分子生物学原理--基因表达调控

合集下载

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
基因表达调控对于生物体的正常生长、发育、代谢和应激反应等 过程至关重要,是生物体适应环境变化和维持内环境稳态的重要 机制。
原核生物基因表达调控的特点
01
原核生物基因表达调控通常由特 定的转录因子、RNA聚合酶以及 其他调控蛋白介导,通过与DNA 的结合或解离来调节基因转录。
02
原核生物基因表达调控具有快速 响应环境变化的特点,能够在短 时间内调整基因表达模式,以适 应外界刺激和压力。
翻译后加工的调控
翻译后加工的调控
在翻译后加工阶段,新合成的蛋白质经过一系列修饰和加工,最终成为具有生物学活性的蛋白质。原 核生物通过控制翻译后加工酶的合成和活性来调控翻译后加工过程。此外,原核生物还可以通过控制 蛋白质的稳定性来影响其功能和表达水平。
总结
翻译后加工是基因表达调控的重要环节,原核生物通过控制翻译后加工酶的合成和活性,以及蛋白质 的稳定性来精细调控基因表达。
翻译延伸的调控
翻译延伸的调控
在翻译延伸阶段,核糖体沿着mRNA移动,将氨基酸组装成蛋白质。原核生物通过控制翻译延伸因子的合成和活 性,以及核糖体的合成和组装来调控翻译延伸。此外,原核生物还可以通过控制mRNA的结构和稳定性来影响翻 译延伸。
总结
翻译延伸是基因表达调控的重要环节,原核生物通过控制翻译延伸因子的合成和活性,以及核糖体的合成和组装, 以及mRNA的结构和稳定性来精细调控基因表达。
翻译起始的调控
原核生物通过控制翻译起始来调控基因表达。在翻译起始阶段, mRNA与核糖体结合,招募翻译所需的起始因子和其他成分。原 核生物通过控制起始因子的合成和活性,以及mRNA与核糖体的 结合来调控翻译起始。
总结
翻译起始是基因表达调控的重要环节,原核生物通过控制翻译起 始因子的合成和活性,以及mRNA与核糖体的结合来精细调控基 因表达。

生物化学及分子生物学(人卫第九版)-16基因表达调控说课讲解

生物化学及分子生物学(人卫第九版)-16基因表达调控说课讲解

色氨酸操纵子的结构及其关闭机制
A.前导序列的结构特征;B.在Trp低浓度时,核糖体停滞在序列1上,2/3发卡结构形成,转录继续进行; C.在Trp高浓度时,3/4发卡结构和多聚U序列使得转录提前终止
3.转录衰减的机制 ①色氨酸的浓度较低时,前导肽的翻译因色氨酸量的不足而停滞在第10/11的色氨酸密码子 部位,核糖体结合在序列1上,因此前导mRNA倾向于形成2/3发夹结构,转录继续进行; ②色氨酸的浓度较高时,前导肽的翻译顺利完成,核糖体可以前进到序列2,因此发夹结构 在序列3和序列4形成,连同其下游的多聚U使得转录中途终止,表现出转录的衰减。
3.真核生物编码蛋白质的基因是不连续的,转录后需要剪接去除内含子,这就增加了基因表 达调控的层次。
4.原核生物的基因编码序列在操纵子中,多顺反子mRNA使得几个功能相关的基因自然协调 控制;而真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子 (monocistron),许多功能相关的蛋白、即使是一种蛋白的不同亚基也将涉及多个基因的 协调表达。
1.原核生物大多数基因表达调控是通过操纵子机制实现的
2.操纵子(operon):由结构基因、调控序列和调节基因组成 ①结构基因:包括数个功能上有关联的基因,它们串联排列,共同构成编码区。这些结 构基因共用一个启动子和一个转录终止信号序列,因此转录合成时仅产生一条mRNA长 链,为几种不同的蛋白质编码。这样的mRNA分子携带了几个多肽链的编码信息,被称 为多顺反子(polycistron)mRNA。
5种E.coli 启动子的共有序列
b. 操纵元件:是一段能被特异的阻遏蛋白识别和结合的DNA序列。 ③调节基因(regulatory gene):编码能够与操纵序列结合的阻遏蛋白

分子生物学课件 第9章 原核生物基因调控

分子生物学课件 第9章 原核生物基因调控
C蛋白与Ara结合成C-Ara复合物是Ci型诱导蛋白,
结合araI时,araI作为正控制的元件,促进araBAD 基 因的表达 。
34
9.7 翻译水平的调控
9.7.1反义RNA的调控
聂理
35
反义RNA
反义RNA有多种符号 = antisense RNA = -RNA = stRNA(small temporal RNA) = micRNA( mRNA-interfering complementary RNA) 即 干扰和抑制mRNA翻译的互补RNA片段
为诱导物开启lac操纵子结构基因……。
17
9.4.2乳糖操纵子正控制机理
CRP:cyclic AMP receptor protein, =“cAMP受体蛋白”, =“降解物基因活化蛋白(CAP)” ①当环境中有葡糖时: 抑制cAMP 产生,纯CAP是失活态蛋白。 ②当环境中无葡糖时: 有利于 cAMP 产生和cAMP-CAP形成。
22
9.5.2 衰减子
衰减子也叫弱化子
attenuator
聂理
23
9.5.2.1衰减子组成
trp操纵子前导区L,转录出RNA前导序列161nt。
1~26nt翻译的 SD序列区
27~71nt含14个氨基酸 密码的前导肽区
115~159nt衰减子区
具有终止子 结构特征
24
9.5.2.2衰减子调控机制
41
9.7.3 核开关 riboswitch
核开关也叫核糖开关。 是mRNA所形成的调节基因表达的结构。 在mRNA的非翻译区(5’-UTR,3’-UTR), 与小分子效应物可逆结合而改变其结构, 根据构象特征信号来影响mRNA的表达, (如影响转录、翻译等) 从而达到调控基因开关的目的。

生物化学——基因表达调控

生物化学——基因表达调控

CCAAPP CAP CAP CAP
cAMP
有葡萄糖,cAMP浓度低时
.
9
(3)阻遏蛋白与CAP的协调调节
低半乳糖时 (有阻遏蛋白)
高半乳糖时 (无阻遏蛋白)
葡萄糖浓度低 cAMP 浓度高
(有CAP)
葡萄糖浓度高 cAMP 浓度低
(无CAP)
RNA-pol
O
O
mRN
A
O
O
.
10
三、真核基因基因表达的调节
阻遏基因
DNA mRNA
I C Ppo O l
Z YA
阻遏蛋白
没有乳糖存在时
.
7
有乳糖存在时
DNA mRNA
I C pPol O Z Y A
启动转录
mRNA
阻遏蛋白
β-半乳糖苷酶
半乳糖
乳糖
.
8
(2)CAP的正性调节 + + + + 转录
DNA I C P O Z Y A
CAP CAP CAP CAP 无葡萄糖,cAMP浓度高时
24
2. 乳糖操纵子的结构及其调节机制
控制区
信息区
DNA I C P O Z Y A
调控 序列
启动 序列
操纵 序列
CAP结合位点
编码基因 Z: β-半乳糖苷酶 Y: 透酶
A:乙酰基转移酶 代谢产物基因激活蛋白(cataboli.te gene activator protie6n,CA
(1)阻遏蛋白的负性调节
第十四章 基因表达调控
(Regulation of Gene Expression)
1961年,法国科学家F. Jacob和J. Monod通过研究大肠杆菌乳糖代谢的调节机制, 提出了著名的操纵子学说,从而开创了基因表 达调控研究的新纪元。

分子生物学-4

分子生物学-4


G
A



珠蛋白基因簇位于第 11 号染色体; , G, A, 和 为功能基因, 为假 基因。
胚胎发育早期的 Hb:22, 22 和 22 妊娠 8 周后胎儿的 HbF:22 成人型 HbA: 22 和 22 (3%)
(二) 空间特异性
在个体生长过程中,某种基因产物在个体中按不同组 织空间顺序出现,称为基因表达的空间特异性 (spatial specificity) 或组织特异性 (tissue specificity)。
真核生物基因表达调控
/10005107/
The ENCODE Project 旨在解析人类基因组中的所有功能性 元件。
染色体结构的变化对基因表达的影响
• DNA 甲基化: 胞嘧啶甲基化; • 染色质修饰:组蛋白的多种共价修饰;
• DNase I 超敏感位点:转录活性基因对 DNase I 极度敏感。
适体区序列保守,能与适体直接结合,使表达平台的构 象变化,形成有选择性的茎环结构,导致 mRNA 转录提前 终止或者抑制翻译的起始。
aptamer region (pink) expression platform (orange)
抑制型核糖开关:适体存在时能抑制基因表达; 激活型核糖开关:适体存在时能启动基因表达。
lacY 基因编码透过酶 (permease)
lacA 基因编码乙酰基转移酶 (transacetylase)
E.coli 在含葡萄糖的培养基中生长 时,lacZ 基因不表达。 当葡萄糖耗尽而乳糖存在时, lacZ 基因表达,-半乳糖苷酶将乳糖水 解成葡萄糖和半乳糖。
Allolactose (异乳糖)
• EF-G (转位酶) 定位在 L12CTD 和 L11-NTD 之间。

分子生物学:真核基因表达调控

分子生物学:真核基因表达调控
第二类是发育调控或称不可逆调控,是真核基因调控的精髓 部分,它决定了真核细胞生长、分化、发育的全部进程。
真核基因表达的多级调控
在真核生物中基因表达的调节其特是
(1)多层次; (2)无操纵子和弱化子; (3)个体发育复杂; (4)受环境影响较小;
研究基因调控3个问题:
① 什么是诱发基因转录的信号?
基因扩增是指某些基因的拷贝数专一性大量增加的现象,它 使细胞在短期内产生大量的基因产物以满足生长发育的需要,是 基因活性调控的一种方式。
实例: 非洲爪蟾的卵母细胞中原有rRNA基因(rDNA)约500个拷
贝,在减数分裂I的粗线期,这个基因开始迅速复制,到双线 期它的拷贝数约为200万个,扩增近4000倍,可用于合成1012个 核糖体,以满足卵裂期和胚胎期合成大量蛋白质的需要。
二、基因扩增、基因重排和基因丢失
三、DNA甲基化与基因活性的调控
一、 染色质结构对转录的影响
按功能状态的不同可将染色质分为: (1)活性染色质(有转录活性) (2)非活性染色质(没有转录活性)
染色质的核小体发生构象改变,松散的染色质结构,便 于转录调控因子和顺式用元件结合和RNA聚合酶在转录模板上 滑动。
真核基因调控中虽然也发现有负性调控元件,但其存在并不 普遍;
顺式作用元件: 由若干可以区分的DNA序列组成,并与特定的功能
基因相连,组成基因转录的调控区,通过与相应的反 式作用因子结合,实现对基因转录的调控。
反式作用因子: 能直接地或间接地识别或结合在各类顺式作用元
件核心序列上,参与调控靶基因转录效率的蛋白因子, 也被称为转录因子(TF)。
哺乳类基因组中约存在4万个CpG 岛,它们大多位于结构基 因启动子的核心序列和转录起始点,其中有60%~ 90% 的 CpG 被甲基化, CpG 岛在基因表达调控中起重要作用。

分子生物学原理:第十二章 基因表达调控1

分子生物学原理:第十二章 基因表达调控1
诱导和阻遏是原核生物转录调控的
基本方式。
二、乳糖操纵子调节机制
结构基因:lacZ(β-半乳糖苷酶) lacY(通透酶) lacA (乙酰基转移酶)
操纵序列:O1、 O2、O3 启动子:P
CAP结合位点
调节基因:I
Lac操纵子结构及其负性调节
Lac操纵子的调节
1、阻遏蛋白的负调节
阻遏基因
DNA
I
真核基因组结构庞大
真核基因组含有大量重复序列
多拷贝序列
高度重复序列(106 次) 中度重复序列(103 ~ 104次)
单拷贝序列
真核生物以染色质的形式储存遗传信息
真核生物转录与翻译分割进行
真核基因转录产物为单顺反子
真核基因具有不连续性
真核生物线粒体DNA也储存遗传信息
二、染色质的活化
反式作用因子(trans-acting factor) ——由某一基因表达产生的蛋白质因子,与被
调节的DNA调节序列相互作用而发挥作用,这些蛋 白质分子称为反式作用因子。
反式作用因子直接作用: •直接结合DNA序列
反式作用因子间接作用: •通过蛋白质-蛋白质相 互作用发挥功能
基因表达调控的生理意义
基因表达的时间特异性和空间特异性
基因表达的持续性
管家基因
基因表达的可诱导性
诱导与阻遏
二、基因表达调控
1
多层次
DNA 基因激活 、拷贝数重排 、DNA 甲基化 RNA 转录起始、转录后加工、mRNA降解
蛋白质 蛋白质翻译、翻译后加工修饰、蛋白质降解
2
在一定机制控制下,功能上相关的一组基因,无论其为
II. 增强子(enhancer)
增强子是一种能够提高转录效率的顺式调控元件。

植物分子生物学中的基因表达调控

植物分子生物学中的基因表达调控

植物分子生物学中的基因表达调控在植物分子生物学领域,研究者们致力于了解植物中的基因表达调控机制。

通过研究这些机制,我们可以更好地理解植物的生长、发育以及对环境的响应。

本文将探讨植物基因表达调控的基本原理以及相关的研究方法和应用。

一、基因表达调控的基本原理基因表达调控是指植物细胞中基因信息的转录和翻译过程受到内外环境因素的调控,从而实现基因的表达或沉默。

植物基因表达调控的主要机制包括转录调控、转录后调控以及表观遗传调控。

1. 转录调控:转录调控是指在基因转录过程中,一系列转录因子和其他调控蛋白结合到基因启动子上,调节基因的转录水平。

这些转录因子可以促进或抑制基因的转录,从而控制基因的表达。

2. 转录后调控:转录后调控是指已经被转录成mRNA的RNA分子在转录后发生的调控过程。

这些转录后调控包括RNA剪接、RNA修饰、RNA转运和RNA降解等,可以改变mRNA的稳定性和转录后处理,从而调节基因的表达。

3. 表观遗传调控:表观遗传调控是指在基因表达过程中,DNA和蛋白质之间相互作用形成的表观遗传标记对基因的表达进行调控。

这些表观遗传标记包括DNA甲基化、组蛋白修饰和染色质结构等,可以影响染色体的结构和可及性,从而控制基因的表达。

二、研究方法和技术为了深入研究植物基因表达调控的机制,研究者们利用了多种方法和技术。

以下是一些常用的研究方法:1. 基因组学研究:通过对植物基因组进行测序和分析,可以鉴定出植物基因的序列和组织特异性表达等信息。

基因组学的发展使我们可以全面了解植物基因的组成和结构。

2. 转录组学研究:转录组学研究通过对植物转录过程的全面分析,可以揭示基因的表达模式以及转录因子的调控网络。

最常用的转录组学方法包括RNA测序技术(RNA-seq)和芯片技术。

3. 蛋白质组学研究:蛋白质组学研究可以揭示植物蛋白质的组成、结构和功能。

蛋白质组学的方法包括质谱分析、蛋白质互作研究和蛋白质修饰分析等。

4. 遗传学研究:遗传学研究通过研究植物的突变体或基因敲除植物,可以揭示基因在植物生长和发育中的功能和调控机制。

分子生物学复习7-9

分子生物学复习7-9

第七章基因的表达与调控(上)——原核基因表达调控模式(一)基本概念1.基因表达:细胞在生命过程中,把蕴藏在DNA中的遗传信息经过转录和翻译,转变成为蛋白质或功能RNA分子的过程称为基因表达。

2.基因表达调控:围绕基因表达过程中发生的各种各样的调节方式都统称为基因表达调控。

rRNA或tRNA的基因经转录和转录后加工产生成熟的rRNA或tRNA,也是rRNA或tRNA 的基因表达,因为rRNA或tRNA就具有在蛋白质翻译方面的功能。

3.组成型表达:指不大受环境变动而变化的一类基因表达。

如DNA聚合酶,RNA聚合酶等代谢过程中十分必需的酶或蛋白质的表达。

管家基因:某些基因在一个个体的几乎所有细胞中持续表达,通常被称为管家基因。

管家基因无论表达水平高低,较少受到环境因素的影响。

在基因表达研究中,常作为对照基因适应型表达:指环境的变化容易使其表达水平变动的一类基因表达。

应环境条件变化基因表达水平增高或从无到有的现象称为诱导,这类基因被称为可诱导的基因;相反,随环境条件变化而基因表达水平降低或变为不表达的现象称为阻遏,相应的基因被称为可阻遏的基因。

4.结构基因:编码蛋白质或功能性RNA的任何基因。

所编码的蛋白质主要是组成细胞和组织基本成分的结构蛋白、具有催化活性的酶和调节蛋白等。

原核生物的结构基因一般成簇排列,真核生物独立存在。

结构基因簇由单一启动子共同调控。

调节基因:参与其他基因表达调控的RNA或蛋白质的编码基因。

①调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。

②调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。

操纵子:由操纵基因以及相邻的若干结构基因所组成的功能单位,其中结构基因的转录受操纵基因的控制。

(二)原核基因调控的分类和主要特点一、原核生物的基因调控特点:(1)基因调控主要发生在转录水平上,形式主要是操纵子调控.(2)有时也从DNA水平对基因表达进行调控,实质是基因重排。

分子生物学 第十一章 原核基因表达的调控

分子生物学 第十一章 原核基因表达的调控
二聚体, 45KD, 由crp编码
被cAMP激活 结合位点~22bp I -70 ~ -50
II -50 ~ -40
结合位点序列保守 不同基因受cAMP激活的水平不同
3 CAP的结合对DNA构型的影响
DNA弯曲 弯曲点位于CAP结合位点二重对称的中心 弯曲使CAP能与启动子上的RNA pol 接触
Summary
CA
B A: RNA polymerase B: lac repressor C: CRP-cAMP
Summary of lac operon regulation
Glucose High High Low Low
cAMP Low Low High High
Lactose Absent Present Absent Present
• 加入CAP,转录
• lac UV-5突变, -10区 TATGTT → TATAAT 在无CAP时,转录
• DNA topI 突变,降低起始转录对CAP的依赖
cAMP-CAP复合物的结合,使位点II附近的富含GC 区域双螺旋结构稳定性降低,因而-10区的熔解温度降 低,促进开放型启动子复合物的形成
9 原核生物基因表达的调控
9.1 基因表达概述 9.2 操纵元控制理论 9.3 基因转录的时序调控 9.4 转录后加工的调控 9.5 翻译水平的调控
孙朱乃玉恩贤
9.1 基因表达概述
9.1.1 生物遗传信息
9.1.1.1 C值矛盾 C value paradox
Genome DNA
10%; 结构基因的编码序列
triplet codon 90%; 重复,间隔,调节序列…
基因选择性表达指令 重要的遗传信息
.9.1.1.2 遗传信息的两大类别

分子生物学第5章

分子生物学第5章
序列3、4不能形成衰减子结构,下游的结构基因可以被有效转 录
(2)当色氨酸充足时,色氨酰tRNA供给充足,核糖体迅速翻译序列1
合成前导肽,并对序列2形成约束,使序列2、3不能形成茎环结 构,转而序列3、4形成转录终止子结构衰减子,使下游正在转 录结构基因的RNA聚合酶脱落,终止转录
转录衰减机制:
新生肽链 核糖体
5’ 1 2
衰减子结构 (attenuator)
3
4
mRNA
UUUU 3’
DNA
trp 密码子当色氨酸来自度高时核糖体5’
1
2
3 4
当色氨酸浓度低时
高Trp时: Trp-tRNATrp 存在
核糖体通过片段1(2个Trp密码子) 封闭片段2
片段3,4形成发夹结构 类似于不依赖ρ因子的转录终止序列 RNA聚合酶停止转录,产生衰减子转录产物 转录、翻译偶联,产生前导肽
前导序列:在trp mRNA5'端trpE基因的起始密码前一 个长162nt的mRNA片段。
第10和第11位上有相 邻的两个色氨酸密码子
转录与翻译的偶联是衰减调控的基础 色氨酰tRNA浓度的变化是衰减调控的信号
(1)当色氨酸缺乏时,色氨酰tRNA供给不足,合成前导肽的核糖体
停滞于序列1的色氨酸密码子位点,序列2、3形成茎环结构,使
结合乳糖、G存在与否及与操纵子正、负控因素、 基因开放与关闭情况如下:
葡萄糖(G) 乳糖 基因开放 基因关闭 机理简述(学生填充)

×
× √ √

× × √

√ √ √
CAP正控、乳糖去阻遏、基因开放、转录进行 不能诱导去阻遏,CAP即使结合,基因未开放 细菌优先用G,无CAP结合,无诱导去阻遏 CAMP-CAP复合物无,CAP位点空,去阻遏 也无RNA pol结合

分子生物学:原核基因表达调控模式

分子生物学:原核基因表达调控模式

添加葡萄糖后,细菌所需要的能量便可从葡萄糖得到 满足,葡萄糖是最方便的能源,细菌无需开动一些不 常用的基因去利用这些稀有的糖类。
葡萄糖的存在会抑制细菌的腺苷酸环化酶活性,减少
环腺苷酸(cAMP)的合成,与它相结合的蛋白质,
即 环 腺 苷 酸 受 体 蛋 白 CRP 又 称 分 解 代 谢 物 激 活 蛋 白 CAP,因找不到配体而不能形成复合物。
负控诱导 阻遏蛋白不与效应物(诱导物)结合时,结 构基因不转录;与之结合则转录。
负控阻遏 阻遏蛋白与效应物结合时,结构基因不转录。 阻遏蛋白作用的部位是操纵区。
在正转录调控系统中,调节基因的产物是激活蛋 白(activator)。
正控诱导系统 效应物分子(诱导物)的存在使激活蛋白 处于活性状态;
葡萄糖 cAMP Lac操纵子被抑制
DNA
+ + + + 转录
CAP P O Z Y A
CAP CAP CAP CAP 无葡萄糖,cAMP浓度高时
CAP
有葡萄糖,cAMP浓度低时
协调调节
负性调节与正性调节协调合作
阻遏蛋白封闭转录时,CAP不发挥作用 如没有CAP加强转录,即使阻遏蛋白从P上解聚仍无转录活性
23
• 乳糖操纵子的控制模型,其主要内容如下:
① Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码。 ② 这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P), 不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。 ③ 操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。 ④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。 ⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结 合,从而激发lac mRNA的合成。当有诱导物存在时,操纵基因区没有被阻 遏物占据,所以启动子能够顺利起始mRNA的合成。

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
31
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;

《分子生物学》第五章期末习题

《分子生物学》第五章期末习题

《分子生物学》第五章期末习题第5章原核生物基因表达调控-习题答案一、名词解释基因表达调控:所有生物的信息,都是以基因的形式储存在细胞内的DNA(或RNA)分子中,随着个体的发育,DNA分子能有序地将其所承载的遗传信息,通过密码子-反密码子系统,转变成蛋白质或功能RNA分子,执行各种生理生物化学功能。

这个从DNA到蛋白质或功能RNA的过程被称之为基因表达,对这个过程的调节称之为基因表达调控。

组成性基因表达:是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。

其基因表达产物通常是对生命过程必须的或必不可少的,一般只受启动序列或启动子与RNA聚合酶相互作用的影响,且较少受环境因素的影响及其他机制调节,也称为基本的基因表达。

管家基因:某些基因产物对生命全过程都是必须的获必不可少的。

这类基因在一个生物个体的几乎所有细胞中均表达,被称为管家基因。

诱导表达:是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。

阻遏表达:是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。

反式作用因子:又称为分子间作用因子,指一些与基因表达调控有关的蛋白质因子。

它们由某一基因表达后通过与特异的顺式作用元件相互作用,反式激活另一基因的转录。

操纵子:是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。

SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16S rRNA 3’端反向互补,所以可将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。

根据首次识别其功能意义的科学家命名。

阻遏蛋白:是一类在转录水平对基因表达产生负控作用的蛋白质,在一定条件下与DNA结合,一般具有诱导和阻遏两种类型。

在诱导类型中,信号分子(诱导物)使阻遏蛋白从DNA释放下来;在阻遏类型中,信号分子使阻遏蛋白结合DNA,不管是哪一种情况,只要阻遏蛋白与DNA结合,基因的转录均将被抑制。

分子生物学第八章 基因表达调控

分子生物学第八章 基因表达调控
* IPTG,异丙基-β-D硫代半乳糖苷 * TMG ,巯甲基半乳糖苷 * ONPG,O-硝基半乳糖苷
4、阻遏蛋白与操作子的相互作用
阻遏蛋白与操作子是否发生相互作用? 硝酸纤维素膜可以和蛋白质结合而不与DNA结合 阻遏蛋白四聚体结合与膜上,可以与野生型DNA片段形 成复合物。并可被IPTG抑制。 而用lacOc 突变体的DNA片段,则不能与阻遏蛋白结合
Luxury gene
顺、反因子间互作方式的基因表达调控
♫ 顺式作用元件(cis-acting element):能够影响 同一条或相连DNA序列活性的特定DNA片段。例如,启 动子 ♫ 反式作用因子(trans-acting factor):一种基 因的蛋白质产物,能够影响位于基因组另一条染色体上的 (或基因组别处的)另一个基因的表达活性。例如,RNA polymerase
经典锌指的三维结构:一个β发卡和一个α-螺旋
锌指上的α-螺旋 负责与DNA作用
b、Cys-Cys(C2/C2)锌指
Zn++与4个Cys残基 形成配位键
酵母的转录激活 因子GAL4、哺 乳类的固醇类激 素受体为典型代 表。
糖皮质激素受体
• ZYJ272 •
The DNA-binding domain of Cys2-Cys2 zinc finger proteins (Figure 1. Glucocorticoid receptor) is composed of two irregular antiparallel beta-sheets and an alpha-helix, followed by an extended loop.
♫ 操纵元中各结构基因按一定比例协调翻译 ♫ 聚有极性突变效应:
操纵元中一个近基因的无义突变能够影响远基因表, 且根据距离远近呈极性梯度效应

医学分子生物学原理-真核基因表达与调控

医学分子生物学原理-真核基因表达与调控
• 能识别并结合调控区的顺式作用元件; • 对基因表达有正性调节(激活)和负性调节
(抑制)二种方式。 • 其调节机制涉及顺式作用元件、RNA聚合酶
和其它调节蛋白。
(二)转录调节因子分类 (按功能特性)
* 基本转录因子
是RNA聚合酶结合启动子所必需的一组 蛋白因子,决定三种RNA(mRNA、tRNA及 rRNA)转录的类别。TF I;TF II;TF III
一个真核生物基因的转录需要3至5个转 录因子。转录因子之间不同方案组合,生成 有活性、专一性的复合物,再与RNA聚合酶 搭配而有针对性地结合、转录相应的基因。
按不同组合,人类约3.5万个基因,估 计需转录因子300余个即可。
(四)转录起始调控模式
主要通过调节反式作用因子的活性控制转录起始;
反式作用因子(有活性) 反式作用因子(无活性)
为重要,需要2个帽结合蛋白参与(CBP80 和CBP20)
A基因表达
A
B
C
A
B
B基因关闭 D
三、转录后调控
(一)mRNA加帽和加尾的调控意义
• 5′帽子结构的作用:
– 防止mRNA被5′→ 3′核酸酶降解; – 能被帽结合蛋白识别,增强mRNA的可翻译
性,没帽子结构,翻译效率降低; – 促进mRNA从核到胞浆的运输过程; – 增强mRNA的剪接效率, 帽对exon1的剪接尤
• Ⅱ类顺式作用元件包括: 核心启动子( Core promoter),增强子(enhancer),沉 默子(silencer ),及各种反应元件等。
1. 核心启动子( Core promoter)
• Ⅱ类启动子的核心启动子常由TATA盒、位于 TATA盒上游的的上游启动子元件、以转录点 为中心的起始子和下游启动子元件,4个元件 组合而成。

分子生物学-真核生物基因表达调控

分子生物学-真核生物基因表达调控

3 基因重排与交换
将一个基因从远离启动子的地方移到距它很
Hale Waihona Puke 近的位点从而启动转录,这种方式称为基因 重排。
通过基因重排调节基因活性的典型例子是免
疫球蛋白和T-细胞受体基因的表达。
V、C和J基因片段在胚胎细胞中相隔较远。编码产生免疫球蛋白的细胞发 育分化时,通过染色体内DNA重组把4个相隔较远的基因片段连接在一起, 从而产生了具有表达活性的免疫球蛋白基因。
发育早期:只有一个着丝点行使功能,
从头合成型甲基转移酶:催化未甲基化的CpG成 为mCpG
基因丢失
在细胞分化过程中,可以通过丢失掉某些基
因而去除这些基因的活性。某些原生动物、 线虫、昆虫和甲壳类动物在个体发育中,许 多体细胞常常丢失掉整条或部分的染色体, 只有将来分化产生生殖细胞的那些细胞一直 保留着整套的染色体。
一.
基因丢失: 在细胞分化过程中,某些原生动物、线虫 、昆虫等体细胞通过丢失某些基因而除去 这些基因的活性。 马蛔虫:只有一对染色体,染色体上有许 多着丝点。
假基因
是基因组中因突变而失活的基因,无蛋白质产
物。
一般是启动子出现问题。
8.2 DNA水平的基因表达调控
1染色质水平的调节:“开放”型活性染色质
(activechromatin)结构对转录的影响
2基因扩增
3基因重排与交换
4
DNA甲基化与基因活性的调控
1 染色质状态对基因表达的调控
能相关的基因,这些基因成套组合称为基因家族。 如:编码组蛋白、免疫球蛋白和血红蛋白的基因都 属于基因家族 同一家族中的成员有时紧密地排列在一起,成为 一个基因簇(gene cluster) 。
1、简单多基因家族

分子生物学基础第七章真核基因表达的调控第三节真核基因表达转录水平的调控

分子生物学基础第七章真核基因表达的调控第三节真核基因表达转录水平的调控
分子生物学基础
第七章 真核基因表达的调控
第三节 真核基因表达转录水平的调控
一、真核基因转录与染色质结构变化的关系 DNA绝大部分都在细胞核内与组蛋白等结合成染色质, 染色质的结构影响转录,至少有以下现象: 1.染色质结构影响基因转录 在真核细胞中以核小体为基本单位的染色质是真核基 因组DNA的主要存在方式。DNA盘绕组蛋白核心形成核小体, 妨碍了与转录因子及RNA聚合酶的靠近和结合,使基因的 活性受到抑制。 2.组蛋白的作用 组蛋白H1及核心组蛋白共同参与核小体的组装与凝聚。 在特殊氨基酸残基上的乙酰化、甲基化或磷酸化等修饰, 可改变蛋白质分子表面的电荷,影响核小体的结构,从而 调节基因的活性。
第三节 真核基因表达转录水平的调控
图7-6 碱性螺旋-环-螺旋结构图
第三节 真核基因表达转录水平的调控
螺旋-转角-螺旋结构域是最早发现于原核生物中的一个关键因子, 该结构域长约20个aa,主要是两个α-螺旋区和将其隔开的β转角。 其中的一个被称为识别螺旋区,因为它常常带有数个直接与DNA序列 相识别的氨基酸。其结构如图7-3所示。
图7-3 螺旋-转角-螺旋结构及其与 DNA的结合
第三节 真核基因表达转录水平的调控
2.增强子 增强子是指能使基因转录频率明显增加的DNA序列。增强子的作 用有以下特点。 ①增强效应十分明显。一般能使基因转录频率增加10~200倍,有 的可以增加上千倍, ②增强效应与其位置和取向无关。 ③大多为重复序列。 ④增强效应有严密的组织和细胞特异性。说明只有特定的蛋白质 (转录因子)参与才能发挥其功能。 ⑤没有基因专一性,可以在不同的基因组合上表现增强效应。 ⑥许多增强子还受外部信号的调控,如金属硫蛋白的基因启动区 上游所带的增强子,就可以对环境中的锌、镉浓度做出反应。 ⑦增强子要有启动子才能控
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lac operon的启动 子 Plac的-10 Ptac Trp operon的启 动子Ptrp的-35
Ptac-17
2018/11/4 分子生物学原理
二、操纵子的结构与功能
• 操纵基因是结合阻遏物的部位,位于启 动子和结构基因之间,可与启动子部分 重叠。是RNA聚合酶是否能通过的开关。 • 无阻遏物时,O区开放让酶通过并转录 下游的结构基因 • 有阻遏物时酶就不能通过
第十三章 基因表达调控
• 通常情况下,真核生物细胞只有2-15% 的基因处于有转录活性的状态。 • 表达调控是研究不同的环境和条件以及 各种因素如何令基因表达或不表达,而 且按一定的时间、空间有次序高效地运 作。 • 调控水平: 转录、转录后、翻译、翻译后
2018/11/4 分子生物学原理
第十三章 基因表达调控
四、cAMP对转录的调控
• 培养基中有葡萄糖时:葡萄糖代谢引起 细胞内cAMP水平下降,乳糖操纵子基因 关闭。 • 培养基中葡萄糖不足时: cAMP水平升 高, cAMP-CAP复合物生成, cAMP使 CAP变构,而与CAP位点结合,促进乳 糖操纵子基因的转录,以便细胞利用乳 糖。
2018/11/4 分子生物学原理
2018/11/4
分子生物学原理
第一节、原核生物的操纵子调控模式
一、酶的诱导(enzyme induction) 二、操纵子(operon)的结构与功能 三、乳糖操纵子(Lac operon)与色氨 酸操纵子(Trp operon) 四、 cAMP对转录的调控 五、原核生物转录的整体调控模式
2018/11/4 分子生物学原理
2018/11/4 分子生物学原理
三、顺式作用元件与反式作用因子的结合
• DNA结构简单: 开放或关闭 序列不变 二者结合 蛋白质因子: 复杂、多变
基因表达调控的多变性
2018/11/4 分子生物学原理
螺旋-转角-螺旋、 螺旋-环-螺旋
• 两个亚基通过-折 叠形成二聚体,相 当于DNA的一个 螺距。
2018/11/4 分子生物学原理
增强子的特点
• 增强子:enhancer 它是在远距离影响启动的转录调控元件, 必须被蛋白质因子结合后才能发挥增强转 录的功能。 • 增强子影响启动子,但没有严格的专一性。 • 增强子作用无方向性。
2018/11/4
分子生物学原理
二、基因转录调控元件
• 顺式作用元件:真核生物结构基因上游 的调控区,有特定的相似或一致性的序 列。 • 反式作用因子:和顺式作用元件相结合 或间接影响其作用的蛋白质因子。
2018/11/4 分子生物学原理
一、人类基因的研究
• 基因组:DNA双螺旋 天书 • 人类基因组即将全部破译,一本书已通 读一遍,但阅读理解的任务还刚开始。
2018/11/4
分子生物学原理
一、人类基因的研究
• 人类基因组计划:(HGP) human genomic project 对人类基因组大约30亿核苷酸对的全序 列测定。 • 在完成结构分析过程中,对基因的功能, 包括其表达调控,作进一步研究,以便 彻底了解生命的奥秘。
2018/11/4
分子生物学原理
二、操纵子的结构与功能
• 阻遏物基因 : 产生阻遏物,位于离操纵 子较远的上游区。 • 负调控:起调控作用的蛋白质分子抑制 转录
关闭的基因由代谢底物开放(诱导)-----阻遏物失活
开放的基因由代谢底物关闭(阻遏)-----阻遏物激活
2018/11/4 分子生物学原理
二、基因转录调控元件
• 分子辨认:molecular recognition 探讨DNA-蛋白质、蛋白质-蛋白质之间 的辨认与结合的机制,以及与调控的关 系。
2018/11/4
分子生物学原理
二、基因转录调控元件
• • • • TATA box:-30区 CAAT box 启动子 GC box 上游活化序列:(USA) upstream activator sequence • 应答元件与可诱导因子:-200bp • 八聚体TATA box:免疫球蛋白
可 诱 导 Lac 可 阻 遏
Trp
合 成 代 谢 通 常 开 放 由 代 谢 终 产 物 关 闭
2018/11/4
分子生物学原理
三、乳糖操纵子和色氨酸操纵子
2018/11/4
分子生物学原理
乳糖操纵子
• 操纵子的三个结构基因为-半乳糖苷酶、 -半乳糖苷通透酶和-半乳糖苷乙酰转移 酶。 • 在无乳糖时,阻遏蛋白与O区结合,阻 止RNA聚合酶的转录 • 在有乳糖时,乳糖与阻遏蛋白结合后, 改变了阻遏蛋白的结构,使其不能与O 区结合。
2018/11/4 分子生物学原理
色氨酸操纵子调控方式
( -)
2018/11/4
(+)
分子生物学原理
乳糖和色氨酸操纵子的共同点
• 以负调控方式为主:蛋白质分子(阻遏 物)对受调控的区域起抑制作用。 • 由低分子物质(底物或产物)影响蛋白 质对DNA的结合。 • 结果: 既满足细胞生长需求,又不无谓浪费。
2018/11/4
分子生物学原理
二、操纵子的结构与功能
• 启动子是结合RNA聚合酶的DNA序列 • 强:-35TTGACA、-10TATAAT • 弱:-35区共有序列 不一致 -10Pribnow
一般:基因工程选用强启动子,或杂交融 合生成新启动子
2018/11/4 分子生物学原理
二、操纵子的结构与功能
2018/11/4 分子生物学来自理阿拉伯糖操纵子2018/11/4
分子生物学原理
五、原核生物转录的整体调控模式
• 调节子:regulon 操纵子是基因表达的基本单元,成群操纵 子所组成的高一级的调控网络称为调节子 • 调节原理: 内、外环境的变化通过传感器 使膜内产生信号,这种信号可同时作用于 多个操纵子,或激活或抑制,从而达到群 体协调的目的。
2018/11/4 分子生物学原理
调节子模式
2018/11/4
分子生物学原理
SOS修复系统的调节子
• DNA损伤和复制受阻是刺激因子和信号。 • LexA蛋白是一系列操纵子的阻遏物。 • recA基因转录产物RecA蛋白可水解LexA 蛋白。 • LexA阻遏recA基因,RecA蛋白可水解 LexA蛋白,二者之间的平衡移动,使细 胞在应急时可迅速启动大量基因的转录。
一、诱导现象
成由 增底 加物 。导 致 利 用 该 底 物 的 酶 的 合
2018/11/4
inducer removed
酶 蛋 白 合 成 量
inducer added
细胞孵育时间
分子生物学原理
一、诱导现象

葡萄糖
半乳糖苷酶
乳糖
乳糖
2018/11/4 分子生物学原理
葡萄糖+半乳糖
一、诱导现象
2018/11/4 分子生物学原理
SOS修复系统的调节子
2018/11/4
分子生物学原理
第二节、真核生物的基因转录调控
• • • • • • • 真核生物的基因转录调控更为复杂: 总量大:30亿bp,10万基因 分散在各染色体上,23对染色体:定位 大量的内含子:比结构基因多十数倍 大量的重复序列:重复次数可达几千~百万次 更多的蛋白质参与 基因的多态性:不同的地域、人种、个体
• 酶的诱导是生物进化中的一种合理、经 济地利用有限资源的本能。 • 酶的诱导是低等生物的普遍现象。 • 1961年,Jacob and Monod提出了操纵子 学说。 • 酶诱导的本质:代谢物对催化本身代谢 的酶的合成量调节。
2018/11/4 分子生物学原理
二、操纵子的结构与功能
操纵子
阻遏物基因 R (i) inhibitor gene 上游启动子 P promotor 操纵基因 一组结构基因 O S operator structural gene
四、cAMP对转录的调控
1
2018/11/4
分子生物学原理
阿拉伯糖操纵子
• B、A、D:编码三种酶,共催化阿拉伯 糖的代谢。 • C:R1(阻遏蛋白),变构后成R2。 • 起始区:initiator(I) • R1 和R2在变构前后,分别执行负和正调 控功能。 • 诱导物可以使抑制蛋白在R1和R2两种构 象之间转变。
2018/11/4
分子生物学原理
锌指
• 锌是很多酶的辅助因子 • 锌指:(Zinc finger)锌螯合在多肽链中, 以配价键和半胱氨酸残基或组氨酸残基结合。 • Cys2/His2型: Cys-X2~4- Cys-X3-Phe-Leu- X2 -His- X3- His • Cys2/ Cys2型: Cys-X2- Cys-X13 -Cys-X2- Cys • 一个单位以指部伸入DNA双螺旋的深沟,接 触5 个核苷酸。
二、操纵子的结构与功能
• 操纵子:结构基因、上游启动子(P)和操纵基 因(O)组成。
2018/11/4
P和O合称调控区
分子生物学原理
可诱导和可阻遏的操纵子
类 型 结 合 O 方 式 i基 因 产 物 i 基 因 产 物 加 上 代 谢 终 产 物 O 的 开 放 方 式 由 代 谢 底 物 开 放 结 构 基 因 产 物 功 能 分 解 代 谢
2018/11/4
分子生物学原理
乳糖和色氨酸操纵子的不同点
乳糖操纵子
R基因 阻遏物 代谢物
色氨酸操纵子
阻遏物 R基因
阻遏物
基因开放
2018/11/4 分子生物学原理
阻遏物
基因关闭
四、cAMP对转录的调控
• 在乳糖和葡萄糖都存在时, 哪种糖被优先利用?
2018/11/4
分子生物学原理
四、cAMP对转录的调控
2018/11/4 分子生物学原理
相关文档
最新文档