条件中的一个或几个条件2避免死锁—破坏产生死锁的四个必要条件3检测死锁—通过系统设置的检测机构;及时检测出死锁的发生4解除死锁—撤销或挂起一些进程10、预防死锁的方法a.摒弃"请求和保持"条件b.摒弃"不剥夺"条件c.摒弃"环路等待"条件11、银行家算法▲要求掌握能够根据安全性检测算法;通过查找安全序列来判断某个时刻系统是否处于安全状态..能利用银行家算法来计算:当某进程提出资源请求时;系统是否分配..12、死锁检测掌握死锁定理的概念:当且仅当一组进程某个状态S的资源分配图是不可完全简化的;则说明S状态为死锁状态..知道在进行死锁的检测常用的工具是资源分配图;并通过对资源分配图的化简判断一组进程是否处于安全状态无环..第四章存储管理1、存储器按存储量、速度怎么划分至少应具有三级:最高层为CPU寄存器、中间为主存、最底层为辅存;较高档点的根据具体功能还可细分为:寄存器;高速缓存、主存储器、磁盘缓存;固定硬盘、可移动存储介质等6层..主存储器简称内存或主存:容量一般为数十MB到数GB;其访问速度远低于CPU执行指令的速度..为此引入寄存器和高速缓存;寄存器访问速度最快;价格昂贵;容量不大;高速缓存容量大于或远大于寄存器;从几十KB到几十MB;访问速度快于主存储器..2、程序的装入方式绝对装入方式、可重定位装入方式、动态运行时装入方式3、程序的链接方式分类静态链接、装入时动态链接、运行时动态链接4、对换的定义、分类、实现对换是把内存中暂时不能运行的进程或者暂时不用的程序和数据调到外存上;以便腾出足够的内存空间;再把已具备运行条件的进程或进程所需要的程序和数据调入内存..以整个进程为单位;称为“整体对换”或“进程对换”;以“页”或“段”为单位;分别称为“页面对换”和“分段对换”;又称为“部分对换”为了实现进程对换;系统必须能实现三方面的功能:对换空间的管理、进程的换出;以及进程的换入..6、基本分页存储管理方式重点考查1、分页的基本原理分页存储管理是将一个进程的逻辑地址空间分成若干个大小相等的片;称为页面或页;将这些页面装入到内存一些不连续的内存块中..若将一个进程的所有页面一次全部装入到内存叫基本分页;若按进程的运行情况分多次部分装入到内存叫请求式分页..由于进程的最后一页经常装不满一块而形成不可利用的碎片;称为页内碎片系统为每个进程建立一张页面映像表;简称页表..页表的作用是实现从页号到物理块号的地址映射..2、分页系统的地址变换机构▲掌握:能根据给定的逻辑地址和页表内容转换出物理地址注意在进行地址变换前要注意判断页号是否越界;并能掌握地址变换机构图..7 、基本分段存储管理方式1、分段存储管理方式的引入原因引入分段存储管理方式;主要是为了满足用户和程序员的一些需要:方便编程、信息共享、信息保护、动态增长、动态链接2、分段系统的基本原理在分段存储管理方式中;作业的地址空间被划分为若干个二维段;每个段定义了一组逻辑信息;逻辑地址由段号和段内地址组成..每个段在表中占有一个表项;其中记录了该段在内存中的起始地址又称为“基址”..段表是用于实现从逻辑段到物理内存区的映射..将一个作业的这些段装入到内存一些不连续的区域中在分段中一个作业获得的地址空间是不连续的;但是每个段获得的空间是连续的..当将一个作业的所有段一次全部装入到内存的是基本分段;若按作业的运行情况分多次部分装入到内存的是请求式分段..在分段中也会出现碎片..8、分段系统的地址变换机构▲掌握:能根据给定的逻辑地址和段表内容转换出物理地址注意在进行地址变换前要注意判断段号和段地位移量是否越界..9、分段和分页的主要区别a. 分页和分段都采用离散分配的方式;且都要通过地址映射机构来实现地址变换;这是它们的共同点;b. 对于它们的不同点有三;第一;从功能上看;页是信息的物理单位;分页是为实现离散分配方式;以消减内存的外零头;提高内存的利用率;即满足系统管理的需要;而不是用户的需要;而段是信息的逻辑单位;它含有一组其意义相对完整的信息;目的是为了能更好地满足用户的需要;c. 页的大小固定且由系统确定;而段长度不固定;决定于用户所编写的程序;d. 分页的作业地址空间是一维的;而分段的作业地址空间是二维的.10、虚拟存储器的特征及其内部关联a. 虚拟存储器具有多次性;对换性和虚拟性三大主要特征;b. 其中所表现出来的最重要的特征是虚拟性;它是以多次性和对换性为基础的;而多次性和对换性又必须建立在离散分配的基础上..11、页面置换算法▲1、先进先出FIFO2、最佳置换算法OPT3、最近最久未使用LRU置换算法4、Clock置换算法5、最少使用LFU置换算法1要求:掌握算法思想、名称缩写..并能对前3种算法根据算法思想计算缺页中断次数和缺页中断率;参考书P150页和作业题..2掌握先进先出FIFO、最佳置换算法OPT、最近最久未使用LRU置换算法的性能评价–先进先出:实现简单;性能最差;与进程实际的运行不相适应;且有可能会出现Belady现象即在未给进程或作业分配它所要求的全部页面时;有时会出现分配给作业的内存块数增多;缺页次数反而会增多的奇怪现象–最佳置换算法OPT:理论上;性能最佳;实际上;无法实现;通常只用在研究其它算法时;做参考评价..最近最久未使用LRU置换算法:性能较好;实现复杂;需要硬件支持..12、分段保护采取以下措施保证信息安全:越界检查、存取控制检查、环保护机构第五章设备管理1、I/O设备按使用特性、传输速率、信息变换、共享属性如何分类按设备的使用特性分类:存储设备又称外存、后备存储器、辅助存储器;输入输出设备又可具体划分:输入设备键盘、鼠标、扫描仪、视频摄像、各类传感器、输出设备打印机、绘图仪、显示器、数字视频显示设备、音响输出设备、交互式设备按传输速率分类:低速设备键盘、鼠标、语音的输入输出设备;中速设备行式打印机、激光打印机;高速设备磁带机、磁盘机、光盘机..按信息交换的单位分类:块设备磁盘;字符设备交互式终端、打印机按设备的共享属性分类:独占设备;共享设备磁盘;虚拟设备2、设备控制器的组成设备控制器由以下三部分组成:1设备控制器与处理机的接口;该接口用于实现CPU 与设备控制器之间的通信;提供有三类信号线:数据线、地址线和控制线..2设备控制器与设备的接口;可以有一个或多个接口;且每个接口连接一台设备..每个接口都存在数据、控制和状态三种类型的信号..3I/O逻辑;用于实现对设备的控制..其通过一组控制线与处理机交互;处理机利用该逻辑向控制器发送I/O命令;I/O逻辑对收到的命令进行译码..3、I/O通道设备如何引入虽然在CPU和I/O设备之间增加了设备控制器后;已能大大减少CPU对I/O的干预;但当主机配置的外设很多时;CPU的负担仍然很重;为此;在CPU和设备控制器之间又增设了通道..I/O通道是一种特殊的处理机;它具有执行I/O指令的能力;并通过执行通道I/O程序来控制I/O操作..通道与普通处理机的区别:1没有自己的内存;且与主机共享主机内存2执行的指令单一;主要执行与I/O有关的指令..通道分为:字节多路通道主要连接低速字符设备;数组选择通道主要连接高速块设备;数组多路通道主要连接中高速块设备4、有哪几种I/O控制方式各适用于何种场合1I/O控制方式:程序I/O方式、中断驱动I/O控制方式、DMA I/O控制方式、I/O通道控制方式..2程序I/O方式适用于早期的计算机系统中;并且是无中断的计算机系统;中断驱动I/O控制方式是普遍用于现代的计算机系统中;DMA I/O控制方式适用于I/O设备为块设备时在和主机进行数据交换的一种I/O 控制方式;当I/O设备和主机进行数据交换是一组数据块时通常采用I/O通道控制方式;但此时要求系统必须配置相应的通道及通道控制器..5、DMA控制器的组成1DMA控制器由三部分组成:主机与DMA控制器的接口、DMA控制器与块设备的接口、I/O控制逻辑..2DMA方式与中断控制方式的区别:相同点是都是以块为单位进行传输..区别是:1CPU处理中断的时间:●中断控制方式:是在数据缓冲寄存器满之后要求CPU进行中断处理●DMA方式:是在所要求转送的数据块全部传送结束时要求CPU进行中断处理..这就大大减少了CPU进行中断处理的次数..2数据传送的完成者:●中断控制方式:是在中断处理时由CPU控制完成的;●DMA方式:是DMA控制器完成的..6、为了实现主机与控制器之间成块数据的直接交换;需设置DMA控制器中四类寄存器DR:数据寄存器;暂存从设备到内存或从内存到设备的数据MAR:内存地址寄存器DC:数据计数器;存放本次CPU要读或写的字节数CR:命令\状态寄存器;接收从CPU发来的I/O命令;或相关控制信息;或设备状态7、缓冲的引入原因操作系统引入缓冲机制的主要原因可归结为以下几点:1缓和CPU与I/O设备间速度不匹配的矛盾;2减少对CPU的中断频率;放宽对中断响应时间的限制;3提高CPU与I/O 设备之间的并行性..8、缓冲池的组成、工作方式三个队列:空缓冲队列、输入队列、输出队列四种工作缓冲区:1用于收容输入数据的工作缓冲区;2用于提取输入数据的工作缓冲区;3用于收容输出数据的工作缓冲区;2用于提取输出数据的工作缓冲区;9、SPOLLing系统的定义、组成、特点SPOOLing系统是对脱机I/O工作的模拟;其必须有高速随机外存通常采用磁盘的支持..SPOOLing系统主要有以下四个部分:1输入井和输出井;为磁盘上开辟的两大存储空间;分别模拟脱机输入/出时的磁盘;并用于收容I/O设备输入的数据和用户程序的输出数据;2输入缓冲区和输出缓冲区;在内存中开辟;分别用于暂存由输入设备和输出井送来的数据;3输入进程SPi和输出进程SPo;分别模拟脱机输入/出时的外围控制机;用于控制I/O过程;4I/O请求队列;由系统为各个I/O请求进程建立的I/O请求表构成的队列..SPOLLing系统的特点:提高了I/O的速度;将独占设备改造为共享设备;实现了虚拟设备功能..10、磁盘的类型和访问时间组成磁盘分为两类:固定头磁盘一般为大容量磁盘和移动头磁盘一般为中小型容量磁盘..磁盘访问时间=寻道时间+旋转延迟时间+数据传输时间11、磁盘磁盘调度算法▲1、先来先服务FCFS2、最短寻道时间优先SSTF3、扫描Scan算法又称为“电梯调度算法“4、循环扫描CScan算法1要求:掌握算法思想、名称缩写..并能根据算法思想计算碰头的寻道轨迹;寻道距离和寻道时间;参考书P194页和作业题..2掌握算法性能评价●先来先服务FCFS:公平、简单;平均寻道时间可能较长;●最短寻道时间优先SSTF:平均寻道时间比FCFS算法短;但可能会出现“饥饿现象”和“磁臂粘着”现象..●扫描Scan算法:消除了“饥饿”现象;但可能会出现“磁臂粘着”现象..●循环扫描CScan算法:改进了对于边缘区磁道访问的不公平;但可能会出现“磁臂粘着”现象..5.N-Step-Scan和FSCAN算法:可避免出现“磁臂粘着”现象..第六章文件管理1、文件的定义、属性文件是指由创建者所定义的、具有文件名的一组相关信息的集合;可分为有结构文件和无结构文件..文件的属性包括:文件类型、文件长度、文件的物理位置、文件的建立时间。
使用动态优先权的进程调度算法的模拟实验
使用动态优先权的进程调度算法的模拟实验进程调度算法是操作系统中对进程进行调度的一种策略,动态优先权调度算法是其中一种常用的调度算法。
下面将对动态优先权调度算法进行模拟实验,并对实验结果进行分析。
首先,我们定义进程的属性包括进程编号、到达时间、服务时间、优先权和完成时间等。
动态优先权调度算法的基本思想是根据进程的优先权决定下一个被调度的进程,优先权越高,被调度的机会越大。
实验过程如下:1.创建一个进程队列,用来存放待调度的进程。
2.输入进程的个数,并依次输入每个进程的到达时间、服务时间和优先权。
3.将所有进程按照到达时间进行排序。
4.从排好序的进程队列中选择优先权最高的进程,即优先权最大的进程。
5.通过执行该进程进行模拟,更新进程队列中的进程信息。
6.根据更新后的进程信息,重新选择下一个被调度的进程。
7.重复步骤5和6,直到所有进程执行完毕。
对于每个进程,我们可以记录其等待时间、周转时间和带权周转时间。
等待时间即为该进程在就绪队列中等待的时间,周转时间是指从进程提交到完成的时间,即完成时间减去到达时间,带权周转时间是指每个进程的周转时间除以服务时间,用来评估进程的调度效果。
下面是一个动态优先权调度算法的模拟实验示例:```pythonclass Process:self.id = idself.priority = prioritydef __lt__(self, other):return self.priority < other.prioritydef dynamic_priority_scheduling(processes):queue = []while processes or queue:for process in processes:queue.append(process)processes.remove(process)queue.sort(reverse=True) # 根据进程的优先权进行排序if queue:process = queue.pop(0)for p in queue:if __name__ == '__main__':n = int(input("Enter the number of processes: "))processes = []for i in range(n):priority = int(input("Enter priority for process {}:".format(i+1)))dynamic_priority_scheduling(processes)```以上代码定义了一个Process类来表示进程,并使用动态优先权调度算法对进程进行调度。
操作系统实验——动态优先级进程调度实验报告
1.实验名称:动态优先权调度过程中就绪队列的模拟2.实验要求:采用动态优先权的进程调度算法,用C语言编程模拟调度过程中每个时间片内的就绪队列。
3.实验内容:(1)每个进程控制块PCB用结构描述,包括以下字段:*进程标识符id*进程优先数priority,并规定优先数越大的进程,其优先权越高。
*进程已占用的CPU时间cputime*进程还需占用的CPU时间alltime,当进程运行完毕时,aiitime变为0*进程的阻塞时间startblock,当进程再运行startblock个时间片后,进程将进入阻塞状态*进程被阻塞的时间blocktime,已阻塞的进程再等待blocktime个时间片后,将转换成就绪状态*进程状态state*队列指针next,将PCB排成队列。
2)调度前,系统中有五个进程,它们的初始状态如下:3)进程在就绪队列呆一个时间片,优先数增加1。
4)进程每运行一个时间片,优先数减3。
5)按下面格式显示每个时间片内就绪队列的情况:READY_QUEUE:->id1->id24.任务分析进程控制块用结构体来表示,包含它的各项属性。
建立两个队列:一个就绪队列,一个阻塞队列。
创建一个进程控制块表示当前正在运行的进程。
程序开始运行时,所有进程都在就绪队列中。
当startblock减少到0时,进程进入阻塞队列。
在阻塞队列中的进程,当blocktime减少到0时,转入就绪队列。
在就绪队列中的进程,如果优先级比当前正在执行的进程高,就可以取代当前进程获取时间片。
当前进程如果运行完毕,就绪队列中优先级最高的进程就可以成为新当前进程。
5.程序流程图#include〈iostream〉#include〈string〉usingnamespace std;#define LEN5typedefenum STATE{READYBLOCKEND}STATE;//定义进程控制块typedefstruct PCB{int id;int priority;int cputime;int alltime;int startblock;int blocktime;STATE state;}PCB;//定义队列typedefstruct queue{int si ze;PCB*data[LEN];}Queue;PCB ps[LEN];PCB*cp; //进程最大数量//进程状态//就绪//阻塞//完成//进程标识符//进程优先级//已占用的CPU时间//还需占用的CPu时间//阻塞时间//被阻塞时间//进程状态//队列中进程的数量//进程的指针//进程数组//当前正在运行的进程6.程序清单Queue rQueue,bQueue;//就绪队列和阻塞队列//就绪队列按优先级降序排序(使用了冒泡排序法)void rQueueSort(){ PCB*temp;for(int i=0;i<rQueue.size-1;i++){for(int j=0;j<rQueue.size-1-i;j++){if(rQueue.data[j]-〉priority<rQueue.data[j+1]-〉priority){temp=rQueue.data[j];rQueue.data[j]=rQueue.data[j+1];}}rQueue.dataj+1]=temp;}}//初始化void init(){//给进程赋值for(int i=0;i<LEN;i++){ps[i].id=i;ps[i].state=READY;ps[i].cputime=0;ps[i].alltime=3;ps[i].blocktime=0;ps[i].startblock=T;}ps[0].priority=9;ps[1].priority=38;ps[2].priority=30;ps[3].priority=29;ps[4].priority=0;ps[2].alltime=6;ps[4].alltime=4;ps[0].startblock=2;ps[0].blocktime=3;cp=NULL;//当前进程赋空bQueue.size=0;//阻塞队列没有进程for(int i=0;i<LEN;i++){bQueue.data[i]=NULL;rQueue.data[i]=&ps[i];}rQueue.size=5;//所有进程全部进入就绪队列rQueueSort();//对就绪队列排序}//打印void print(){cout〈〈"\nRUNNINGPROG:";if(cp!=NULL){cout〈〈cp->id;}cout<<"\nREADY_QUEUE:";for(int i=0;i<rQueue.size;i++){cout〈〈"-〉"〈〈rQueue.data[i]-〉id; }cout<<"\nBLOCK_QUEUE:";for(int i=0;i<bQueue.size;i++){cout〈〈"-〉"〈〈bQueue.data[i]-〉id; }cout〈〈"\n"<<endl;cout<<"ID\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].id<<"\t";}cout<<"\nPRI0RITY\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].priority〈〈"\t";}cout<<"\nCPUTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].cputime〈〈"\t";}cout<<"\nALLTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].alltime〈〈"\t";}cout<<"\nSTARTBLOCK\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].startblock<<"\t";}cout<<"\nBLOCKTIME\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].blocktime<<"\t";}cout<<"\nSTATE\t\t";for(int i=0;i<LEN;i++){if(ps[i].state==READY){cout<<"READY"<<"\t";}elseif(ps[i].state==BLOCK){cout<<"BLOCK"<<"\t";}elseif(ps[i].state==END){cout〈〈"END"<<"\t";}}cout〈〈endl;}//出队,返回进程指针PCB*pop(Queue*q){PCB*temp;if(q-〉size>0){temp=q-〉data[0];//取出队首进程for(int i=0;i<q-〉size-1;i++){q-〉data[i]=q-〉data[i+1];//其他进程依次向前移动}q->size__;return temp;//返回队首进程}return NULL;}//入队void push(Queue*q,PCB*p){if(q_>size<LEN){q_>data[q_〉size]=p;//将入队的进程放在队尾q_>size++;}return;}//运行进程void run(){if(rQueue.size〉0||bQueue.size〉0){if(cp==NULL){//程序一开始运行时,从就绪队列取出首进程cp=pop(&rQueue);}//当前进程没有结束,但优先级比就绪队列首进程低if(cp_〉alltime〉0&&cp_>priority<rQueue.data[0]_〉priority){}push(&r Queue,c//改变进程状态//从就绪队列取出新的当前进程//修改当前进程的状态 //将当前进程加入阻塞队列 //从就绪队列取出新的当前进程{//当前进程的startblock 为正数时//运行一次减一个时间片//减到0时,修改进程状态//每运行一个时间片//就绪队列中的进程优先级+1//每运行一个时间片//阻塞队列中的进程blocktime-1//将当前进程放入就绪队列 //就绪队列队首进程成为当前进程if (cp-〉alltime==0){cp->state =END ;cp=pop(&rQueue); }//如果当前进程运行结束//startblock 为0,标志着当前进程要进入阻塞状态if (cp —>startblock==0&&cp —>blocktime>0){cp —>state=BLOCK ; push(&bQueue,cp); cp=pop(&rQueue); }elseif (cp —>startblock>0)cp —>st artblock 一; }cp —>alltime ——;if (cp —>alltime==0){cp —>state=END ;for (int i=0;i<rQueue.size;i++){rQueue.data[i]-〉priority++; }for (int i=0;i<bQueue.size;i++){if (bQueue.data[i]-〉blocktime>0){bQueue.data[i]-〉blocktime--; }//当阻塞队列队首进程blocktime 为0时if (bQueue.size 〉0&&bQueue.data[0]-〉blocktime==0){bQueue.data[0]-〉state=READY ;//修改进程状态push(&rQueue,pop(&bQueue));//将阻塞队列首进程取出,放入就绪队列cp —〉priority-=3;//修改当前进程的优先级cp —>cputime++; //当前进程占用CPU 时间片+1 if (cp —>alltime>0){//当前进程还需运行的时间片-1}//每运行一个时间片,就绪队列排一次序rQueueSort();} }//主函数int main(){init();//初始化 print();//打印进程信息 while (1){_sleep(1000);if (rQueue.size==0&&bQueue.size==0){//当两个队列都为空时,结束程序cp-〉state=END ;break ; }run();//运行进程 print();//打印进程信息 }return 0; }7.实验过程记录m 匚:\WINDQWS\system32\cmd.exe程序开始执行,当前进程是优先级最高的1号进程,1号进程的优先级减3、cputime++、执行几次之后,1号进程执行完毕而且优先级也不是最高的了,所以优先级为33的2号进程成为当前进程,开始执行。
操作系统专升本考试(试卷编号142)
操作系统专升本考试(试卷编号142)说明:答案和解析在试卷最后1.[单选题]在公共汽车上,司机与售票员的工作流程分别为,司机:启动车辆→正常运行→到站停车→启动车辆…。
;售票员:关车门→售票→开车门→关车门…。
为保证乘客安全,司机与售票员要密切配合,协调工作。
用信号量来实现司机与售票员之间的同步。
汽车运行中,司机与售票员之间的同步关系为:售票员在关车门之后,向司机发开车信号,司机接到开车信号后启动车辆,汽车运行时售票员售票,到站后司机停车,售票员在停车后开车门让乘客下车。
设置信号量 S1,S2。
S1表示是否允许司机启动车辆;S2 表示是否允许售票员开车门。
程序代码如下,SemaphoreS1,S2;Void Driver(){ while(1){ wait(S1);启动车辆;正常运行;到站停车;Signal(S2);}}Void Busman(){ while(1){ 关车门;Signal(S1);售票;Wait(S2);开车门;}}Main(){ cobegin{Driver();Busman();} }各信号量初值正确设置为()。
A)S1=0,S2=0B)S1=0,S2=1C)S1=1,S2=0D)S1=1,S2=12.[单选题]下列关于指令执行的说法中,错误的是A)程序执行的过程是反复取指令和执行指令的过程B)PC始终存有下一条待取指令的地址C)取指令由硬件完成,执行指令由软件完成D)指令执行的结果就是使寄存器或内存单元的值发生变化3.[单选题]碎片现象的存在使得( )。
A)内存空间利用率降低B)内存空间利用率提高C)内存空间利用率得以改善D)内存空间利用率不影响4.[单选题]抢占式的优先级调度算法在()中很有用。
A)网络操作系统B)分布式操作系统C)批处理系统D)实时系统5.[单选题]如果最多允许有3个进程同时进入互斥段,则所采用的互斥信号量初值应设置为( )。
A)10B)3C)1D)06.[单选题]文件系统是指( )。
计算机操作系统(汤小丹第三版)第3章 处理机调度与死锁
m
Ci P N i 1 i
25
m
第三章 处理机调度与死锁
3.3.2 实时调度算法的分类
1、非抢占式调度算法
图 3-8 非抢占式实时进程调度
26
第三章 处理机调度与死锁
2、抢占式调度算法
图 3-8 抢占式实时进程调度
27
第三章 处理机调度与死锁
3.4.3 常用的几种实时调度算法
1、 最早截止时间优先即EDF(Earliest Deadline First)算法
11
第三章 处理机调度与死锁
3.2.2 选择调度方式和调度算法的若成 这段时间间隔。
1 i (2)平均周转时间: T Ti n i 1
W0 T
(3)带权周转时间:作业周转时间T与系统为它提供 的服务时间TS之比:
作业 调度 后 备 队 列
时间片完
进程调度 进程完成
就 绪 队 列
CPU
事件1出现
等待事件1
事件2出现 … 事件n出现 … …
等待事件2 … 等待事件n
图 3-2 具有高、低两级调度的调度队列模型
9
第三章 处理机调度与死锁
3、 同时具有三级调度的调度队列模型
作业调度 后备队列 批量作业 交互型作业 中级调度 时间片完 就绪队列 进程完成
进程名 到达 时间 A 0 B C D E 1 2 3 4 服务 时间 4 3 5 2 4 带权平均 周转时间
22
完成 时间
周转 时间
带权周 转时间
平均周转时间
第三章 处理机调度与死锁
2、多级反馈队列调度算法 就绪队列1 S1 S2 S3 至CPU 至CPU
就绪队列2 就绪队列3
OS课程重点
OS课程重点第一章操作系统引论操作系统的目标:方便性,有效性,可扩充性,开放性。
操作系统的作用有:作为用户与计算机硬件系统之间的接口,作为计算机系统资源的管理者,用作扩充机器。
用户使用计算机的三种方式:命令方式,系统调用方式,图形、窗口方式。
资源分为四种:处理器,存储器,I/O设备,信息(数据和程序)。
推动操作系统发展的主要动力有:不断提高计算机资源利用率,方便用户,器件的不断更新换代,计算机体系结构的不断发展。
操作系统同计算机系统发展的几个阶段:无操作系统的计算机系统,单道批处理系统,多道批处理系统,分时系统,实时系统。
操作系统:一组控制和管理计算机硬件和软件资源,合理地对各类作业进行调度,以及方便用户使用的程序的集合。
分时系统是指:在一台主机上连接了多个带有显示器和键盘的终端,同时允许多个用户通过自己的终端,以交互方式使用计算机,共享主机中的资源。
实时系统是指,系统能及时(或即时)响应外部事件的请求,在规定的时间内完成对该事件的处理,并控制所有实时任务协调一致地运行。
实时任务可分为:周期性实时任务和非周期性实时任务,也可分为硬实时任务和软实时任务。
操作系统都具有四个基本特征:(程序)并发,(资源)共享,虚拟和异步。
并行性指:两个或多个事件在同一时间发生,并发性指两个或多个事件在同一时间间隔内发生。
共享指:系统中地资源可供内存中多个并发执行的进程(线程)共同使用,可分为互斥共享方式和同时访问方式。
虚拟指:通过某种技术把一个物理实体变为若干个逻辑上的对应物。
如果n是某物理设备所对应的虚拟的逻辑设备数,则虚拟设备的平均速度必然是物理设备速度的1/n。
操作系统的功能:处理机管理,存储器管理,设备管理和文件管理。
处理器管理包括:进程控制,进程同步,进程通信,调度。
存储器管理包括:内存分配,内存保护,地址映射,内存扩充。
设备管理包括:缓冲管理,设备分配,设备处理。
文件管理包括:文件存储空间管理,目录管理,文件的读写管理和保护。
第四章进程调度与死锁作业
第四章进程调度与死锁一.选择题(50题)1.预防死锁不可以去掉以下__A__条件。
A.互斥 B.请求与保持 C.不可剥夺 D.环路2.资源分配图是否可以完全简化是判断死锁的_C__。
A.充分条件 B.必要条件 C.充分必要条件 D.什么也不是3.设有4个作业同时到达,每个作业的执行时间是2min,它们在一台处理机上按单道方式运行,则平均周转时间为_B__。
A.1min B.5min C.2.5min D.8min4.若系统中有8台绘图仪,有多个进程均需要使用两台,规定每个进程一次仅允许申请一台,则至多允许_C__各进程参与竞争,而不会发生死锁。
A.5 B .6 C .7 D .85.响应比高者优先作业调度算法除了考虑进程在CPU上的运行时间,还考虑以下__D_因素。
A.输入时间B.完成时间C.周转时间D.等待时间6.产生系统死锁的原因可能是_B__。
A.一个进程进入死循环B.多个进程竞争资源出现了循环等待C.进程释放资源D.多个进程竞争共享型设备7.以下_B__方法可以解除死锁。
A.挂起进程B.剥夺资源C.提高进程优先级D.降低进程优先级8.采用有序分配资源的策略可以破坏产生死锁的__D_。
A.互斥条件B.请求与保持条件C.不可剥夺条件D.环路条件9.连个进程争夺同一个资源_B__。
A.一定死锁B.不一定死锁C.不死锁D.以上说法都不对10.以下解决死锁的方法中,属于预防策略的是_C__。
A.化简资源分配图B.银行家算法C.资源的有序分配D.死锁检测法11.下面__D_说法是对可剥夺系统的正确描述。
A.时间片轮转法是一种可剥夺式调度B.进程因等待某一事件而引起系统调度是一种可剥夺式调度C.实时系统采用可剥夺式调度D.优先级低的进程放弃CPU,让优先级高的进程运行12.以下关于调度的说法__A__正确。
A.进程通过调度得到CPUB.优先级是进程调度的主要依据,一旦确定就不能改变C.在单CPU的系统中,任何时刻都有一个进程处于运行状态D.进程申请CPU得不到时,其状态为阻塞13.既考虑进程的等待时间,又考虑进程的执行时间的调度算法是__A__。
计算机操作系统汤子瀛版
当新到达的作业(进程)比正在执行的作业(进程) 明显地短时,将剥夺长作业(进程)的执行,将处理 机分配给作业(进程),使之优先执行。
第一节 调度的类型和模型
3、中级调度 又称中程调度
(1)引入中级调度的目的
是为了提高内存的利用率和系统吐量。
(2)定义
应使那些暂时不能运行的进程不再占用宝贵的 内存空间,而将它们调至外存上去等待,称此 时的进程状态为就绪驻外存状态,或挂起状态。 当这些进程重又举备运行条件,且内存又稍有 空闲时,由中级调度决定,将外存上的那些重 又具备运动条件的就绪进程重新调入内存,并 修改其状态为就绪态,挂在就绪队列上,等待 进程调度。
重要准则。
①定义
截止时间:指某任务必须开始执行的最迟时间,或必须完成的最 迟时间,对于严格的实时系统,其调度方式和调度算法必须保证 这点。否则将可能引起难以预料的后果。
(4)优先权准则 让紧急的作业,得到及时的处理。
第二节 调度算法
• 调度算法是指:根据系统的资源分配策 略所规定的资源分配算法,对于不同的 系统和系统目标,通常采用不同的调度 算法。
2)具有高低级调度的调度队列模型
图 3-2 具有高、低两级调度的调度队列模型
3、同时具有三级调度的调度队列模型
当在OS中引入中级调度后,可把就绪态 分为内存就绪状态、外存就绪状态。可 把阻塞状态进一步分成内存阻塞和外存 阻塞两种状态。在调出操作的情况下, 可使内存就绪转变为外存就绪、内存阻 塞转变为外存阻塞;在中级调度的作用 下,外存就绪转变为内存就绪。
这种调度方式的优点是实现简单、系统开销小,适用大 于多数的批处理系统环境。但它难于满足紧急任务的 要求。
(2)抢占方式(Preemptive Mode) 这种调度方式,允许调度程序根据某种原则,去停止 某个正在执行的进程,将已分配给该进程的处理机, 重新分陪另一进程。
动态股权的分配方案有哪些
动态股权的分配方案有哪些动态股权的分配方案有哪些一、引言动态股权分配方案是指在创业公司发展过程中,根据不同阶段的发展需求和股东参与程度,灵活调整股权的分配方案。
传统的股权分配方式主要是根据创业者的贡献程度或初期投资额进行分配,这种方式并不适合创业公司发展的需要。
动态股权的核心理念是将股权分配与公司的不同阶段、创业者的参与度以及贡献相匹配,从而激励创业者持续创造价值,吸引和激励更多的人才参与公司的发展。
本文将介绍动态股权的分配方案,包括多元化的股权激励方案、风险投资者的参与、创始人的股权保护等。
二、多元化的股权激励方案1、股票期权股票期权是一种将股权奖励与绩效挂钩的方案,即根据员工的工作表现,给予其一定数量的股票期权。
股票期权的授予通常会有一定的条件限制,如需满足一定的工作年限或者实现一定的业绩目标等。
这种方式能够吸引和激励创业公司的关键员工,激发员工的创造力并与公司的长期价值发展保持一致。
2、股东借助贷款购买股权创业公司一开始往往没有流动资金,此时股东可以借助贷款购买股权。
这种方式可以减轻创业公司的资金压力,同时也可以保证股东的参与度。
当公司发展到一定程度,有了一定的现金流之后,借款人可以选择提前还款或者以股权偿还贷款。
3、员工持股计划员工持股计划是创业公司在发展初期设立的,旨在鼓励员工积极参与公司的股权投资。
公司可以向员工提供一定数量的股权作为激励,并且可以在一定的锁定期过后给予员工以优先购买公司的股权的机会。
这种方式可以激励员工将公司的利益与自身利益紧密结合起来,促使员工更加努力地为公司创造价值。
三、风险投资者的参与在创业公司发展的初期,往往需要大量的风险投资来支持公司的发展。
与传统的股权分配方式不同,风险投资者往往会要求有更高的股权比例,以获得更高的回报。
为了吸引到优秀的风险投资者并保证公司的股权不被稀释,可以采取以下措施:1、股权保护条款创业公司可以与风险投资者签订股权保护协议,明确股权变动的条件和限制。
安徽工业大学工商学院软件工程专业大二2017-2018学年操作系统选择+判断
B n,1,0
C 1,1,n
D 1,n,n
55.有两个程序:A程序按顺序使用CPU10秒、设备甲5秒,CPU5秒,设备乙10秒,CPU10秒;B程序按顺序使用设备甲10秒,CPU10秒,设备乙5秒,CPU10秒,设备乙10秒。在顺序环境下,执行上述程序,CPU的利用率约为()[单选题]
响应时间快
平均周转时间短
截止时间的保证(正确答案)
优先权高的作业能获得优
13. ( )是选择分时系统进程调度算法的重要准则。[单选题]
响应时间快(正确答案)
平均周转时间短
截止时间的保证
优先权高的作业能获得优先服务
14. ( )是批处理系统中选择作业调度算法的重要准则。[单选题]
A响应时间快
B平均周转时间短(正确答案)
安徽工业大学工商学院软件工程专业大二2017-2018学年操作系统选择+判断
您的姓名:[填空题]*
_________________________________
1.强调多个用户以交互方式使用计算机的操作系统称为[单选题]
批处理操作系统
分时操作系统(正确答案)
实时操作系统
多处理机操作系统
2.强调允许多个用户将若干个作业提交给计算机系统集中处理的操作系统称为[单选题]
D若干进程等待被其他进程所占用而又不可能被释放的资源(正确答案)
41.某系统中有13个磁带机,k个进程共享这些设备,每个进程最多请求使用3台,则系统不会产生死锁的K的值是[单选题]
A不小于3
B不大于6(正确答案)
C大于13
D在6与10之间
42.标题[单选题]
选项1(正确答案)
选项2
基于动态优先权的进程调度算法的模拟实现
在多道程序环境下, 进程的数目往往多于处理机数 目。这就要求 系统能按照某种算法, 动态的把处理机分配给就绪队列中 的进程, 使 之执行。因此, 处理机调度是操作系统设计的中心问题之一。进程调度 问 题 的 核 心 就 是采 用 什 么 样 的 算 法 把 处 理 机 分 配 给 进 程 。进 程 调 度 算 法 也 是 在 任 何 操作 系 统 中 必 须 配 置 的 一 级 调 度 。好 的 进 程 调 度 算 法 将 有效的提高系统中 各种资源利用 率, 减少处理机 的空闲时间, 避 免部 分 作 业 长 期 得不 到 处 理 机 响 应 等 情 况 的 发 生 。
1 . 动 态 优 先 权 调度 算 法 介 绍 动态优先权调度算法, 以就绪队列中各个进程的优 先权作为进程 调度的依据。各个进程的优先权在创建进程时所赋予, 随着进程的推 进 或 其 等 待 时间 的 增 加 而 改 变 。进 程 的 优 先 权 利 用 某 一 范 围 内 的 整 数 来表示。有的系统数值越小优先权越高, 如 Uni x 系统, 有的系统则反 之。采用该算法时, 每次总是在就绪队列中选择一个优 先权最高的进 程进行调度, 并将处理机分配给该进程。动态优先权调 度算法又分为 抢占式和非抢占式两种。本文采用 C 语言对非抢占式动态优先权调度 算 法 进 行 了 设 计和 实 现 。 2 . 算 法 的 设 计 思路 (1 ) 在算法的设计中各项原则。 首 先 规 定优 先 数 改 变 的 原 则 : ● 进程在就绪队列中呆一个时间片, 优先数增加 1 。 ● 进程每运行一个时间片, 优先数减 3。 其次, 算法的数据结构及操作采 用数组方式, 将输入的 N个 进程 的 PCB 信息保存到一个数组中。用 PCB 数组的插入和 删除动态地模 拟 进 程 调 度 过程 。 (2 ) 系统初始条件。 系统中设有 5 个进程, 每个进程产生时间, 优先级各不相同。利用 进程控制块 PCB 来 描述各个进程。进程控制块 PCB 包括以下字段: ● 进程标识数 ID; ● 进程优先数 PRIORITY, 并规定优先数越大的进程, 其优先权越 高; ● 进程已占用的 CPU 时间 CPUTIME; ● 进 程还 需占 用的 CPU 时间 ALLTIME。 当进 程 运行 完毕 时 , ALLTIME 变为 0 ; ● 进 程 的 阻 塞 时 间 STARTBLOCK, 表 示 当 进 程 再 运 行 STARTBLOCK 个时间片后, 进程将进入阻塞状态; ● 进程 被阻塞 的时间 BLOCKTIME, 表示已 阻塞 的进程 再等 待 BLOCKTIME 个时间片后, 进程将转换成就绪状态; ● 进程状态 STATE, 包括三种状态, 就绪态、阻塞态、完成态; CPU 处理进 程是从就绪队 列中选择当前各 进程中优先权最 大的 进程开始的。由于采用的是非抢占式调度算法, 则当前 进程执行完一 个 时 间 片 之 后有 以 下 几 种 情 况 : ① 当前进程结束则退出系统, 否则排到就绪队列尾 或根据阻塞时
课程设计的目的及意义(精选5篇)
课程设计的目的及意义(精选5篇)以下是网友分享的关于课程设计的目的及意义的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一一.课程设计的目的和意义目的:1. 根据课堂讲授内容,学生做相应的自主练习,消化课堂所讲解的内容。
2. 通过调试典型例题或习题积累调试程序的经验。
3. 通过完成辅导教材中的编程题,逐渐培养学生的编程能力,用计算机解决实际问题的能力。
意义:1. 有助于加深我们对操作系统这门课程的理解,我们在课堂上学的都是基础理论知识,对于如何用程序语言来描述所学知识还是有一定难度。
通过课程设计,我们可以真正理解其内涵。
2. 有利于我们逻辑思维的锻炼,程序设计能直接有效地训练学生的创新思维、培养分析问题、解决问题能力。
即使是一个简单的程序,依然需要学生有条不理的构思。
3. 有利于培养严谨认真的学习态度,在程序设计过程里,当我们输入程序代码的时候,如果不够认真或细心,那么可能就导致语法错误,从而无法得出运行结果。
那么,这个我们反复调试,反复修改的过程,其实也是对我们认真严谨治学的一个锻炼。
二进程调度算法模拟1 . 设计目的通过动态优先权算法的模拟加深进程概念和进程调度过程的理解。
2 . 设计要求写出带有完整标注的程序代码(可以用Java或C/C++实现,要求每个语句都要有标注)。
3 . 使用动态优先权的进程调度算法的模拟3.1算法思路分析动态优先权是指在创建进程时所赋予的优先权,可以随进程的推进或随其等待时间的增加而改变的,以便获得更好的调度性能.若所有的进程都具有相同的优先权初值,则显然是最先进入就绪队列的进程,将因其动态优先权变得最高而优先获得处理机,此即FCFS算法.因此,通过c程序模拟动态优先权程序调度算法,主要思路和方法就是,通过结构体模拟计算机的控制模块,构造一个PCB结构体即进程控制块结构体,用来记录当前进程的的相关状态信息,包括进程标识符、处理机状态、进程调度信息、进程控制信息。
操作系统第三章
操作系统第三章—.单选题1在三种基本类型的操作系统中,都设置(进程调度),在批处理系统中还应设置()oA、⑴剥夺进度B、(2)作业调度C、(3)进程调度D、(4)中级调度E、(5)多处理机调度正确答案:B2在三种基本类型的操作系统中,都设置(进程调度),在批处理系统中还应设置(作业调度);在分时系统中除了(进程调度)以外,通常还设置了()oA、⑴剥夺进度B、(2)作业调度C、(3)进程调度D、(4)中级调度E、(5)多处理机调度正确答案:D3在三种基本类型的操作系统中,都设置(进程调度),在批处理系统中还应设置(作业调度);在分时系统中除了(进程调度)以外:通常还设置了(中级调度),在多处理机系统中还需设置()oA、(1)剥夺进度B、(2)作业调度C、(3)进程调度D、(4)中级调度E、(5)多处理机调度正确答案:E4在面向用户的调度准则中,()是选择实时调度算法的重要准则。
A、⑴响应时间快B、(2)平均周转时间短C、(3)截止时间的保证D、(4)优先权高的作业能获得优先服务E、⑸服务费低正确答案:C5在面向用户的调度准则中,()是选择分时系统中进程调度算法的重要准则。
A、⑴响应时间快B、(2)平均周转时间短C、(3)截止时间的保证D、(4)优先权高的作业能获得优先服务E、(5)服务费低正确答案:A6在面向用户的调度准则中()是批处理系统中选择作业调度算法的重要准则。
A、⑴响应时间快B、(2)平均周转时间短C、(3)截止时间的保证D、(4)优先权高的作业能获得优先服务E、⑸服务费低正确答案:B7在面向用户的调度准则中,()准则则是为了照顾紧急作业用户的要求而设置的。
A、⑴响应时间快B、(2)平均周转时间短C、(3)截止时间的保证D、(4)优先权高的作业能获得优先服务E、⑸服务费低正确答案:D8作业调度是从处于()状态的队列中选取投入运行。
A、⑴运行B、⑵后备C、⑶提交D、⑷完成E、⑸阻塞F、(6)就绪正确答案:B9()是指作业进入系统到作业完成所经过的时间间隔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排序函数:对就绪状态的作业按照优先权排序。优先权相同时进入等待队列时间早的作业在前。注意考虑到达时间
调度函数:每次从等待队列队首调度优先权最高的作业执行,状态变化。并在执行一个时间单位后优先权变化,服务时间变化,状态变化。当服务时间为0时,状态变为F。
}
}
if(PCBcontrol[key].zhuangtai=='F')//具有最大优先数的进程若已运行完毕
return -1;//则返回-1
else
return key;//将key作为返回值返回
}
void show()//显示函数
{
int i;
printf("\n进程名优先级运行时间当前状态\n");
};
struct PCB2 PCBcontrol[4];//定义进程控制块数组
void youxian()//构造优先函数
{
inti,n;
printf("请输入进程的个数:\n");
scanf("%d",&n);
printf("请输入进程的名字、优先权、运行时间\n");
printf("\n");
for(i=0;i<n;i++)
二、实验内容:
模拟实现动态高优先权优先(若数值越大优先权越高,每运行一个时间单位优先权-n,若数值越小优先权越高,没运行一个时间单位优先权+n),具体如下:
设置作业体:作业名,作业的到达时间,服务时间,初始优先权,作业状态(W——等待,R——运行,F——完成),作业间的链接指针
作业初始化:由用户输入作业名、服务时间、初始优先权进行初始化,同时,初始化作业的状态为W。
{
printf("请输入第%d个进程的信息:\n",i+1);
scanf("%s%d%d",&PCBcontrol[i].name,&PCBcontrol[i].frist,&PCBcontrol[i].runtime);
PCBcontrol[i].zhuangtai='R';//进程初始状态均为就绪
删除函数:撤销状态为F的作业。
三、实验代码
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
typedefstruct PCB2
{
char name[10];//进程名
int runtime;//要求运行时间
intfrist;//定义优先数
char zhuangtai; //定义状态,R为就绪,F为完成
printf("*****************************************\n");
for(i=0;i<5;i++)//依次显示每个进程的名、优先数、要求运行时间和状态
{
printf(" %s\t %d\t %d\t %s\t\n",&PCBcontrol[i].name,PCBcontrol[i].frist,PCBcontrol[i].runtime,&PCBcontrol[i].zhuangtai);
PCBcontrol[i].zhuangtai='F';//运行完则将该进程状态置为结束
else
PCBcontrol[i].zhuangtai='R';//未运行完将其状态置为就绪
}
show();//显示每次运行后各PCB的情况
getchar();//等待回车进入下一次运行
}
}
}
}
void main()
show(); //调用show()子程序显示运行前PCB的情况
getchar();//等待回车进入下一次运行
for(j=0;j<t;j++)
{
while(max_frist_process()!=-1)//具有最大优先数的进程没有运行完,让其运行
{
PCBcontrol[max_frist_process()].zhuangtai='r';//将其状态置为r,表示其正在运行
getchar();//等待回车进入下一次运行
}
}
intmax_frist_process()//确定最大优先级进程子程序
{
int max=-10;//max为最大优先数,初始化为-10
inti,key;
for(i=0;i<5;i++)
{
if(PCBcontrol[i].zhuangtai=='r')//r表示正在运行
}
printf("\n请按回车键进行查看");
}
void run()//进程运行子程序
{
inti,j;
int t=0;//t为运行次数
for(j=0;j<5;j++)
{
t+=PCBcontrol[j].runtime;}//运行次数即为各个进程运行时间之和
printf("\n进程没运行前,当前的状态是:\n");
《操作系统》课程实验报告
实验名称:动态高优先权优先调度
班级:****************
学号:*************
姓名:**************
指导老师:***************
成绩:
一、实验目的:
1.测试数据可以随即输入或从文件中读入。
2.必须ห้องสมุดไป่ตู้考虑到作业的到达时间
3.最终能够计算每一个作业的周转时间。。
return -1;//返回-1
else
if(max<PCBcontrol[i].frist&&PCBcontrol[i].zhuangtai=='R')//从就绪进程中选取优先数最大的进程
{
max=PCBcontrol[i].frist;//max存放每次循环中的最大优先数
key=i;//将进程号赋给key
}
for(i=0;i<5;i++)
{
if(PCBcontrol[i].zhuangtai=='r')
{
PCBcontrol[i].frist-=1;//将当前运行进程的优先数减1
PCBcontrol[i].runtime--;//要求运行时间减1
{
if(PCBcontrol[i].runtime==0)
{
int N;
int number;
char Tishikuang;//提示框
do{
printf("★*********★********★*******★******★********★*********★************★\n");
printf("*************嵌入式软件14-01班****51********杨霖***************************\n");