一元一次不等式组
一元一次不等式(组)在生活中的应用
一元一次不等式(组)在生活中的应用
一元一次不等式(组)是小学数学中的一个重要内容,它在我们的日常生活中有很多应用。
以下是一些关于一元一次不等式(组)在生活中的应用:
购物打折:很多商场会举办打折活动,例如:打五折、打八折等。
我们可以用一元一次不等式来计算打折后商品的价格,帮助我们做出更明智的购物决策。
制定家庭预算:家庭预算可以帮助我们合理规划家庭收支,避免浪费。
在制定家庭预算时,我们可以使用一元一次不等式来计算各种开支和收入之间的关系,以及如何分配家庭预算。
健身计划:健身计划可以帮助我们制定科学合理的健身计划,达到健身的目的。
在健身计划中,我们可以用一元一次不等式来计算身体指标和目标之间的关系,例如:BMI指数和体重、身高之间的关系。
公交出行:公交车站的到达时间通常是不确定的,我们可以使用一元一次不等式来计算公交车的到达时间和出发时间之间的关系,以便更好地安排出行时间。
总之,一元一次不等式(组)在我们的日常生活中有很多应用。
它可以帮助我们计算各种事物之间的关系,从而更好地规划生活和工作。
一元一次不等式组(基础) 知识讲
一元一次不等式组(基础)知识讲解责编:杜少波【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组 (1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①② 解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤,又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
一元一次不等式组的知识点及其经典习题讲解
一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:,。
要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。
解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。
知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。
要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。
第10讲 一元一次不等式组
三、解答题 (共 54 分 ) 15 . (1)(4 分 )(2015· 连云港)解不等式组:
2x+ 1>5, x+1>4(x-2).
2x+ 1>5, 解: x+1>4(x-2),
解不等式①,得 x> 2. 解不等式②,得 x< 3.
① ②
∴不等式组的解集是 2<x<3.
2 x- 1≥x+ 1, (2)(4分 )解不等式组: 1 x- 2> 2x- 1. 3 2 x- 1≥x+ 1, 解: 1 x- 2> 2x- 1, 3x+1<0, D. 3-x>0
3x+ 4≥ 0, 3 . 不 等 式 组 1 x-24≤ 1 2 积为 0 .
的所有整数解的
5-2x≥-1, 4.已知关于 x 的不等式组 无解, x-a>0
则 a 的取值范围是 a≥ 3.
解不等式①,得 2x≥- 2,解得 x≥- 1. 解不等式②,得 x< 4. 则不等式组的解集为- 1≤ x< 4.
在数轴上表示如下图所示.
4 x+ 1≤7x+ 10, (4)(5 分 )(2015· 北京 ) 解不等式组: x-8 x-5< , 3 并写出它的所有非负整数解.
∴不等式组的解集是 x> 5. ① ②
解不等式①,得 x≥ 3.解不等式②,得 x> 5.
2x+ 1≥- 1, (3)(5分 )解不等式组: 1+ 2x >x- 1, 3
等式组的解集在数轴上表示出来.
并把不
2x+ 1≥- 1, ① 解:1+ 2x >x- 1, ② 3
m= 2, ∴ n= 1.
∴ x2- 4x+ 2mn= x2- 4x+ 4= (x- 2)2. 答案: (x- 2)2
一元一次不等式(组)知识总结及经典例题分析
一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)
考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。
而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。
对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。
一元一次不等式组
解一元一次不等式组一、两个概念1.一元一次不等式组:类似于方程组,把含同一个未知数的两个或两个以上的一元一次不等式合在一起,就组成了一个一元一次不等式组.2.一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做这个一元一次不等式组的解集.二、解一元一次不等式组的一般步骤及解集类型1.一般步骤2.由两个一元一次不等式组成的不等式组的解集通常有如下四种类型(其中a<b):不等式组数轴表示解集顺口溜x>b 大大取较大x<a 小小取较小a<x<b 大小、小大中间找无解大大、小小解不了一元一次不等式组解每个一元一次不等式在数轴上表示各不等式的解集确定各不等式解集的公共部分写出一元一次不等式组的解集x>a x>b x<a x<b x>a x<b x<a x>b逆用不等式组解集解题我们知道,由任意两个一元一次不等式组成的不等式组,最终都可转化为以下四种基本形式(其中a<b):①,,x ax b>⎧⎨>⎩⇒x>b;②,,x ax b<⎧⎨<⎩⇒x<a;③,,x ax b>⎧⎨<⎩⇒a<x<b;④,,x ax b<⎧⎨>⎩⇒无解.如能逆用上述结论,便可顺利解答某些字母范围(或取值)问题.请看下面的例题:例1:已知不等式组311,5xx a-⎧>⎪⎨⎪>⎩的解集为x>2,则().(A)a<2 (B)a≤2 (C)a>2 (D)a≥2例2:若关于x的不等式组41,32x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,则a的取值范围是.例3:如果不等式组340,xx a-≤⎧⎨-≥⎩无解,则a的取值范围是.例4:已知不等式组3(2)(1)9,3212x xx mx+--≥⎧⎪⎨+>-⎪⎩的解集是1≤x<2,求m的取值.小试牛刀:1.已知不等式组()324,213x xa xx--≤⎧⎪⎨+>-⎪⎩的解集是1≤x<2,求a的值.2.如果不等式组230,xx m-≥⎧⎨≤⎩无解,则m的取值范围是___________.3.若关于x 的不等式组31,43x xx a+⎧>-⎪⎨⎪+<⎩的解集为x<-1,则a的值为_____.不等式组在实际中应用------方案设计彰显魅力1:今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往深圳.已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝、香蕉各2吨.该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来.2:某校初三同学考试结束后要去旅游,需租用客车.若租40座客车若干辆正好坐满;若租50座客车则可少租一辆,最后一辆车还剩下不到20个空座.已知40座客车的租金是每辆150元,50座客车的租金是每辆170元,只选租其中一种车,问租那种车省钱?3: 2009年某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级1班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?4、某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:类别电视机洗衣机进价(元/台)1800 1500售价(元/台)2000 1600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.5、某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表,经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?。
1.2一元一次不等式(组)解法
基本概念
1、同解不等式: 如果两个不等式的解集相等,那么 这两个不等式就叫做同解不等式。 2、同解变形: 一个不等式变形为另一个不等式时, 如果这两个不等式是同解不等式,那么 这种变形叫做不等式的同解变形。
一元一次不等式的解法:
任何一个一元一次不等式,经过不等式的同解变形 后。都可以化成
例7 : 解不等式组 4 + 2 x > 7 x + 3 3 x + 6 > 4 x + 5 2 x − 3 < 3x − 5 (1) (2) (3)
x+ y =3 x > 0 例8 : 方程组 的解满Байду номын сангаас x − 2 y = −3 + a y > 0 求a的取值范围
解:两边都乘以6,得
12( x + 1) + 2( x − 2) > 21x − 6
14 x + 8 > 21x − 6
移项,整理后,得
− 7 x > −14
两边除以-7,得解集
{x | x < 2}
例2 : 求不等式21 − 4 x > 5的非负整数解;
例3 : k取什么值时 , 1 2 代数式 (1 − 5k ) − k的值为非负数 ; 2 3
2 3 x + 25 例4 : 关于x的方程 − ( x + m) = + 1的解是正数; 3 3 那么m的取值范围是什么?
例5 : 解不等式组 4 x − 3 > 2( x + 1) 4 x − 2 ≤ −1 1 x + 6 5 5 (1) (2)
例6 : 解不等式
一元一次不等式组
例 10、解下列不等式: (1) | |≤4; (2) <0 (3) (3x-6)(2x-1) >0
【课堂练习】
3
例 1.若不等式
的解集为
,求 k 值。
3 B、m=3 C、m<3 D、m≤3
的解集是 x>3,则 m 的取值范围是( )。
例 3.若不等式组
8
类型(设 a>b)不等式组的解集 1. (同大型,同大取大)x>a
数轴表示
2.
(同小型,同小取小) x<b
3.
(一大一小型,小大之间) b<x<a
4.
(比大的大,比小的小空集)无解
【经典例题】 3x 1 2 x 1 例 1、解不等式组 2 x 8
① ②
1
例 2、解不等式组
例 3、解不等式组
6
x 1 13、不等式组 x≥2 x 5
的解集是_________________
x 2 14、不等式组 的解集为 x>2,则 a 的取值范围是_____________. x a 2 x a 1 15、若不等式组 的解集为-1<x<1,那么(a+1) (b-1)的值等于________. x 2b 3 4a x 0 16、若不等式组 无解,则 a 的取值范围是_______________ x a 5 0
)
1 2
2、在数轴上从左至右的三个数为 a,1+a,-a,则 a 的取值范围是( B、a<0 C、a>0 D、a<-
x 1≤ 0, 3、不等式组 的解集在数轴上表示为( 2 x 3 5
1
A
)
1
x
1
一元一次不等式组教学设计
一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。
一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。
如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。
类似于方程组引出一元一次不等式组的概念和记法。
探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。
在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。
若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。
初中数学重点梳理:一元一次不等式(组)
一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。
知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
一元一次不等式组含参问题
一元一次不等式组含参问题一元一次不等式组含参问题是指在一元一次不等式组中引入一个或多个参数,求解参数使得不等式组成立或不成立的问题。
解决这类问题的一般方法是通过对参数的取值范围进行讨论,将不等式系统转化为关于参数的方程或不等式,然后解方程或不等式来确定参数的取值范围。
下面通过几个例子来说明如何解决一元一次不等式组含参问题。
【例1】求参数m的取值范围,使得不等式组 3x - 2 < mx + 1和 2x + 3 < 4m + 1 同时成立。
解:首先,我们可以通过将不等式组化简来得到关于参数m的方程组,然后解方程来确定参数的范围。
将不等式组化简得到:3x - mx < 3 + 2 和 2x - 4m < -2。
化简后的不等式组可以写成关于参数m的方程组:3 - m > 0和 -4m - 2 < 2x。
解这个方程组可以得到参数m的取值范围。
对不等式3 - m > 0,我们可以将m移到左边得到m < 3。
因此,参数m的取值范围是m < 3。
这是因为当m小于3时,不等式3 - m > 0成立。
对于不等式-4m - 2 < 2x,我们可以将m移到右边得到2x > -4m - 2,再除以2得到x > -2m - 1。
这说明在参数m小于3时,也必须满足x > -2m - 1,才能使得不等式组成立。
综上所述,参数m的取值范围是m < 3,并且在这个范围内,x > -2m - 1。
【例2】求参数a的取值范围,使得不等式组 2x + a - 1 < 3 和5 - 3x < 2a 同时成立。
解:首先,我们可以通过将不等式组化简来得到关于参数a的方程组,然后解方程来确定参数的范围。
化简不等式组得到:a + 2x < 4 和 3x + 5 < 2a。
化简后的不等式组可以写成关于参数a的方程组:a - 4 < -2x和 2a - 3x > 5。
一元一次不等式和一元一次不等式组讲义
一元一次不等式和一元一次不等式组知识点一:不等式1、 不等式的基本性质性质1:不等式的两边同时加上(或减去)同一个数或同一个整式,不等号方向不改变。
若a>b ,则a+c>b+c (a-c>b-c )。
性质2:不等式的两边同时乘以(或除以)同一个正数,不等号方向不变。
若a>b 且c>0,则ac>bc 。
性质3:不等式的两边同时乘以(或除以)同一个负数,不等号方向改变。
若a>b 且c<0,则ac<bc 。
2、同解不等式:如果几个不等式的解集相同,那么这几个不等式称为同解不等式。
知识点二:一元一次不等式1、定义:像276x x -<,39x ≤等只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,系数不为0,这样的不等式叫做一元一次不等式。
2、一元一次不等式的标准形式: 0ax b +>(0a ≠)或0ax b +<(0a ≠)。
3、一元一次不等式组的解集确定:若a>b则(1)当⎩⎨⎧>>b x a x 时,则a x >,即“大大取大” (2)当⎩⎨⎧<<bx a x 时,则b x <,即“小小取小”(3)当⎩⎨⎧><b x a x 时,则a x b <<,即“大小小大取中间”(4)当⎩⎨⎧<>b x a x 时,则无解,即“大大小小取不了” 知识点三:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:, 。
要点诠释: 在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点四:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
一元一次不等式组(公开课课件)
形式
一元一次不等式组通常表 示为“{①,②,③...}”, 其中①,②,③...是一元 一次不等式。
特点
一元一次不等式组中至少 包含两个不等式,且每个 不等式只含有一个未知数 。
一元一次不等式组的解集
定义
满足一元一次不等式组中 所有不等式的未知数的取 值范围称为该不等式组的 解集。
性质
解集具有封闭性,即满足 所有不等式的解都在解集 中。
求法
通过解每个不等式,找出 满足所有不等式的解,再 确定解集。
一元一次不等式组的分类
分类标准
简单型
根据一元一次不等式组中不等式的个数和 形式,可以将一元一次不等式组分为简单 型、线性型、多项式型等。
由两个一元一次不等式组成的不等式组, 如“{2x > 3, x < 5}”。
线性型
多项式型
由两个或多个线性一元一次不等式组成的 不等式组,如“{3x + 2 > 0, 4x - 1 < 5}” 。
VS
解集关系
一元一次不等式组的解集与相应的一元一 次方程组的解集存在一定的包含关系,可 以根据方程组的解来推断不等式组的解。
一元一次不等式组在实际问题中的应用
资源分配问题
例如,在有限资源下如何分配任 务以达到最优效果。
最优化问题
例如,在一定条件下如何选择方案 以达到最优目标。
经济问题
例如,在预算限制下如何选择商品 或服务以实现最大效益。
生产问题
总结词
企业生产过程中的资源配置问题
详细描述
生产问题涉及到企业生产过程中的资源配置,如原材料、设备和人力资源的分配。一元 一次不等式组可以用来解决生产中的成本和效率问题,例如优化生产流程以降低成本和
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
一元一次不等式(组)的解法课件(共22张PPT)
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).
《一元一次不等式组》教案
《一元一次不等式组》教案《一元一次不等式组》教案1一、素质教育目标(一)知识教学点1.理解一元一次不等式组解集的概念,会利用数轴较简单的一元一次不等式组。
2.掌握一元一次不等式组解集的几种情况。
(二)能力训练点通过利用数轴解不等式组,培养学生的观察能力、分析能力、归纳总结能力。
(三)德育渗透点通过不等式组解集的求法,培养学生的观察与分析能力,渗透辩证唯物主义的观点。
(四)美育渗透点用数轴求不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美。
二、学法引导1.教学方法:引导发现法、观察法、归纳总结法。
2.学生学法:学会利用数轴将两个不等式的解集表示出来,并观察出其公共部分,再小结出不等式组的解集。
三、重点·难点·疑点及解决办法(一)重点理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组解集的几种情况。
(二)难点正确理解一元一次不等式组解集的含义。
(三)疑点弄清一元一次不等式解集和不等式组的解集的关系,以及对四种不等式组解集的一般形式的理解。
(四)解决办法加强对不等式组解集含义的理解,并熟练掌握用数轴表示不等式解集,利用观察法、归纳法即可掌握求不等式组解集的办法。
四、课时安排一课时.五、教具学具准备直尺、铅笔、投影仪或电脑、自制胶片。
六、师生互动活动设计1.教师设计提问有关一元一次不等式的定义及其解集的概念,并复习用数轴表示一元一次不等式的解集的方法。
2.教示范一元一次不等式组解集的四种常规图形的表示方法,并引导学生理解记忆它们。
3.通过反复的师生共练,从实践中归纳小结出不等式组解集的规律。
七、教学步骤(一)明确目标本节课重点学习用数轴表示不等式组解集的方法,并能熟练地加以应用。
(二)整体感知要正确表示出不等式组的解集的关键在于学会用数轴表示。
若有解,必为其公共部分;若无公共部分,则为无解.并要正确地理解一元一次不等式组解集的规律。
(三)教学过程1.创设情境,复习引入(1)什么是一元一次不等式,不等式的解,不等式的解集,解不等式?(2)已知一个数比2大但比4小,请在数轴上表示数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式组
1 一元一次不等式组的概念
一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一
次不等式组。
如⎩⎨⎧<->-,20106,52x x ⎪⎩
⎪⎨⎧<+>+>-9153611207x x x ,等都是一元一次不等式组。
①这里的“几个”不等式是两个、三个或三个以上。
②这几个一元一次不等式必须含有同一个未知数。
2 解一元一次不等式组
(1)一元一次不等式组的解集:
一元一次不等式组中几个不等式的解集的公共部分叫作这个一元一次不等式组的解集。
①找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分。
②有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况。
解不等式组就是求它的解集,解一元一次不等式组的方法步骤如下: 第一步:分别求出不等式组中各个不等式的解集;
第二步:将各不等式的解集在数轴上表示出来;
第三步:在数轴上找出各个不等式的解集的公共部分,这个公共部分就是这个不等式组的解集。
3 一元一次不等式组的应用
(1)列一元一次不等式组解应用题的步骤:审题→设未知数→找不等关系→列不等式组→检验→答。
①利用一元一次不等式组解应用题的关键是找不等关系。
②列不等式组解决实际问题时,求出不等式的解集后,要结合问题的实际
背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取整数。
(2)列一元一次方程(组)与列一元一次不等式(组)解应用题的 步骤
例1 解不等式组:⎪⎩⎪⎨⎧->+-≥+13
21112x x x 并把不等式组的解集在数轴上表示出来。
例2 解不等式组⎪⎪⎩
⎪⎪⎨⎧-<-->+814311532x x x x 并写出它的非负整数解。
例3 若不等式组⎩
⎨⎧->-≥+2210x x a x 有解,求a 的取值范围。
例4 某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买B A ,两种型号的污水处理设备共8台,具体情况如下表:
吨。
(1)该企业有几种购买方案?(2)哪种方案更省钱?说明理由。