Matlab求解微分方程(组)及偏微分方程(组)
matlab dsolve 微分方程组
在MATLAB中,可以使用`dsolve`函数来求解微分方程组。
`dsolve`函数可以求解常微分方程(Ordinary Differential Equations,ODE)和偏微分方程(Partial Differential Equations,PDE)。
下面是一个示例,演示如何使用`dsolve`函数来求解一个简单的微分方程组:
```matlab
syms t x(t) y(t)
eq1 = @(t,x) x(t)/x(t-1) - 2; 第一个方程
eq2 = @(t,x) x(t-1)/x(t) - 3; 第二个方程
sol = dsolve({eq1, eq2}, x(t), t); 求解微分方程组
disp(sol); 显示解
```
在这个示例中,我们定义了两个方程`eq1`和`eq2`,然后使用`dsolve`函数来求解这两个方程组成的微分方程组。
注意,我们需要将方程以函数的形式传递给`dsolve`函数。
在`dsolve`函数中,第一个参数是一个包含所有方程的向量,第二个参数是要求解的未知函数。
`dsolve`函数将返回一个包含所有解的表达式。
在本例中,我们将解存储在`sol`变量中,并使用`disp`函数显示解。
请注意,在使用`dsolve`函数时,需要确保输入的方程是正确的,并且与所求解的问题相对应。
此外,还需要注意符号和函数的定义和使用方式。
Matlab求解微分方程(组)及偏微分方程(组)
第四讲 Matlab 求解微分方程(组)理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为:X=dsolve(‘eqn1’,’eqn2’,…)函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解.注意,系统缺省的自变量为t2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为:[T,Y]=solver(odefun,tspan,y0)说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一.(2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到ft 用初始条件0y 求解.(3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t 上的解,则令tspan 012[,,,]f t t t t =(要求是单调的).(4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.表1 Matlab中文本文件读写函数说明:ode23、ode45是极其常用的用来求解非刚性的标准形式的一阶微分方程(组)的初值问题的解的Matlab常用程序,其中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估计来调节步长,具有低等的精度.ode45则采用龙格-库塔4阶算法,用5阶公式作误差估计来调节步长,具有中等的精度.3.在matlab命令窗口、程序或函数中创建局部函数时,可用内联函数inline,inline函数形式相当于编写M函数文件,但不需编写M-文件就可以描述出某种数学关系.调用inline函数,只能由一个matlab表达式组成,并且只能返回一个变量,不允许[u,v]这种向量形式.因而,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应用inline函数,inline函数的一般形式为:FunctionName=inline(‘函数内容’, ‘所有自变量列表’)例如:(求解F(x)=x^2*cos(a*x)-b ,a,b是标量;x是向量)在命令窗口输入:Fofx=inline(‘x .^2*cos(a*x)-b ’ , ‘x ’,’a ’,’b ’); g= Fofx([pi/3 pi/3.5],4,1) 系统输出为:g=-1.5483 -1.7259注意:由于使用内联对象函数inline 不需要另外建立m 文件,所有使用比较方便,另外在使用ode45函数的时候,定义函数往往需要编辑一个m 文件来单独定义,这样不便于管理文件,这里可以使用inline 来定义函数. 二.实例介绍1.几个可以直接用Matlab 求微分方程精确解的实例 例1 求解微分方程2'2x y xy xe -+=程序:syms x y; y=dsolve(‘Dy+2*x*y=x*exp(-x^2)’,’x ’)例 2 求微分方程'0x xy y e +-=在初始条件(1)2y e =下的特解并画出解函数的图形.程序:symsxy;y=dsolve(‘x*Dy+y-exp(1)=0’,’y(1)=2*exp(1)’,’x ’);ezplot(y)例 3 求解微分方程组530tdx x y e dtdy x y dt⎧++=⎪⎪⎨⎪--=⎪⎩在初始条件00|1,|0t t x y ====下的特解并画出解函数的图形.程序:syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t')simple(x); simple(y)ezplot(x,y,[0,1.3]);axis auto2.用ode23、ode45等求解非刚性标准形式的一阶微分方程(组)的初值问题的数值解(近似解)例 4 求解微分方程初值问题2222(0)1dy y x xdx y ⎧=-++⎪⎨⎪=⎩的数值解,求解范围为区间[0,0.5].程序:fun=inline('-2*y+2*x^2+2*x','x','y'); [x,y]=ode23(fun,[0,0.5],1); plot(x,y,'o-')例 5 求解微分方程22'2(1)0,(0)1,(0)0d y dyy y y y dt dtμ--+===的解,并画出解的图形.分析:这是一个二阶非线性方程,我们可以通过变换,将二阶方程化为一阶方程组求解.令12,,7dyx y x dtμ===,则 121221212,(0)17(1),(0)0dx x x dtdx x x x x dt⎧==⎪⎪⎨⎪=--=⎪⎩ 编写M-文件vdp.m function fy=vdp(t,x)fy=[x(2);7*(1-x(1)^2)*x(2)-x(1)]; end在Matlab 命令窗口编写程序 y0=[1;0][t,x]=ode45(@vdp,[0,40],y0);或[t,x]=ode45('vdp',[0,40],y0); y=x(:,1);dy=x(:,2); plot(t,y,t,dy)练习与思考:M-文件vdp.m 改写成inline 函数程序? 3.用Euler 折线法求解Euler 折线法求解的基本思想是将微分方程初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩ 化成一个代数(差分)方程,主要步骤是用差商()()y x h y x h +-替代微商dydx,于是00()()(,())()k k k k y x h y x f x y x h y y x +-⎧=⎪⎨⎪=⎩记1,(),k k k k x x h y y x +=+=从而1(),k k y y x h +=+于是0011(),,0,1,2,,1(,).k k k k k k y y x x x h k n y y hf x y ++=⎧⎪=+=-⎨⎪=+⎩例 6 用Euler 折线法求解微分方程初值问题22(0)1dyx y dxy y ⎧=+⎪⎨⎪=⎩的数值解(步长h 取0.4),求解范围为区间[0,2].分析:本问题的差分方程为00110,1,0.4,0,1,2,,1(,).k k k k k k x y h x x h k n y y hf x y ++===⎧⎪=+=-⎨⎪=+⎩程序:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});%subs ,替换函数 x=x+h;szj=[szj;x,y]; end>>szj>> plot(szj(:,1),szj(:,2))说明:替换函数subs 例如:输入subs(a+b,a,4) 意思就是把a 用4替换掉,返回 4+b ,也可以替换多个变量,例如:subs(cos(a)+sin(b),{a,b},[sym('alpha'),2])分别用字符alpha 替换a 和2替换b ,返回 cos(alpha)+sin(2)特别说明:本问题可进一步利用四阶Runge-Kutta 法求解,Euler 折线法实际上就是一阶Runge-Kutta 法,Runge-Kutta 法的迭代公式为001112341213243(),,(22),6(,),0,1,2,,1(,),22(,),22(,).k k k k k k k k k k k k y y x x x h h y y L L L L L f x y k n h h L f x y L h h L f x y L L f x h y hL ++=⎧⎪=+⎪⎪=++++⎪⎪=⎪=-⎨⎪=++⎪⎪⎪=++⎪⎪=++⎩相应的Matlab 程序为:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1l1=subs(f, {'x','y'},{x,y});替换函数 l2=subs(f, {'x','y'},{x+h/2,y+l1*h/2}); l3=subs(f, {'x','y'},{x+h/2,y+l2*h/2}); l4=subs(f, {'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6; x=x+h;szj=[szj;x,y]; end >>szj>> plot(szj(:,1),szj(:,2))练习与思考:(1)ode45求解问题并比较差异. (2)利用Matlab 求微分方程(4)(3)''20y y y -+=的解.(3)求解微分方程''2',2(1)0,030,(0)1,(0)0y y y y x y y --+=≤≤==的特解. (4)利用Matlab 求微分方程初值问题2''''00(1)2,|1,|3x x x y xy y y ==+===的解. 提醒:尽可能多的考虑解法 三.微分方程转换为一阶显式微分方程组Matlab 微分方程解算器只能求解标准形式的一阶显式微分方程(组)问题,因此在使用ODE 解算器之前,我们需要做的第一步,也是最重要的一步就是借助状态变量将微分方程(组)化成Matlab 可接受的标准形式.当然,如果ODEs 由一个或多个高阶微分方程给出,则我们应先将它变换成一阶显式常微分方程组.下面我们以两个高阶微分方程组构成的ODEs 为例介绍如何将它变换成一个一阶显式微分方程组.Step 1 将微分方程的最高阶变量移到等式左边,其它移到右边,并按阶次从低到高排列.形式为:()'''(1)'''(1)()'''(1)'''(1)(,,,,,,,,,,)(,,,,,,,,,,)m m n n m n x f t x x x x y y y y y g t x x x x y y y y ----⎧=⎨=⎩Step 2 为每一阶微分式选择状态变量,最高阶除外'''(1)123'''(1)123,,,,,,,,,m m n m m m m n x x x x x x x x x y x y x y x y--++++========注意:ODEs 中所有是因变量的最高阶次之和就是需要的状态变量的个数,最高阶的微分式不需要给它状态变量.Step 3 根据选用的状态变量,写出所有状态变量的一阶微分表达式''''122334123''12123,,,,(,,,,,),,(,,,,,)m m n m m m nm n x x x x x x x f t x x x x xx xg t x x x x +++++======练习与思考:(1)求解微分方程组**'''3312*'''3312()()22x x x y x r r y y y x y r r μμμμμμ⎧+-=+--⎪⎪⎨⎪=+--⎪⎩其中2r =1r =*1,μμ=-1/82.45,μ=(0) 1.2,x =(0)0,y ='(0)0,x ='(0) 1.049355751y =-(2)求解隐式微分方程组''''''''''''2235x y x y x y x y xy y ⎧+=⎨++-=⎩ 提示:使用符号计算函数solve 求'''',x y ,然后利用求解微分方程的方法 四.偏微分方程解法Matlab 提供了两种方法解决PDE 问题,一是使用pdepe 函数,它可以求解一般的PDEs,具有较大的通用性,但只支持命令形式调用;二是使用PDE 工具箱,可以求解特殊PDE 问题,PDEtoll 有较大的局限性,比如只能求解二阶PDE 问题,并且不能解决片微分方程组,但是它提供了GUI 界面,从复杂的编程中解脱出来,同时还可以通过File —>Save As 直接生成M 代码.1.一般偏微分方程(组)的求解(1)Matlab 提供的pdepe 函数,可以直接求解一般偏微分方程(组),它的调用格式为:sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)@pdefun 是PDE 的问题描述函数,它必须换成标准形式:(,,)[(,,,)](,,,)m m u u u uc x t x x f x t u s x t u x t x x x-∂∂∂∂∂=+∂∂∂∂∂ 这样,PDE 就可以编写入口函数:[c,f,s]=pdefun(x,t,u,du),m,x,t 对应于式中相关参数,du 是u 的一阶导数,由给定的输入变量可表示出c,f,s 这三个函数.@pdebc 是PDE 的边界条件描述函数,它必须化为形式:(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂==∂ 于是边值条件可以编写函数描述为:[pa,qa,pb,qb]=pdebc(x,t,u,du),其中a 表示下边界,b 表示上边界.@pdeic 是PDE 的初值条件,必须化为形式:00(,)u x t u =,故可以使用函数描述为:u0=pdeic(x)sol 是一个三维数组,sol(:,:,i)表示i u 的解,换句话说,k u 对应x(i)和t(j)时的解为sol(i,j,k),通过sol ,我们可以使用pdeval 函数直接计算某个点的函数值.(2)实例说明 求解偏微分2111222221220.024()0.17()u u F u u t xu u F u u tx ⎧∂∂=--⎪⎪∂∂⎨∂∂⎪=+-⎪∂∂⎩ 其中, 5.7311.46()xx F x e e -=-且满足初始条件12(,0)1,(,0)0u x u x ==及边界条件1(0,)0,u t x ∂=∂221(0,)0,(1,)1,(1,)0uu t u t t x∂===∂ 解:(1)对照给出的偏微分方程和pdepe 函数求解的标准形式,原方程改写为111221220.024()1.*()10.17u u F u u x u F u u u t x x ∂⎡⎤⎢⎥--⎡⎤⎡⎤⎡⎤∂∂∂=+⎢⎥⎢⎥⎢⎥⎢⎥-∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦可见1121220.024()10,,,()10.17u F u u x m c f s F u u u x ∂⎡⎤⎢⎥--⎡⎤⎡⎤∂====⎢⎥⎢⎥⎢⎥-∂⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦%目标PDE 函数function [c,f,s]=pdefun(x,t,u,du) c=[1;1];f=[0.024*du(1);0.17*du(2)];temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp)) end(2)边界条件改写为:下边界2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦上边界1110.*000u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦%边界条件函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) pa=[0;ua(2)]; qa=[1;0]; pb=[ub(1)-1;0]; qb=[0;1]; end(3)初值条件改写为:1210u u ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦%初值条件函数 function u0=pdeic(x) u0=[1;0]; end(4)编写主调函数 clcx=0:0.05:1; t=0:0.05:2; m=0;sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t); subplot(2,1,1) surf(x,t,sol(:,:,1)) subplot(2,1,2) surf(x,t,sol(:,:,2))练习与思考: This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.2()u u t x xπ∂∂∂=∂∂∂ This equation holds on an interval 01x ≤≤ for times 0t ≥. The PDE satisfies the initial condition (,0)sin u x x π= and boundary conditions(0,)0;(1,)0t u u t e t xπ-∂=+=∂ 2.PDEtool 求解偏微分方程 (1)PDEtool (GUI )求解偏微分方程的一般步骤在Matlab 命令窗口输入pdetool ,回车,PDE 工具箱的图形用户界面(GUI)系统就启动了.从定义一个偏微分方程问题到完成解偏微分方程的定解,整个过程大致可以分为六个阶段Step 1 “Draw 模式”绘制平面有界区域Ω,通过公式把Matlab 系统提供的实体模型:矩形、圆、椭圆和多边形,组合起来,生成需要的平面区域.Step 2 “Boundary 模式”定义边界,声明不同边界段的边界条件.Step 3 “PDE 模式”定义偏微分方程,确定方程类型和方程系数c,a,f,d ,根据具体情况,还可以在不同子区域声明不同系数.Step 4 “Mesh 模式”网格化区域Ω,可以控制自动生成网格的参数,对生成的网格进行多次细化,使网格分割更细更合理.Step 5 “Solve 模式”解偏微分方程,对于椭圆型方程可以激活并控制非线性自适应解题器来处理非线性方程;对于抛物线型方程和双曲型方程,设置初始边界条件后可以求出给定时刻t 的解;对于特征值问题,可以求出给定区间上的特征值.求解完成后,可以返回到Step 4,对网格进一步细化,进行再次求解.Step 6 “View 模式”计算结果的可视化,可以通过设置系统提供的对话框,显示所求的解的表面图、网格图、等高线图和箭头梯形图.对于抛物线型和双曲线型问题的解还可以进行动画演示.(2)实例说明用法求解一个正方形区域上的特征值问题:12|0u u u u λ∂Ω⎧-∆-=⎪⎨⎪=⎩ 正方形区域为:11,1 1.x x -≤≤-≤≤(1)使用PDE工具箱打开GUI求解方程(2)进入Draw模式,绘制一个矩形,然后双击矩形,在弹出的对话框中设置Left=-1,Bottom=-1,Width=2,Height=2,确认并关闭对话框(3)进入Boundary模式,边界条件采用Dirichlet条件的默认值(4)进入PDE模式,单击工具栏PDE按钮,在弹出的对话框中方程类型选择Eigenmodes,参数设置c=1,a=-1/2,d=1,确认后关闭对话框(5)单击工具栏的 按钮,对正方形区域进行初始网格剖分,然后再对网格进一步细化剖分一次(6)点开solve菜单,单击Parameters选项,在弹出的对话框中设置特征值区域为[-20,20](7)单击Plot菜单的Parameters项,在弹出的对话框中选中Color、Height(3-D plot)和show mesh项,然后单击Done确认(8)单击工具栏的“=”按钮,开始求解欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
用MATLAB求解微分方程及微分方程组
例 3 求微分方程组的通解. dx dt 2 x 3 y 3 z dy 4 x 5 y 3z dt dz 4 x 4 y 2 z dt
任取k1、k2的一组初始值:k0=[2,1];
输入命令: k=lsqcurvefit('curvefun1',k0,t,c) 运行结果为: k =[ 1.3240 作图表示求解结果: t1=0:0.1:18; f=curvefun1(k,t1); plot(t,c,'ko',t1,f,'r-')
90 80 70 60 50 40 30 20 10 0
0.2573]
0
2
46Leabharlann 81012
14
16
18
模型2:慢速饮酒时,体液中酒精含量的变化率
dx k2 x a dt x(0) 0
其中
M a T
M为饮酒的总量,T为饮酒的时间
则有;
a x (1 e k 2 t ) k2
5 5 ) 处时被导弹击中. 当 x 1时 y ,即当乙舰航行到点 (1, 24 24 y 5 被击中时间为: t . 若 v0=1, 则在 t=0.21 处被击中. v0 24v0
轨迹图如下
例: 饮酒模型
模型1:快速饮酒后,胃中酒精含量的变化率
dy k1 y dt y (0) M
5 5 ) 处时被导弹击中. 当 x 1时 y ,即当乙舰航行到点 (1, 24 24 y 5 被击中时间为 : t . 若 v0=1, 则在 t=0.21 处被击中. v0 24v0
matlab求解偏微分方程组
matlab求解偏微分方程组偏微分方程组是数学中的重要问题之一,它描述了自然界中许多现象的变化规律。
而matlab作为一种强大的数值计算软件,可以用来求解偏微分方程组,为科学研究和工程应用提供了便利。
在matlab中,求解偏微分方程组可以使用pdepe函数。
pdepe函数是一个用于求解偏微分方程组的通用求解器,可以处理各种类型的偏微分方程组。
它的基本用法是定义一个偏微分方程组的初始条件、边界条件和方程形式,然后调用pdepe函数进行求解。
首先,我们需要定义偏微分方程组的初始条件和边界条件。
初始条件是指在初始时刻各个变量的取值,而边界条件是指在空间上的边界上各个变量的取值。
这些条件可以是数值或函数形式的。
接下来,我们需要定义偏微分方程组的方程形式。
方程形式是指偏微分方程组的具体形式,包括方程的类型、系数和非线性项等。
在matlab中,可以使用函数句柄的形式来定义方程形式。
然后,我们可以调用pdepe函数进行求解。
pdepe函数的基本语法是:sol = pdepe(m,@pdex1,@pdex2,@pdex3,x,t)其中,m是一个表示方程个数的整数,@pdex1、@pdex2和@pdex3分别是定义初始条件、边界条件和方程形式的函数句柄,x和t分别是表示空间和时间的向量。
最后,我们可以通过sol来获取求解结果。
sol是一个包含求解结果的三维数组,其中第一维表示时间,第二维表示空间,第三维表示方程个数。
我们可以通过索引来获取特定时间和空间点的解。
总之,matlab提供了强大的工具来求解偏微分方程组。
通过定义初始条件、边界条件和方程形式,然后调用pdepe函数进行求解,我们可以得到偏微分方程组的数值解。
这为科学研究和工程应用提供了便利,使得我们能够更好地理解和预测自然界中的变化规律。
MATLAB求微分方程的解
实验二微分方程求解一、问题背景与实验目的实际应用问题通过数学建模所归纳而取得的方程,绝大多数都是微分方程,真正能取得代数方程的机遇很少.另一方面,能够求解的微分方程也是十分有限的,专门是高阶方程和偏微分方程(组).这就要求咱们必需研究微分方程(组)的解法,既要研究微分方程(组)的解析解法(精准解),更要研究微分方程(组)的数值解法(近似解).对微分方程(组)的解析解法(精准解),Matlab 有专门的函数能够用,本实验将作必然的介绍.本实验将要紧研究微分方程(组)的数值解法(近似解),重点介绍 Euler 折线法.二、相关函数(命令)及简介1.dsolve('equ1','equ2',…):Matlab 求微分方程的解析解.equ一、equ 二、…为方程(或条件).写方程(或条件)时用 Dy 表示y 关于自变量的一阶导数,用用 D2y 表示 y 关于自变量的二阶导数,依此类推.2.simplify(s):对表达式 s 利用 maple 的化简规那么进行化简.例如:syms xsimplify(sin(x)^2 + cos(x)^2)ans=13.[r,how]=simple(s):由于 Matlab 提供了多种化简规那么,simple 命令确实是对表达式 s 用各类规那么进行化简,然后用 r 返回最简形式,how 返回形成这种形式所用的规那么.例如:syms x[r,how]=simple(cos(x)^2-sin(x)^2)r = cos(2*x)how = combine4.[T,Y] = solver(odefun,tspan,y 0) 求微分方程的数值解.说明:(1) 其中的 solver 为命令 ode4五、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 之一.(2) odefun 是显式常微分方程:⎪⎩⎪⎨⎧==00)(),(y t y y t f dt dy(3) 在积分区间 tspan =],[0f t t 上,从0t 到f t ,用初始条件0y 求解.(4) 要取得问题在其他指按时刻点 ,210,,t t t 上的解,那么令 tspan =],,,[,210f t t t t (要求是单调的). (5) 因为没有一种算法能够有效地解决所有的 ODE 问题,为此,Matlab 提供了多种求解器 Solver ,关于不同的ODE 问题,采纳不同的Solver .(6) 要专门的是:ode23、ode45 是极为经常使用的用来求解非刚性的标准形式的一阶常微分方程(组)的初值问题的解的 Matlab 的经常使用程序,其中:ode23 采纳龙格-库塔2 阶算法,用3 阶公式作误差估量来调剂步长,具有低等的精度.ode45 那么采纳龙格-库塔4 阶算法,用5 阶公式作误差估量来调剂步长,具有中等的精度.5.ezplot(x,y,[tmin,tmax]):符号函数的作图命令.x,y 为关于参数t 的符号函数,[tmin,tmax] 为 t 的取值范围.6.inline():成立一个内联函数.格式:inline('expr', 'var1', 'var2',…) ,注意括号里的表达式要加引号.例:Q = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)三、实验内容1. 几个能够直接用 Matlab 求微分方程精准解的例子:例1:求解微分方程22x xe xy dxdy -=+,并加以验证. 求解本问题的Matlab 程序为:syms x y %line1y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %line2diff(y,x)+2*x*y-x*exp(-x^2) %line3simplify(diff(y,x)+2*x*y-x*exp(-x^2)) %line4说明:(1) 行line1是用命令概念x,y 为符号变量.那个地址能够不写,但为确保正确性,建议写上;(2) 行line2是用命令求出的微分方程的解:1/2*exp(-x^2)*x^2+exp(-x^2)*C1(3) 行line3利用所求得的解.那个地址是将解代入原微分方程,结果应该为0,但那个地址给出:-x^3*exp(-x^2)-2*x*exp(-x^2)*C1+2*x*(1/2*exp(-x^2)*x^2+exp(-x^2)*C1)(4) 行line4 用 simplify() 函数对上式进行化简,结果为 0, 说明)(x y y =的确是微分方程的解.例2:求微分方程0'=-+x e y xy 在初始条件e y 2)1(=下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为:syms x yy=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x')ezplot(y)微分方程的特解为:y=1/x*exp(x)+1/x* exp (1) (Matlab 格式),即xe e y x+=,解函数的图形如图 1:图1例3:求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++035y x dtdy e y x dt dx t 在初始条件0|,1|00====t t y x 下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为:syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t')simple(x);simple(y);ezplot(x,y,[0,]);axis auto微分方程的特解(式子专门长)和解函数的图形均略.2. 用ode23、ode45等求解非刚性的标准形式的一阶常微分方程(组)的初值问题的数值解(近似解).例4:求解微分方程初值问题⎪⎩⎪⎨⎧=++-=1)0(2222y x x y dx dy 的数值解,求解范围为区间[0, ].fun=inline('-2*y+2*x^2+2*x','x','y');[x,y]=ode23(fun,[0,],1);x';y';plot(x,y,'o-')>> x'ans =>> y'ans =图形结果为图 2.图2例 5:求解描述振荡器的经典的 Ver der Pol 微分方程.7,0)0(',1)0(,0)1(222====+--μμy y y dt dy y dty d 分析:令,,121dt dx x y x ==则.)1(,1221221x x x dtdx x dt dx --==μ 先编写函数文件: function xprime = verderpol(t,x)global mu;xprime = [x(2);mu*(1-x(1)^2)*x(2)-x(1)];再编写命令文件:global mu;mu = 7;y0=[1;0][t,x] = ode45('verderpol',[0,40],y0);x1=x(:,1);x2=x(:,2);plot(t,x1)图形结果为图3.图33. 用 Euler 折线法求解前面讲到过,能够求解的微分方程也是十分有限的.下面介绍用 Euler 折线法求微分方程的数值解(近似解)的方式.Euler 折线法求解的大体思想是将微分方程初值问题⎪⎩⎪⎨⎧==00)(),,(y x y y x f dx dy 化成一个代数方程,即差分方程,要紧步骤是用差商h x y h x y )()(-+替代微商dxdy ,于是: ⎪⎩⎪⎨⎧==-+)()),(,()()(00x y y x y x f h x y h x y k k k k 记)(,1k k k k x y y h x x =+=+,从而)(1h x y y k k +=+,那么有1,,2,1,0).,(,),(1100-=⎪⎩⎪⎨⎧+=+==++n k y x hf y y h x x x y y k k k k k k 例 6:用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=+=1)0(,22y y x y dx dy的数值解(步长h 取,求解范围为区间[0,2].解:本问题的差分方程为1,,2,1,0).2),( ),(,,4.0,1,021100-=⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+====++n k y x y y x f y x hf y y h x x h y x k k k k k k (其中: 相应的Matlab 程序见附录 1.附录 1:clearf=sym ('y+2*x/y^2');a=0;b=2;h=;n=(b-a)/h+1;x=0;y=1;szj=[x,y];for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2))数据结果为:图形结果见图4:图4专门说明:本问题可进一步利用四阶 Runge-Kutta 法求解,读者可将两个结果在一个图中显示,并和精准值比较,看看哪个更“精准”?(相应的 Matlab 程序参见附录 2).四、自己动手1. 求微分方程0-x-yx的通解.xy+sin2')1(2=2. 求微分方程x2''='+-的通解.ye5yy x sin3. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dtdy y x dt dx 在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形.4. 别离用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的不同.5. 用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=-=1)0(,12'32y y x y y 的数值解(步长h 取,求解范围为区间[0,2].6. 用四阶 Runge-Kutta 法求解微分方程初值问题⎩⎨⎧=-=1)0(,cos 'y x e y y x 的数值解(步长h 取,求解范围为区间[0,3].四阶 Runge-Kutta 法的迭代公式为(Euler 折线法实为一阶 Runge-Kutta 法):1,,2,1,0),()2,2()2,2(),()22(6,),(342312143211100-=⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧++=++=++==++++=+==++n k hL y h x f L L h y h x f L L h y h x f L y x f L L L L L h y y h x x x y y k k k k k k k k k k k k 相应的 Matlab 程序参见附录 2.附录 2:clearf=sym('y-exp(x)*cos(x)');a=0;b=3;h=;n=(b-a)/h+1;x=0;y=1;szj=[x,y];for i=1:n-1l1=subs(f,{'x','y'},{x,y});l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2});l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2});l4=subs(f,{'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2))试用该方式求解第5题中的初值问题.7. 用 ode45 方式求上述第 6 题的常微分方程初值问题的数值解(近似解),从而利用画图来比较二者间的不同.五、附录附录 1:clearf=sym('y+2*x/y^2');a=0;b=2;h=;n=(b-a)/h+1;x=0;y=1;szj=[x,y];for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2))附录 2:clearf=sym('y-exp(x)*cos(x)');a=0;b=3;h=;n=(b-a)/h+1;x=0;y=1;szj=[x,y];for i=1:n-1l1=subs(f,{'x','y'},{x,y});l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2});l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2});l4=subs(f,{'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2))下面是个例子:% 欲解方程组:% dx/dt=y-x+x(t-1);% dy/dt=y-xy+y(t-1);x0=-1; %初试条件y0=1; %初试条件t=0:01:3;yy=zeros(size(t));xx=zeros(size(t));yy(1)=x0;yy(1)=y0;dt=t(2)-t(1);Nk=round(1/dt);for k=1:length(t)-1;if t(k)<1;k1=yy(k)-xx(k);g1=yy(k)-xx(k)*yy(k);k2=yy(k)+*g1*dt-[xx(k)+*dt*k1];g2=yy(k)+*g1*dt-[xx(k)+*dt*k1]*[yy(k)+*g1*dt];k3=yy(k)+*g2*dt-[xx(k)+*dt*k2];g3=yy(k)+*g2*dt-[xx(k)+*dt*k1]*[yy(k)+*g2*dt];k4=yy(k)+g3*dt-[xx(k)+dt*k3];g4=yy(k)+g3*dt-[xx(k)+dt*k3]*[yy(k)+g3*dt];elsek1=yy(k)-xx(k)+xx(k-Nk);g1=yy(k)-xx(k)*yy(k)+yy(k-Nk);k2=yy(k)+*g1*dt-[xx(k)+*dt*k1]+xx(k-Nk)+*dt*k1;g2=yy(k)+*g1*dt-[xx(k)+*dt*k1]*[yy(k)+*g1*dt]+yy(k-Nk)+*dt*g1;k3=yy(k)+*g2*dt-[xx(k)+*dt*k2]+xx(k-Nk)+*dt*k2;g3=yy(k)+*g2*dt-[xx(k)+*dt*k1]*[yy(k)+*g2*dt]+yy(k-Nk)+*dt*g2;k4=yy(k)+g3*dt-[xx(k)+dt*k3]+xx(k-Nk)+dt*k3;g4=yy(k)+g3*dt-[xx(k)+dt*k3]*[yy(k)+g3*dt]+yy(k-Nk)+dt*k3;endxx(k+1)=xx(k)+dt*[k1+2*k2+2*k3+k4]/6;yy(k+1)=yy(k)+dt*[g1+2*g2+2*g3+g4]/6;endsubplot(121);plot(t,xx);title('t~x(t)');subplot(122);plot(t,yy);title('t~y(t)');/ / / / 文件夹:一、% 4阶龙格库塔法求chen's吸引子% 方程表达式% dx/dt = a*(y-x)% dy/dt = (c-a)*x - x*z + c*y% dz/dt = x*y - b*zclc;close all;clear all;%参数值a = 35;b = 3;c = 28;%初始值x_0 = -1;y_0 = 0;z_0 = 1;h = ; % 积分时间步长step1 = 10000; % 前面的迭代点数step2 = 5000; % 后面的迭代点数X = [];Y = [];Z = [];for(i = 1:1:(step1 + step2))%e1x_e1 = -a*x_0 + a*y_0;y_e1 = c*y_0 + (c - a)*x_0 - x_0*z_0;z_e1 = -b*z_0 + x_0*y_0;%e2y_h = y_0 + *h*y_e1;x_e2 = -a*(x_0 + *h*x_e1) + a*y_h;x_h = x_0 + *h*x_e1;z_h = z_0 + *h*z_e1;y_e2 = c*(y_0 + *h*y_e1) + (c - a)*x_h - x_h*z_h;z_e2 = -b*(z_0 + *h*z_e1) + x_h*y_h;%e3y_h = y_0 + *h*y_e2;x_e3 = -a*(x_0 + *h*x_e2) + a*y_h;x_h = x_0 + *h*x_e2;z_h = z_0 + *h*z_e2;y_e3 = c*(y_0 + *h*y_e2) + (c - a)*x_h - x_h*z_h;z_e3 = -b*(z_0 + *h*z_e2) + x_h*y_h;%e4y_h = y_0 + h*y_e3;x_e4 = -a*(x_0 + h*x_e3) + a*y_h;x_h = x_0 + h*x_e3;z_h = z_0 + h*z_e3;y_e4 = c*(y_0 + h*y_e2) + (c - a)*x_h - x_h*z_h;z_e4 = -b*(z_0 + h*z_e2) + x_h*y_h;%叠代x_1 = x_0 + 1/6*h*(x_e1 + 2*x_e2 +2*x_e3 + x_e4);y_1 = y_0 + 1/6*h*(y_e1 + 2*y_e2 +2*y_e3 + y_e4);z_1 = z_0 + 1/6*h*(z_e1 + 2*z_e2 +2*z_e3 + z_e4);X = [X,x_1];Y = [Y,y_1];Z = [Z,z_1];x_0 = x_1;y_0 = y_1;z_0 = z_1;endX = X(step2+1:end);Y = Y(step2+1:end);Z = Z(step2+1:end);figure(1);plot3(Z(1000:end),Y(1000:end),X(1000:end));grid onxlabel('x');ylabel('y');zlabel('z');这个应该是可以借鉴的。
matlab求解偏微分方程组
matlab求解偏微分方程组摘要:I.引言- 介绍偏微分方程组及其应用领域- 阐述使用Matlab 求解偏微分方程组的重要性II.Matlab 的基本操作与设置- 安装与配置Matlab- 熟悉Matlab 的基本语法与操作III.偏微分方程组的类型及表示方法- 分类介绍偏微分方程组:椭圆型、抛物型和双曲型- 常用偏微分方程组的表示方法IV.使用Matlab 求解偏微分方程组- 使用Matlab 内置函数求解偏微分方程组- 利用有限差分法、有限元法等数值方法求解偏微分方程组- 分析求解结果及误差V.偏微分方程组在实际问题中的应用- 举例说明偏微分方程组在物理、工程等领域的应用- 展示Matlab 在解决实际问题中的优势VI.结论- 总结Matlab 求解偏微分方程组的方法与技巧- 展望偏微分方程组在数值计算领域的未来发展正文:偏微分方程组广泛应用于物理、工程、生物学等领域,是描述现实世界中许多复杂现象的基本工具。
Matlab 作为一款功能强大的数学软件,为求解偏微分方程组提供了便利。
本文将介绍如何使用Matlab 求解偏微分方程组,并探讨其在实际问题中的应用。
首先,我们需要安装与配置Matlab 软件。
在安装过程中,请确保正确配置Matlab 的环境变量,以便在后续使用过程中能够顺利调用相关函数。
熟悉Matlab 的基本语法与操作也是十分必要的,这将有助于我们更好地使用Matlab 解决实际问题。
偏微分方程组根据其特征可分为椭圆型、抛物型和双曲型。
在实际应用中,我们通常会遇到各种不同类型的偏微分方程组,因此熟练掌握不同类型方程组的表示方法十分重要。
使用Matlab 求解偏微分方程组的方法有很多。
Matlab 内置了许多求解偏微分方程组的函数,例如`fsolve`、`dsolve`等。
此外,我们还可以利用有限差分法、有限元法等数值方法求解偏微分方程组。
在实际求解过程中,我们需要根据问题的特点选择合适的求解方法,并对求解结果进行误差分析,以确保结果的准确性。
matlab中的向后euler方法
matlab中的向后euler方法在MATLAB中使用向后Euler方法来求解常微分方程组或者偏微分方程时,可以采取以下步骤:1. 定义常微分方程或者偏微分方程:- 对于常微分方程,定义一个函数,该函数输入当前时间t和当前状态向量y,输出导数向量dy/dt。
例如,定义函数`dy= myODE(t, y)`表示dy/dt的计算。
- 对于偏微分方程,定义一个偏微分方程函数,该函数输入当前时间t和当前状态向量y,输出偏微分方程的明确形式。
例如,定义函数`F = myPDE(t, y)`表示偏微分方程的明确形式。
2. 设置时间步长和求解区间。
- 使用`tspan = [t0, tf]`定义求解区间,其中t0是初始时间,tf是最终时间。
- 使用一个合适的步长h,用于定义离散的时间网格。
3. 初始化状态向量。
- 对于常微分方程,定义一个初始状态向量y0,表示在t0时间点的状态。
- 对于偏微分方程,初始化状态向量。
4. 使用向后Euler方法迭代求解。
- 使用一个循环来迭代求解每个时间点的状态向量。
- 对于常微分方程,使用`y(n+1) = y(n) + h * myODE(t(n+1),y(n+1))`更新状态向量,其中myODE是定义的常微分方程函数。
- 对于偏微分方程,可以使用`y(n+1) = y(n) + h *myPDE(t(n+1), y(n+1))`来更新状态向量,其中myPDE是定义的偏微分方程函数。
5. 结果可视化。
- 使用`plot`函数将结果可视化,例如`plot(t, y)`。
注意:对于偏微分方程的求解,通常还需要使用合适的边界条件和初始条件,并对空间离散化进行处理。
这超出了本文的范围,需要根据具体问题进行适当的处理。
matlab偏微分方程组求解
matlab偏微分方程组求解摘要:一、引言1.介绍Matlab 在偏微分方程组求解中的应用2.阐述偏微分方程组的重要性和应用领域3.说明Matlab 在偏微分方程组求解中的优势二、Matlab 偏微分方程组求解方法1.有限差分法2.有限元法3.边界元法4.其他求解方法三、Matlab 偏微分方程组求解步骤1.准备模型和参数2.选择适当的求解方法3.编写求解脚本4.分析结果四、Matlab 偏微分方程组求解案例分析1.二维热传导方程2.二维亥姆霍兹方程3.三维波动方程五、结论1.总结Matlab 在偏微分方程组求解中的应用2.强调Matlab 在偏微分方程组求解中的重要性3.展望Matlab 在偏微分方程组求解领域的发展前景正文:一、引言Matlab 是一款功能强大的数学软件,广泛应用于科学计算、数据分析、建模等领域。
偏微分方程组是描述众多自然现象和工程问题的数学模型,求解偏微分方程组对于理解这些现象和问题具有重要意义。
Matlab 提供了丰富的工具箱和函数,可以方便地求解偏微分方程组,为科研和工程应用提供了强大的支持。
二、Matlab 偏微分方程组求解方法Matlab 提供了多种求解偏微分方程组的方法,包括有限差分法、有限元法、边界元法等。
有限差分法是一种常用的数值求解方法,通过离散化方程组,将偏微分方程转化为离散形式的代数方程组,从而求解。
有限元法和边界元法是另外两种常用的数值求解方法,分别通过将偏微分方程转化为有限个单元的加权积分和边界上的加权积分,从而求解。
除了上述方法外,Matlab 还支持其他求解方法,如有限体积法、谱方法等。
有限体积法是将偏微分方程组的控制区域划分为有限个体积单元,通过对单元内的值进行插值,得到离散形式的偏微分方程组。
谱方法则是利用傅里叶变换将偏微分方程组转化为频域问题,从而求解。
三、Matlab 偏微分方程组求解步骤求解偏微分方程组的过程主要包括准备模型和参数、选择适当的求解方法、编写求解脚本和分析结果四个步骤。
matlab 求解偏微分方程组
一、介绍Matlab是一种强大的数学计算工具,用于解决各种数学问题,包括求解偏微分方程组。
偏微分方程组是描述自然界中许多物理现象的数学模型,其求解对于科学研究和工程应用具有重要意义。
在Matlab中,可以通过多种方法来求解偏微分方程组,包括有限差分方法、有限元方法、谱方法等。
本文将对Matlab中求解偏微分方程组的方法进行介绍和讨论。
二、有限差分方法有限差分方法是一种常用的求解偏微分方程组的数值方法。
其基本思想是将连续的变量离散化为有限个点,并利用差分逼近来近似偏微分方程的导数。
在Matlab中,可以通过编写相应的差分方程组来求解偏微分方程组。
对于二维热传导方程,可以将偏导数用中心差分逼近,并构建相应的差分方程来求解温度分布。
通过循环迭代的方式,可以逐步逼近偏微分方程的解,并得到数值解。
三、有限元方法有限元方法是另一种常用的求解偏微分方程组的数值方法。
其基本思想是将求解区域离散化为有限个单元,并在每个单元内建立近似函数来逼近原始方程。
在Matlab中,可以利用有限元建模工具箱来构建离散化的网格,并编写相应的有限元方程来求解偏微分方程组。
对于弹性力学方程,可以利用有限元方法来求解结构的位移和应力分布。
通过求解线性方程组,可以得到离散化网格上的数值解。
四、谱方法谱方法是一种利用特定基函数展开偏微分方程解的方法。
其基本思想是选取适当的基函数,并通过展开系数来得到偏微分方程的数值解。
在Matlab中,可以通过谱方法工具箱来实现对偏微分方程组的求解。
对于波动方程,可以利用正交多项式展开来逼近波函数,通过选取适当的基函数和展开系数,可以得到偏微分方程的数值解。
五、总结在Matlab中,有多种方法可以用来求解偏微分方程组,包括有限差分方法、有限元方法、谱方法等。
这些方法各有特点,适用于不同类型的偏微分方程和求解问题。
通过合理地选择方法和编写相应的数值算法,可以在Matlab中高效地求解偏微分方程组,为科学研究和工程应用提供重要支持。
matlab偏微分方程组求解
MATLAB偏微分方程组求解介绍偏微分方程组是描述自然界中许多现象的数学模型,包括流体力学、电磁学、热传导等。
求解偏微分方程组是科学研究和工程应用中的重要问题之一。
MATLAB作为一种强大的数值计算工具,提供了丰富的函数和工具箱,可以用于求解偏微分方程组。
本文将介绍如何使用MATLAB求解偏微分方程组。
我们将从基本的概念和数学理论开始,然后介绍MATLAB中的相关函数和工具箱,最后给出一个具体的求解偏微分方程组的示例。
基本概念和数学理论偏微分方程组偏微分方程组是一个包含多个未知函数的方程组,其中每个未知函数的导数(偏导数)出现在方程中。
一般形式的偏微分方程组可以写成以下形式:F1(u1,u2,…,u n,∂u1∂x,∂u2∂x,…,∂u n∂x,∂u1∂y,∂u2∂y,…,∂u n∂y,…)=0F2(u1,u2,…,u n,∂u1∂x,∂u2∂x,…,∂u n∂x,∂u1∂y,∂u2∂y,…,∂u n∂y,…)=0⋮F m(u1,u2,…,u n,∂u1∂x,∂u2∂x,…,∂u n∂x,∂u1∂y,∂u2∂y,…,∂u n∂y,…)=0其中,u1,u2,…,u n是未知函数,∂u1∂x ,∂u2∂x,…,∂u n∂x,∂u1∂y,∂u2∂y,…,∂u n∂y,…是未知函数的偏导数。
边界条件为了求解偏微分方程组,我们需要给出适当的边界条件。
边界条件是在给定的边界上给出未知函数或其导数的值。
常见的边界条件包括:Dirichlet边界条件、Neumann边界条件和Robin边界条件。
•Dirichlet边界条件:给定未知函数在边界上的值。
•Neumann边界条件:给定未知函数的法向导数在边界上的值。
•Robin边界条件:给定未知函数和其法向导数的线性组合在边界上的值。
数值方法由于一般情况下无法找到偏微分方程组的解析解,我们需要使用数值方法来求解。
常见的数值方法包括:有限差分法、有限元法和谱方法。
•有限差分法:将偏微分方程组转化为差分方程组,通过在网格上逼近导数来近似原方程。
Matlab 求解化工常微分方程和偏微分方程
x
7
8
9
10
x
y(1) Columns 1 through 13
计算值
0 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000 0.5500 0.6000 1.0000 1.0526 1.1109 1.1757 1.2479 1.3287 1.4195 1.5218 1.6378 1.7698 1.9210 2.0951 2.2970 Columns 14 through 26 0.6500 0.7000 0.7500 0.8000 0.8500 0.9000 0.9500 1.0000 1.0500 1.1000 1.1500 1.2000 1.2500 2.5329 2.8107 3.1411 3.5381 4.0206 4.6152 5.3598 6.3078 7.5435 9.1928 11.4614 14.7283 19.5991
Results by using ode45(): x y(1) 1.0e+003 * Columns 1 through 13 0 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100 0.1200 2.0000 0.8788 0.6133 0.4880 0.4181 0.3762 0.3498 0.3328 0.3218 0.3145 0.3097 0.3065 0.3043 Columns 14 through 18 0.1300 0.3029 0.1400 0.3019 0.1500 0.3013 0.1600 0.3009 0.1700 0.3006
matlab微分方程组的解法
一、引言1.1 MATLAB在微分方程组求解中的应用MATLAB作为一种强大的数学工具,被广泛应用于微分方程组的求解与模拟分析。
1.2 本文的研究目的和意义本文旨在探讨MATLAB在求解微分方程组方面的应用方法,帮助读者更好地理解和运用MATLAB进行微分方程组的解法,从而提高数学建模和工程仿真的效率与精度。
二、微分方程组的基本概念2.1 微分方程组的定义微分方程组是由多个未知函数及其偏导数构成的方程组。
常见的微分方程组可以分为线性微分方程组与非线性微分方程组。
2.2 微分方程组的求解方法求解微分方程组的方法包括解析解法、数值解法和符号解法。
而MATLAB在微分方程数值解法中具有独特的优势。
三、MATLAB在微分方程组求解中的基本操作3.1 MATLAB中微分方程组的表示在MATLAB中,微分方程组可以使用符号表达式或者函数形式表示,便于进行数值求解和仿真分析。
3.2 MATLAB中微分方程组的数值求解利用MATLAB中的ode45、ode23等求解微分方程组的函数,可以快速地求得微分方程组的数值解,并且可以灵活地控制求解的精度和速度。
3.3 MATLAB中微分方程组的图像绘制MATLAB提供了丰富的绘图函数,能够直观地展现微分方程组的数值解,帮助用户更直观地理解微分方程组的解法结果。
四、 MATLAB在微分方程组求解中的应用实例4.1 简单的线性微分方程组求解通过一个简单的线性微分方程组的求解实例,展示MATLAB在微分方程组求解中的基本操作和方法。
4.2 复杂的非线性微分方程组求解通过一个包含非线性项的微分方程组求解实例,展示MATLAB在处理复杂微分方程组时的应用能力。
五、MATLAB在微分方程组求解中的进阶应用5.1 高阶微分方程组的数值求解MATLAB可以利用符号运算工具箱对高阶微分方程组进行符号求解,也可以通过数值求解的方式得到高阶微分方程组的数值解。
5.2 特定约束条件下的微分方程组求解MATLAB可以通过引入特定的约束条件,对微分方程组进行求解,满足实际应用中的各种约束条件。
matlab偏微分方程组求解
matlab偏微分方程组求解(实用版)目录1.MATLAB 求解偏微分方程组的概述2.偏微分方程组的格式和类型3.MATLAB 求解偏微分方程组的方法4.常用的 MATLAB 求解偏微分方程组的工具箱5.MATLAB 求解偏微分方程组的步骤和示例正文一、MATLAB 求解偏微分方程组的概述偏微分方程组在数学、物理、工程等领域有着广泛的应用,而 MATLAB 作为一款强大的数学软件,提供了丰富的函数和工具箱来求解偏微分方程组。
本文将介绍如何使用 MATLAB 求解偏微分方程组。
二、偏微分方程组的格式和类型偏微分方程组的格式一般为:u/x = f(x, y, u)u/y = g(x, y, u)u/z = h(x, y, u)其中,u 是未知函数,x、y、z 是自变量,f、g、h 是已知函数。
偏微分方程组的类型可以根据未知函数的个数、方程的阶数、方程的形式等进行分类。
常见的类型有一阶方程组、二阶方程组、高阶方程组、线性方程组、非线性方程组等。
三、MATLAB 求解偏微分方程组的方法MATLAB 求解偏微分方程组的主要方法有以下几种:1.符号计算法:使用 MATLAB 内置的符号计算函数,如 sym、syms、subs 等,可以方便地表示和操作偏微分方程组。
2.数值计算法:使用 MATLAB 的数值计算函数,如 ode45、ode23、ode113 等,可以求解数值形式的偏微分方程组。
3.图形可视化法:使用 MATLAB 的图形函数,如 plot、contour 等,可以直观地显示偏微分方程组的解。
四、常用的 MATLAB 求解偏微分方程组的工具箱MATLAB 中有多个工具箱可以用于求解偏微分方程组,常用的有:1.ODE Toolbox:包含求解常微分方程(ODE)和偏微分方程(PDE)的函数。
2.PDE Toolbox:专门用于求解偏微分方程的工具箱,提供了丰富的PDE 求解器和可视化工具。
3.Finite Element Toolbox:用于求解有限元方法的偏微分方程组。
Matlab解微分方程(ODE+PDE)
常微分方程:1 ODE解算器简介(ode**)2 微分方程转换3 刚性/非刚性问题(Stiff/Nonstiff)4 隐式微分方程(IDE)5 微分代数方程(DAE)6 延迟微分方程(DDE)7 边值问题(BVP) 偏微分方程(PDEs)Matlab解法偏微分方程:1 一般偏微分方程组(PDEs)的命令行求解2 特殊偏微分方程(PDEs)的PDEtool求解3 陆君安《偏微分方程的MATLAB解法先来认识下常微分方程(ODE)初值问题解算器(solver)[T,Y,TE,YE,IE] = odesolver(odefun,tspan,y0,options)sxint = deval(sol,xint)Matlab中提供了以下解算器:输入参数:odefun:微分方程的Matlab语言描述函数,必须是函数句柄或者字符串,必须写成Matlab规范格式(也就是一阶显示微分方程组),这个具体在后面讲解tspan=[t0 tf]或者[t0,t1,…tf]:微分变量的范围,两者都是根据t0和tf的值自动选择步长,只是前者返回所有计算点的微分值,而后者只返回指定的点的微分值,一定要注意对于后者tspan必须严格单调,还有就是两者数据存储时使用的内存不同(明显前者多),其它没有任何本质的区别y0=[y(0),y’(0),y’’(0)…]:微分方程初值,依次输入所有状态变量的初值,什么是状态变量在后面有介绍options:微分优化参数,是一个结构体,使用odeset可以设置具体参数,详细内容查看帮助输出参数:T:时间列向量,也就是ode**计算微分方程的值的点Y:二维数组,第i列表示第i个状态变量的值,行数与T一致在求解ODE时,我们还会用到deval()函数,deval的作用就是通过结构体solution计算t 对应x值,和polyval之类的很相似!参数格式如下:sol:就是上次调用ode**函数得道的结构体解xint:需要计算的点,可以是标量或者向量,但是必须在tspan范围内该函数的好处就是如果我想知道t=t0时的y值,不需要重新使用ode计算,而直接使用上次计算的得道solution就可以[教程] 微分方程转换为一阶显示微分方程组方法好,上面我们把Matlab中的常微分方程(ODE)的解算器讲解的差不多了,下面我们就具体开始介绍如何使用上面的知识吧!现实总是残酷的,要得到就必须先付出,不可能所有的ODE一拿来就可以直接使用,因此,在使用ODE解算器之前,我们需要做的第一步,也是最重要的一步,借助状态变量将微分方程组化成Matlab可接受的标准形式(一阶显示常微分方程)!如果ODEs由一个或多个高阶微分方程给出,则我们应先将其变换成一阶显式常微分方程组!下面我们以两个高阶微分方程构成的ODEs为例介绍如何将之变换成一个一阶显式常微分方程组。
化工常微分方程和偏微分方程Matlab求解
数值解法在化工模拟中的应用和效果评估
数值解法:有限差 分法、有限元法、 边界元法等
应用实例:化学反 应动力学、传热传 质、流体力学等
效果评估:计算精 度、计算效率、稳 定性等
应用领域:化工过 程模拟、环境污染 控制、生物制药等
06
Matlab求解微分方程 的进阶技巧和注意事项
选择合适的数值解法
偏微分方程的数值解法稳定性分析
稳定性定义:数值解在长时间内保持其精度和准确性 稳定性条件:满足一定的条件,如Lipschitz条件、单调性条件等 稳定性分析方法:如Lyapunov稳定性分析、能量稳定性分析等 稳定性分析在Matlab中的应用:通过编写程序,实现对偏微分方程数值解法的稳定性分析
05
注意数值 解的稳定 性和收敛 性:避免 出现数值 不稳定或 发散的情 况
处理大规模和高阶的微分方程
利用Matlab的稀疏矩阵和矩阵分 解功能,提高求解效率
注意高阶微分方程的稳定性和收敛 性,选择合适的求解方法
添加标题
添加标题
添加标题
添加标题
使用Matlab的并行计算工具箱, 实现大规模问题的并行求解
化工常微分方程和偏微 分方程的Matlab求解
,a click to unlimited possibilities
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
Matlab求解 偏微分方程
02
常微分方程和 偏微分方程的 基本概念
05
化工中常微分 方程和偏微分 方程的应用实 例
03
Matlab求解 常微分方程
数值解法的稳定性分析
稳定性定义:数值解在迭代过程中保持稳定的能力 稳定性条件:满足一定条件,如Lipschitz条件等 稳定性分析方法:如误差分析、稳定性函数等 稳定性分析结果:影响数值解的精度和收敛速度
Matlab求解微分方程(组)及偏微分方程(组)
第四讲 Matlab 求解微分方程(组)理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为:X=dsolve(‘eqn1’,’eqn2’,…)函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解.注意,系统缺省的自变量为t2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为:[T,Y]=solver(odefun,tspan,y0)说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一.(2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解.(3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t 上的解,则令tspan 012[,,,]f t t t t =(要求是单调的).(4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.表1 Matlab中文本文件读写函数说明:ode23、ode45是极其常用的用来求解非刚性的标准形式的一阶微分方程(组)的初值问题的解的Matlab常用程序,其中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估计来调节步长,具有低等的精度.ode45则采用龙格-库塔4阶算法,用5阶公式作误差估计来调节步长,具有中等的精度.3.在matlab命令窗口、程序或函数中创建局部函数时,可用内联函数inline,inline函数形式相当于编写M函数文件,但不需编写M-文件就可以描述出某种数学关系.调用inline函数,只能由一个matlab表达式组成,并且只能返回一个变量,不允许[u,v]这种向量形式.因而,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应用inline函数,inline函数的一般形式为:FunctionName=inline(‘函数内容’, ‘所有自变量列表’)例如:(求解F(x)=x^2*cos(a*x)-b ,a,b是标量;x是向量)在命令窗口输入:Fofx=inline(‘x .^2*cos(a*x)-b’ , ‘x’,’a’,’b’); g= Fofx([pi/3 pi/3.5],4,1) 系统输出为:g=-1.5483 -1.7259注意:由于使用内联对象函数inline 不需要另外建立m 文件,所有使用比较方便,另外在使用ode45函数的时候,定义函数往往需要编辑一个m 文件来单独定义,这样不便于管理文件,这里可以使用inline 来定义函数. 二.实例介绍1.几个可以直接用Matlab 求微分方程精确解的实例 例1 求解微分方程2'2x y xy xe -+=程序:syms x y; y=dsolve(‘Dy+2*x*y=x*exp(-x^2)’,’x ’)例 2 求微分方程'0x xy y e +-=在初始条件(1)2y e =下的特解并画出解函数的图形.程序:syms x y; y=dsolve(‘x*Dy+y-exp(1)=0’,’y(1)=2*exp(1)’,’x ’);ezplot(y)例 3 求解微分方程组530tdx x y e dtdy x y dt⎧++=⎪⎪⎨⎪--=⎪⎩在初始条件00|1,|0t t x y ====下的特解并画出解函数的图形.程序:syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y)ezplot(x,y,[0,1.3]);axis auto2.用ode23、ode45等求解非刚性标准形式的一阶微分方程(组)的初值问题的数值解(近似解)例 4 求解微分方程初值问题2222(0)1dy y x xdx y ⎧=-++⎪⎨⎪=⎩的数值解,求解范围为区间[0,0.5].程序:fun=inline('-2*y+2*x^2+2*x','x','y');[x,y]=ode23(fun,[0,0.5],1); plot(x,y,'o-')例 5 求解微分方程22'2(1)0,(0)1,(0)0d y dyy y y y dt dtμ--+===的解,并画出解的图形.分析:这是一个二阶非线性方程,我们可以通过变换,将二阶方程化为一阶方程组求解.令12,,7dyx y x dtμ===,则 121221212,(0)17(1),(0)0dx x x dtdx x x x x dt⎧==⎪⎪⎨⎪=--=⎪⎩ 编写M-文件vdp.m function fy=vdp(t,x)fy=[x(2);7*(1-x(1)^2)*x(2)-x(1)]; end在Matlab 命令窗口编写程序 y0=[1;0][t,x]=ode45(@vdp,[0,40],y0);或[t,x]=ode45('vdp',[0,40],y0); y=x(:,1);dy=x(:,2); plot(t,y,t,dy)练习与思考:M-文件vdp.m 改写成inline 函数程序? 3.用Euler 折线法求解Euler 折线法求解的基本思想是将微分方程初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩ 化成一个代数(差分)方程,主要步骤是用差商()()y x h y x h +-替代微商dydx,于是00()()(,())()k k k k y x h y x f x y x h y y x +-⎧=⎪⎨⎪=⎩记1,(),k k k k x x h y y x +=+=从而1(),k k y y x h +=+于是0011(),,0,1,2,,1(,).k k k k k k y y x x x h k n y y hf x y ++=⎧⎪=+=-⎨⎪=+⎩例 6 用Euler 折线法求解微分方程初值问题22(0)1dyx y dxy y ⎧=+⎪⎨⎪=⎩的数值解(步长h 取0.4),求解范围为区间[0,2].分析:本问题的差分方程为00110,1,0.4,0,1,2,,1(,).k k k k k k x y h x x h k n y y hf x y ++===⎧⎪=+=-⎨⎪=+⎩程序:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});%subs ,替换函数 x=x+h; szj=[szj;x,y]; end >>szj>> plot(szj(:,1),szj(:,2))说明:替换函数subs 例如:输入subs(a+b,a,4) 意思就是把a 用4替换掉,返回 4+b ,也可以替换多个变量,例如:subs(cos(a)+sin(b),{a,b},[sym('alpha'),2])分别用字符alpha 替换a 和2替换b ,返回 cos(alpha)+sin(2)特别说明:本问题可进一步利用四阶Runge-Kutta 法求解,Euler 折线法实际上就是一阶Runge-Kutta 法,Runge-Kutta 法的迭代公式为001112341213243(),,(22),6(,),0,1,2,,1(,),22(,),22(,).k k k k k k k k k k k k y y x x x h h y y L L L L L f x y k n h h L f x y L h h L f x y L L f x h y hL ++=⎧⎪=+⎪⎪=++++⎪⎪=⎪=-⎨⎪=++⎪⎪⎪=++⎪⎪=++⎩相应的Matlab 程序为:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1l1=subs(f, {'x','y'},{x,y});替换函数 l2=subs(f, {'x','y'},{x+h/2,y+l1*h/2}); l3=subs(f, {'x','y'},{x+h/2,y+l2*h/2}); l4=subs(f, {'x','y'},{x+h,y+l3*h}); y=y+h*(l1+2*l2+2*l3+l4)/6; x=x+h; szj=[szj;x,y]; end>>szj>> plot(szj(:,1),szj(:,2))练习与思考:(1)ode45求解问题并比较差异. (2)利用Matlab 求微分方程(4)(3)''20y y y -+=的解.(3)求解微分方程''2',2(1)0,030,(0)1,(0)0y y y y x y y --+=≤≤==的特解. (4)利用Matlab 求微分方程初值问题2''''00(1)2,|1,|3x x x y xy y y ==+===的解. 提醒:尽可能多的考虑解法 三.微分方程转换为一阶显式微分方程组Matlab 微分方程解算器只能求解标准形式的一阶显式微分方程(组)问题,因此在使用ODE 解算器之前,我们需要做的第一步,也是最重要的一步就是借助状态变量将微分方程(组)化成Matlab 可接受的标准形式.当然,如果ODEs 由一个或多个高阶微分方程给出,则我们应先将它变换成一阶显式常微分方程组.下面我们以两个高阶微分方程组构成的ODEs 为例介绍如何将它变换成一个一阶显式微分方程组.Step 1 将微分方程的最高阶变量移到等式左边,其它移到右边,并按阶次从低到高排列.形式为:()'''(1)'''(1)()'''(1)'''(1)(,,,,,,,,,,)(,,,,,,,,,,)m m n n m n x f t x x x x y y y y y g t x x x x y y y y ----⎧=⎨=⎩Step 2 为每一阶微分式选择状态变量,最高阶除外'''(1)123'''(1)123,,,,,,,,,m m n m m m m n x x x x x x x x x y x y x y x y--++++========注意:ODEs 中所有是因变量的最高阶次之和就是需要的状态变量的个数,最高阶的微分式不需要给它状态变量.Step 3 根据选用的状态变量,写出所有状态变量的一阶微分表达式''''122334123''12123,,,,(,,,,,),,(,,,,,)m m n m m m nm n x x x x x x x f t x x x x xx xg t x x x x +++++======练习与思考:(1)求解微分方程组**'''3312*'''3312()()22x x x y x r r y y y x y r r μμμμμμ⎧+-=+--⎪⎪⎨⎪=+--⎪⎩其中2r =1r =*1,μμ=-1/82.45,μ=(0) 1.2,x =(0)0,y ='(0)0,x ='(0) 1.049355751y =-(2)求解隐式微分方程组''''''''''''2235x y x y x y x y xy y ⎧+=⎨++-=⎩ 提示:使用符号计算函数solve 求'''',x y ,然后利用求解微分方程的方法 四.偏微分方程解法Matlab 提供了两种方法解决PDE 问题,一是使用pdepe 函数,它可以求解一般的PDEs,具有较大的通用性,但只支持命令形式调用;二是使用PDE 工具箱,可以求解特殊PDE 问题,PDEtoll 有较大的局限性,比如只能求解二阶PDE 问题,并且不能解决片微分方程组,但是它提供了GUI 界面,从复杂的编程中解脱出来,同时还可以通过File —>Save As 直接生成M 代码.1.一般偏微分方程(组)的求解(1)Matlab 提供的pdepe 函数,可以直接求解一般偏微分方程(组),它的调用格式为:sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)@pdefun 是PDE 的问题描述函数,它必须换成标准形式:(,,)[(,,,)](,,,)m m u u u uc x t x x f x t u s x t u x t x x x-∂∂∂∂∂=+∂∂∂∂∂ 这样,PDE 就可以编写入口函数:[c,f,s]=pdefun(x,t,u,du),m,x,t 对应于式中相关参数,du 是u 的一阶导数,由给定的输入变量可表示出c,f,s 这三个函数.@pdebc 是PDE 的边界条件描述函数,它必须化为形式:(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂==∂ 于是边值条件可以编写函数描述为:[pa,qa,pb,qb]=pdebc(x,t,u,du),其中a 表示下边界,b 表示上边界.@pdeic 是PDE 的初值条件,必须化为形式:00(,)u x t u =,故可以使用函数描述为:u0=pdeic(x)sol 是一个三维数组,sol(:,:,i)表示i u 的解,换句话说,k u 对应x(i)和t(j)时的解为sol(i,j,k),通过sol ,我们可以使用pdeval 函数直接计算某个点的函数值.(2)实例说明 求解偏微分2111222221220.024()0.17()u u F u u t xu u F u u tx ⎧∂∂=--⎪⎪∂∂⎨∂∂⎪=+-⎪∂∂⎩ 其中, 5.7311.46()x x F x e e -=-且满足初始条件12(,0)1,(,0)0u x u x ==及边界条件1(0,)0,u t x ∂=∂221(0,)0,(1,)1,(1,)0uu t u t t x∂===∂ 解:(1)对照给出的偏微分方程和pdepe 函数求解的标准形式,原方程改写为111221220.024()1.*()10.17u u F u u x u F u u u t x x ∂⎡⎤⎢⎥--⎡⎤⎡⎤⎡⎤∂∂∂=+⎢⎥⎢⎥⎢⎥⎢⎥-∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦可见1121220.024()10,,,()10.17u F u u x m c f s F u u u x ∂⎡⎤⎢⎥--⎡⎤⎡⎤∂====⎢⎥⎢⎥⎢⎥-∂⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦ %目标PDE 函数function [c,f,s]=pdefun(x,t,u,du) c=[1;1];f=[0.024*du(1);0.17*du(2)]; temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp)) end(2)边界条件改写为:下边界2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦上边界1110.*000u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦%边界条件函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) pa=[0;ua(2)]; qa=[1;0]; pb=[ub(1)-1;0]; qb=[0;1]; end(3)初值条件改写为:1210u u ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦%初值条件函数 function u0=pdeic(x) u0=[1;0]; end(4)编写主调函数 clc x=0:0.05:1; t=0:0.05:2; m=0;sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t); subplot(2,1,1) surf(x,t,sol(:,:,1)) subplot(2,1,2) surf(x,t,sol(:,:,2))练习与思考: This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.2()u u t x xπ∂∂∂=∂∂∂ This equation holds on an interval 01x ≤≤ for times 0t ≥. The PDE satisfies the initial condition (,0)sin u x x π= and boundary conditions(0,)0;(1,)0t uu t e t xπ-∂=+=∂ 2.PDEtool 求解偏微分方程(1)PDEtool (GUI )求解偏微分方程的一般步骤在Matlab 命令窗口输入pdetool ,回车,PDE 工具箱的图形用户界面(GUI)系统就启动了.从定义一个偏微分方程问题到完成解偏微分方程的定解,整个过程大致可以分为六个阶段Step 1 “Draw 模式”绘制平面有界区域Ω,通过公式把Matlab 系统提供的实体模型:矩形、圆、椭圆和多边形,组合起来,生成需要的平面区域.Step 2 “Boundary 模式”定义边界,声明不同边界段的边界条件.Step 3 “PDE 模式”定义偏微分方程,确定方程类型和方程系数c,a,f,d ,根据具体情况,还可以在不同子区域声明不同系数.Step 4 “Mesh 模式”网格化区域Ω,可以控制自动生成网格的参数,对生成的网格进行多次细化,使网格分割更细更合理.Step 5 “Solve 模式”解偏微分方程,对于椭圆型方程可以激活并控制非线性自适应解题器来处理非线性方程;对于抛物线型方程和双曲型方程,设置初始边界条件后可以求出给定时刻t 的解;对于特征值问题,可以求出给定区间上的特征值.求解完成后,可以返回到Step 4,对网格进一步细化,进行再次求解.Step 6 “View 模式”计算结果的可视化,可以通过设置系统提供的对话框,显示所求的解的表面图、网格图、等高线图和箭头梯形图.对于抛物线型和双曲线型问题的解还可以进行动画演示.(2)实例说明用法求解一个正方形区域上的特征值问题:12|0u u u u λ∂Ω⎧-∆-=⎪⎨⎪=⎩ 正方形区域为:11,1 1.x x -≤≤-≤≤(1)使用PDE 工具箱打开GUI 求解方程(2)进入Draw 模式,绘制一个矩形,然后双击矩形,在弹出的对话框中设置Left=-1,Bottom=-1,Width=2,Height=2,确认并关闭对话框(3)进入Boundary 模式,边界条件采用Dirichlet 条件的默认值(4)进入PDE 模式,单击工具栏PDE 按钮,在弹出的对话框中方程类型选择Eigenmodes,参数设置c=1,a=-1/2,d=1,确认后关闭对话框(5)单击工具栏的 按钮,对正方形区域进行初始网格剖分,然后再对网格进一步细化剖分一次(6)点开solve菜单,单击Parameters选项,在弹出的对话框中设置特征值区域为[-20,20](7)单击Plot菜单的Parameters项,在弹出的对话框中选中Color、Height(3-D plot)和show mesh项,然后单击Done确认(8)单击工具栏的“=”按钮,开始求解。
matlab 求解偏微分方程
matlab 求解偏微分方程使用MATLAB求解偏微分方程摘要:偏微分方程(partial differential equation, PDE)是数学中重要的一类方程,广泛应用于物理、工程、经济、生物等领域。
MATLAB 是一种强大的数值计算软件,提供了丰富的工具箱和函数,可以用来求解各种类型的偏微分方程。
本文将介绍如何使用MATLAB来求解偏微分方程,并通过具体案例进行演示。
引言:偏微分方程是描述多变量函数的方程,其中包含了函数的偏导数。
一般来说,偏微分方程可以分为椭圆型方程、双曲型方程和抛物型方程三类。
求解偏微分方程的方法有很多,其中数值方法是最常用的一种。
MATLAB作为一种强大的数值计算软件,提供了丰富的工具箱和函数,可以用来求解各种类型的偏微分方程。
方法:MATLAB提供了多种求解偏微分方程的函数和工具箱,包括pdepe、pdetoolbox和pde模块等。
其中,pdepe函数是用来求解带有初始条件和边界条件的常微分方程组的函数,可以用来求解一维和二维的偏微分方程。
pdepe函数使用有限差分法或有限元法来离散化偏微分方程,然后通过求解离散化后的常微分方程组得到最终的解。
案例演示:考虑一维热传导方程的求解,偏微分方程为:∂u/∂t = α * ∂^2u/∂x^2其中,u(x,t)是温度分布函数,α是热扩散系数。
假设初始条件为u(x,0)=sin(pi*x),边界条件为u(0,t)=0和u(1,t)=0。
我们需要定义偏微分方程和边界条件。
在MATLAB中,可以使用匿名函数来定义偏微分方程和边界条件。
然后,我们使用pdepe函数求解偏微分方程。
```matlabfunction [c,f,s] = pde(x,t,u,DuDx)c = 1;f = DuDx;s = 0;endfunction u0 = uinitial(x)u0 = sin(pi*x);endfunction [pl,ql,pr,qr] = uboundary(xl,ul,xr,ur,t)pl = ul;ql = 0;pr = ur;qr = 0;endx = linspace(0,1,100);t = linspace(0,0.1,10);m = 0;sol = pdepe(m,@pde,@uinitial,@uboundary,x,t);u = sol(:,:,1);surf(x,t,u);xlabel('Distance x');ylabel('Time t');zlabel('Temperature u');```在上述代码中,我们首先定义了偏微分方程函数pde,其中c、f和s分别表示系数c、f和s。
matlab解偏微分方程组
matlab解偏微分方程组使用Matlab解偏微分方程组在科学与工程领域,偏微分方程组是描述自然现象和物理过程的重要数学工具。
解偏微分方程组是求解这些现象和过程的数值模拟方法之一。
Matlab作为一种高级的数值计算软件,提供了强大的功能来解决偏微分方程组。
本文将介绍如何使用Matlab来解偏微分方程组,并给出实例说明。
一、Matlab解偏微分方程组的基本原理Matlab是一种基于矩阵运算的高级数值计算软件,它提供了丰富的函数和工具箱来解决数学问题。
在解偏微分方程组时,Matlab主要采用有限差分法、有限元法和谱方法等数值方法。
这些方法将偏微分方程转化为离散的代数方程组,然后通过求解代数方程组得到数值解。
二、使用Matlab解偏微分方程组的步骤1. 定义偏微分方程组:首先需要将偏微分方程组转化为Matlab可以处理的形式。
通常将自变量和因变量离散化,并用矩阵和向量表示。
2. 离散化:将偏微分方程中的连续变量转化为离散变量,通常采用有限差分法或有限元法。
有限差分法将偏微分方程中的导数用差商表示,有限元法则将区域划分为有限个小单元。
3. 构建代数方程组:根据离散化后的方程,可以得到相应的代数方程组。
这一步需要根据边界条件和初始条件来确定代数方程的边界值和初始值。
4. 求解代数方程组:利用Matlab提供的求解函数,如\texttt{fsolve}或\texttt{ode45}等,求解代数方程组得到数值解。
5. 可视化结果:使用Matlab的绘图函数,如\texttt{plot}或\texttt{surf}等,将数值解可视化展示出来。
这可以帮助我们更好地理解解的特性和趋势。
三、一个简单的例子为了更好地理解如何使用Matlab解偏微分方程组,我们将以一个简单的热传导问题为例。
考虑一个一维热传导方程:$$\frac{{\partial u}}{{\partial t}} = \frac{{\partial^2 u}}{{\partial x^2}}$$其中$u(x,t)$是温度分布,$x$是空间变量,$t$是时间变量。
matlab求微分方程组的解析解
matlab求微分方程组的解析解摘要:I.引言- 介绍微分方程组及其在科学和工程中的应用- 说明求解微分方程组的解析解的重要性II.MATLAB求解微分方程组的基本步骤- 准备微分方程组- 初始化参数- 选择适当的求解方法- 检查和分析解III.MATLAB求解微分方程组的常用函数- ode45: 使用RK方法求解常微分方程组- ode23: 使用二阶龙格-库塔方法求解常微分方程组- pdsolve: 求解偏微分方程组IV.求解微分方程组的示例- 常微分方程组示例- 偏微分方程组示例V.结论- 总结MATLAB求解微分方程组的方法和函数- 强调解析解的重要性及其在实际问题中的应用正文:微分方程组广泛应用于科学和工程领域,如物理、化学、生物学、经济学等。
求解微分方程组的解析解有助于我们深入理解这些领域的规律和特性。
MATLAB作为一种强大的数学计算工具,可以方便地求解微分方程组。
本文将介绍MATLAB求解微分方程组的解析解的基本方法和常用函数。
首先,我们简要回顾一下MATLAB求解微分方程组的基本步骤。
1) 准备微分方程组:根据实际问题建立微分方程组,确定其数学模型。
2) 初始化参数:设定求解区间、初始值和边界条件等参数。
3) 选择适当的求解方法:根据微分方程组的类型和参数特点选择合适的求解函数。
4) 检查和分析解:对求得的解进行检查,确保其合理性和准确性。
MATLAB提供了丰富的求解微分方程组的函数。
1) ode45:使用RK方法求解常微分方程组。
该函数具有较高的求解精度和稳定性,适用于大多数常微分方程组问题。
2) ode23:使用二阶龙格-库塔方法求解常微分方程组。
该函数在某些情况下具有较好的性能,尤其适用于具有对称性的微分方程组。
3) pdsolve:求解偏微分方程组。
该函数可以处理多变量、多区域和多时间的偏微分方程组问题。
为了更好地理解MATLAB求解微分方程组的方法和函数,我们来看两个示例。
MATLAB偏微分方程求解课件
step4:生成使用有限元方法求解方程
所需的栅格
• 点击工具栏的第8/9 个按钮,对求解域生成 栅格,多次点击可以在原来基础上继续细化 栅格,直到自己觉得满意
• 为止,当然可以通过【Mesh】主菜单进行 精确控制
第四十一页
• step5:求解方程 点解工具栏的第10 个按钮“=”【求解方程】 step6:求解结果绘图
第二十四页
•
第二十五页
•
第二十六页
偏微分方程边界条件的描述
• Dirichlet(狄利克莱)条件 • Neumann(纽曼)条件
第二十七页
•
第二十八页
•
第二十九页
求解实例
•
第三十页
• 【解】由给定的PDE,可以得出 d=1,c=1,a=2,f=10
第三十一页
step1:点击工具栏的【PDE】按钮,如下输入PDE的参 数,注意选择Hyperbolic
• subplot(212) • surf(x,t,sol(:,:,2))%sol(:,:,i)表示ui的解
• title('The Solution of u_2')
• xlabel('X')
• ylabel('T')
• zlabel('U')
第十七页
第十八页
PDEtool求解特殊PDE问题
• MATLAB的偏微分工具箱(PDE toolbox)可 以比较规范的求解各种常见的二阶偏微分方 程(特殊二阶的PDE)
第三页
MATLAB解偏微分方程
• MATLAB提供了两种方法解决PDE 问题:① pdepe()函数,它可以求解一般的PDEs,具有较大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 Matlab 求解微分方程(组)理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为:X=dsolve(‘eqn1’,’eqn2’,…)函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解.注意,系统缺省的自变量为t2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为:[T,Y]=solver(odefun,tspan,y0)说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一.(2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解.(3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t 上的解,则令tspan 012[,,,]f t t t t =(要单调的).(4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.表1 Matlab中文本文件读写函数说明:ode23、ode45是极其常用的用来求解非刚性的标准形式的一阶微分方程(组)的初值问题的解的Matlab常用程序,其中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估计来调节步长,具有低等的精度.ode45则采用龙格-库塔4阶算法,用5阶公式作误差估计来调节步长,具有中等的精度.3.在matlab命令窗口、程序或函数中创建局部函数时,可用联函数inline,inline函数形式相当于编写M函数文件,但不需编写M-文件就可以描述出某种数学关系.调用inline函数,只能由一个matlab表达式组成,并且只能返回一个变量,不允许[u,v]这种向量形式.因而,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应用inline函数,inline函数的一般形式为:FunctionName=inline(‘函数容’, ‘所有自变量列表’)例如:(求解F(x)=x^2*cos(a*x)-b ,a,b是标量;x是向量)在命令窗口输入:Fofx=inline(‘x .^2*cos(a*x)-b’ , ‘x’,’a’,’b’); g= Fofx([pi/3 pi/3.5],4,1) 系统输出为:g=-1.5483 -1.7259注意:由于使用联对象函数inline 不需要另外建立m 文件,所有使用比较方便,另外在使用ode45函数的时候,定义函数往往需要编辑一个m 文件来单独定义,这样不便于管理文件,这里可以使用inline 来定义函数. 二.实例介绍1.几个可以直接用Matlab 求微分方程精确解的实例 例1 求解微分方程2'2x y xy xe -+=程序:syms x y; y=dsolve(‘Dy+2*x*y=x*exp(-x^2)’,’x ’)例 2 求微分方程'0x xy y e +-=在初始条件(1)2y e =下的特解并画出解函数的图形.程序:syms x y; y=dsolve(‘x*Dy+y-exp(1)=0’,’y(1)=2*exp(1)’,’x ’);ezplot(y)例 3 求解微分方程组530tdx x y e dtdy x y dt⎧++=⎪⎪⎨⎪--=⎪⎩在初始条件00|1,|0t t x y ====下的特解并画出解函数的图形.程序:syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y)ezplot(x,y,[0,1.3]);axis auto2.用ode23、ode45等求解非刚性标准形式的一阶微分方程(组)的初值问题的数值解(近似解)例 4 求解微分方程初值问题2222(0)1dy y x xdx y ⎧=-++⎪⎨⎪=⎩的数值解,求解围为区间[0,0.5].程序:fun=inline('-2*y+2*x^2+2*x','x','y');[x,y]=ode23(fun,[0,0.5],1); plot(x,y,'o-')例 5 求解微分方程22'2(1)0,(0)1,(0)0d y dyy y y y dt dtμ--+===的解,并画出解的图形.分析:这是一个二阶非线性方程,我们可以通过变换,将二阶方程化为一阶方程组求解.令12,,7dyx y x dtμ===,则 121221212,(0)17(1),(0)0dx x x dtdx x x x x dt⎧==⎪⎪⎨⎪=--=⎪⎩ 编写M-文件vdp.m function fy=vdp(t,x)fy=[x(2);7*(1-x(1)^2)*x(2)-x(1)]; end在Matlab 命令窗口编写程序 y0=[1;0][t,x]=ode45(vdp,[0,40],y0);或[t,x]=ode45('vdp',[0,40],y0); y=x(:,1);dy=x(:,2); plot(t,y,t,dy)练习与思考:M-文件vdp.m 改写成inline 函数程序? 3.用Euler 折线法求解Euler 折线法求解的基本思想是将微分方程初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩ 化成一个代数(差分)方程,主要步骤是用差商()()y x h y x h +-替代微商dydx,于是00()()(,())()k k k k y x h y x f x y x h y y x +-⎧=⎪⎨⎪=⎩记1,(),k k k k x x h y y x +=+=从而1(),k k y y x h +=+于是0011(),,0,1,2,,1(,).k k k k k k y y x x x h k n y y hf x y ++=⎧⎪=+=-⎨⎪=+⎩例 6 用Euler 折线法求解微分方程初值问题22(0)1dyx y dxy y ⎧=+⎪⎨⎪=⎩的数值解(步长h 取0.4),求解围为区间[0,2].分析:本问题的差分方程为00110,1,0.4,0,1,2,,1(,).k k k k k k x y h x x h k n y y hf x y ++===⎧⎪=+=-⎨⎪=+⎩程序:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});%subs ,替换函数 x=x+h; szj=[szj;x,y]; end >>szj>> plot(szj(:,1),szj(:,2))说明:替换函数subs 例如:输入subs(a+b,a,4) 意思就是把a 用4替换掉,返回 4+b ,也可以替换多个变量,例如:subs(cos(a)+sin(b),{a,b},[sym('alpha'),2])分别用字符alpha 替换a 和2替换b ,返回 cos(alpha)+sin(2)特别说明:本问题可进一步利用四阶Runge-Kutta 法求解,Euler 折线法实际上就是一阶Runge-Kutta 法,Runge-Kutta 法的迭代公式为001112341213243(),,(22),6(,),0,1,2,,1(,),22(,),22(,).k k k k k k k k k k k k y y x x x h h y y L L L L L f x y k n h h L f x y L h h L f x y L L f x h y hL ++=⎧⎪=+⎪⎪=++++⎪⎪=⎪=-⎨⎪=++⎪⎪⎪=++⎪⎪=++⎩相应的Matlab 程序为:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1l1=subs(f, {'x','y'},{x,y});替换函数 l2=subs(f, {'x','y'},{x+h/2,y+l1*h/2}); l3=subs(f, {'x','y'},{x+h/2,y+l2*h/2}); l4=subs(f, {'x','y'},{x+h,y+l3*h}); y=y+h*(l1+2*l2+2*l3+l4)/6; x=x+h; szj=[szj;x,y]; end>>szj>> plot(szj(:,1),szj(:,2))练习与思考:(1)ode45求解问题并比较差异. (2)利用Matlab 求微分方程(4)(3)''20y y y -+=的解.(3)求解微分方程''2',2(1)0,030,(0)1,(0)0y y y y x y y --+=≤≤==的特解. (4)利用Matlab 求微分方程初值问题2''''00(1)2,|1,|3x x x y xy y y ==+===的解. 提醒:尽可能多的考虑解法 三.微分方程转换为一阶显式微分方程组Matlab 微分方程解算器只能求解标准形式的一阶显式微分方程(组)问题,因此在使用ODE 解算器之前,我们需要做的第一步,也是最重要的一步就是借助状态变量将微分方程(组)化成Matlab 可接受的标准形式.当然,如果ODEs 由一个或多个高阶微分方程给出,则我们应先将它变换成一阶显式常微分方程组.下面我们以两个高阶微分方程组构成的ODEs 为例介绍如何将它变换成一个一阶显式微分方程组.Step 1 将微分方程的最高阶变量移到等式左边,其它移到右边,并按阶次从低到高排列.形式为:()'''(1)'''(1)()'''(1)'''(1)(,,,,,,,,,,)(,,,,,,,,,,)m m n n m n x f t x x x x y y y y y g t x x x x y y y y ----⎧=⎨=⎩Step 2 为每一阶微分式选择状态变量,最高阶除外'''(1)123'''(1)123,,,,,,,,,m m n m m m m n x x x x x x x x x y x y x y x y--++++========注意:ODEs 中所有是因变量的最高阶次之和就是需要的状态变量的个数,最高阶的微分式不需要给它状态变量.Step 3 根据选用的状态变量,写出所有状态变量的一阶微分表达式''''122334123''12123,,,,(,,,,,),,(,,,,,)m m n m m m nm n x x x x x x x f t x x x x xx xg t x x x x +++++======练习与思考:(1)求解微分方程组**'''3312*'''3312()()22x x x y x r r y y y x y r r μμμμμμ⎧+-=+--⎪⎪⎨⎪=+--⎪⎩其中2r =1r =*1,μμ=-1/82.45,μ=(0) 1.2,x =(0)0,y ='(0)0,x ='(0) 1.049355751y =-(2)求解隐式微分方程组''''''''''''2235x y x y x y x y xy y ⎧+=⎨++-=⎩ 提示:使用符号计算函数solve 求'''',x y ,然后利用求解微分方程的方法 四.偏微分方程解法Matlab 提供了两种方法解决PDE 问题,一是使用pdepe 函数,它可以求解一般的PDEs,具有较大的通用性,但只支持命令形式调用;二是使用PDE 工具箱,可以求解特殊PDE 问题,PDEtoll 有较大的局限性,比如只能求解二阶PDE 问题,并且不能解决片微分方程组,但是它提供了GUI 界面,从复杂的编程中解脱出来,同时还可以通过File —>Save As 直接生成M 代码.1.一般偏微分方程(组)的求解(1)Matlab 提供的pdepe 函数,可以直接求解一般偏微分方程(组),它的调用格式为:sol=pdepe(m,pdefun,pdeic,pdebc,x,t)pdefun 是PDE 的问题描述函数,它必须换成标准形式:(,,)[(,,,)](,,,)m m u u u uc x t x x f x t u s x t u x t x x x-∂∂∂∂∂=+∂∂∂∂∂ 这样,PDE 就可以编写入口函数:[c,f,s]=pdefun(x,t,u,du),m,x,t 对应于式中相关参数,du 是u 的一阶导数,由给定的输入变量可表示出c,f,s 这三个函数.pdebc 是PDE 的边界条件描述函数,它必须化为形式:(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂==∂ 于是边值条件可以编写函数描述为:[pa,qa,pb,qb]=pdebc(x,t,u,du),其中a 表示下边界,b 表示上边界.pdeic 是PDE 的初值条件,必须化为形式:00(,)u x t u =,故可以使用函数描述为:u0=pdeic(x)sol 是一个三维数组,sol(:,:,i)表示i u 的解,换句话说,k u 对应x(i)和t(j)时的解为sol(i,j,k),通过sol ,我们可以使用pdeval 函数直接计算某个点的函数值.(2)实例说明 求解偏微分2111222221220.024()0.17()u u F u u t xu u F u u tx ⎧∂∂=--⎪⎪∂∂⎨∂∂⎪=+-⎪∂∂⎩ 其中, 5.7311.46()x x F x e e -=-且满足初始条件12(,0)1,(,0)0u x u x ==及边界条件1(0,)0,u t x ∂=∂221(0,)0,(1,)1,(1,)0uu t u t t x∂===∂ 解:(1)对照给出的偏微分方程和pdepe 函数求解的标准形式,原方程改写为111221220.024()1.*()10.17u u F u u x u F u u u t x x ∂⎡⎤⎢⎥--⎡⎤⎡⎤⎡⎤∂∂∂=+⎢⎥⎢⎥⎢⎥⎢⎥-∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦可见1121220.024()10,,,()10.17u F u u x m c f s F u u u x ∂⎡⎤⎢⎥--⎡⎤⎡⎤∂====⎢⎥⎢⎥⎢⎥-∂⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦ %目标PDE 函数function [c,f,s]=pdefun(x,t,u,du) c=[1;1];f=[0.024*du(1);0.17*du(2)]; temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp)) end(2)边界条件改写为:下边界2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦上边界1110.*000u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦%边界条件函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) pa=[0;ua(2)]; qa=[1;0]; pb=[ub(1)-1;0]; qb=[0;1]; end(3)初值条件改写为:1210u u ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦%初值条件函数 function u0=pdeic(x) u0=[1;0]; end(4)编写主调函数 clc x=0:0.05:1; t=0:0.05:2; m=0;sol=pdepe(m,pdefun,pdeic,pdebc,x,t); subplot(2,1,1) surf(x,t,sol(:,:,1)) subplot(2,1,2) surf(x,t,sol(:,:,2))练习与思考: This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.2()u u t x xπ∂∂∂=∂∂∂ This equation holds on an interval 01x ≤≤ for times 0t ≥. The PDE satisfies the initial condition (,0)sin u x x π= and boundary conditions(0,)0;(1,)0t uu t e t xπ-∂=+=∂ 2.PDEtool 求解偏微分方程(1)PDEtool (GUI )求解偏微分方程的一般步骤在Matlab 命令窗口输入pdetool ,回车,PDE 工具箱的图形用户界面(GUI)系统就启动了.从定义一个偏微分方程问题到完成解偏微分方程的定解,整个过程大致可以分为六个阶段Step 1 “Draw 模式”绘制平面有界区域Ω,通过公式把Matlab 系统提供的实体模型:矩形、圆、椭圆和多边形,组合起来,生成需要的平面区域.Step 2 “Boundary 模式”定义边界,声明不同边界段的边界条件.Step 3 “PDE 模式”定义偏微分方程,确定方程类型和方程系数c,a,f,d ,根据具体情况,还可以在不同子区域声明不同系数.Step 4 “Mesh 模式”网格化区域Ω,可以控制自动生成网格的参数,对生成的网格进行多次细化,使网格分割更细更合理.Step 5 “Solve 模式”解偏微分方程,对于椭圆型方程可以激活并控制非线性自适应解题器来处理非线性方程;对于抛物线型方程和双曲型方程,设置初始边界条件后可以求出给定时刻t 的解;对于特征值问题,可以求出给定区间上的特征值.求解完成后,可以返回到Step 4,对网格进一步细化,进行再次求解.Step 6 “View 模式”计算结果的可视化,可以通过设置系统提供的对话框,显示所求的解的表面图、网格图、等高线图和箭头梯形图.对于抛物线型和双曲线型问题的解还可以进行动画演示.(2)实例说明用法求解一个正方形区域上的特征值问题:12|0u u u u λ∂Ω⎧-∆-=⎪⎨⎪=⎩ 正方形区域为:11,1 1.x x -≤≤-≤≤(1)使用PDE 工具箱打开GUI 求解方程(2)进入Draw 模式,绘制一个矩形,然后双击矩形,在弹出的对话框中设置Left=-1,Bottom=-1,Width=2,Height=2,确认并关闭对话框(3)进入Boundary 模式,边界条件采用Dirichlet 条件的默认值(4)进入PDE 模式,单击工具栏PDE 按钮,在弹出的对话框中方程类型选择Eigenmodes,参数设置c=1,a=-1/2,d=1,确认后关闭对话框(5)单击工具栏的 按钮,对正方形区域进行初始网格剖分,然后再对网格进一步细化剖分一次(6)点开solve菜单,单击Parameters选项,在弹出的对话框中设置特征值区域为[-20,20](7)单击Plot菜单的Parameters项,在弹出的对话框中选中Color、Height(3-D plot)和show mesh项,然后单击Done确认(8)单击工具栏的“=”按钮,开始求解。