中考数学选择题专练,2020中考数学经典选择题及答案(共100道)
2020年中考数学三角形专题练习(含答案)
2020年中考数学三角形专题练习【名师精选全国真题,值得下载练习】一.选择题(每题3分,共30分)1.如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边中线的交点B.三条角平分线的交点C.三边高的交点D.三边垂直平分线的交点2.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2 B.2.5 C.3 D.43.如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AC,则∠BCD的度数等于()A.20°B.30°C.40°D.50°4.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°5.适合下列条件的△ABC中,直角三角形的个数为()(1)a=b,∠A=45°(2)∠A=32°,∠B=58°,(3)a=5,b=12,c=13,(4)a=52,b=122,c=132,A.1个B.2个C.3个D.4个6.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=40°,∠P=38°,则∠C的度数为()A.36°B.39°C.38°D.40°7.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a,最大等边三角形的边长为b,则a与b的关系为()A.b=3a B.b=5a C.b=a D.b=a8.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36 B.24 C.18 D.169.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE.分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH =45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④10.如图,在Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P 作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=P A;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二.填空题(每题3分,共30分)11.如图,△ABC为等边三角形,D、E分別是AC、BC上的点,且AD=CE,AE与BD 相交于点P,BF⊥AE于点F.若PF=4,PD=1,则AE的长为.12.已知等腰△ABC中,顶角∠A为36°,BD平分∠ABC交AC于D,那么AD:AC =.13.如图,等边△ABC外一点P,连接AP、BP、CP,AH垂直平分PC于点H,∠BAP 的平分线交PC于点D,连接BD,有以下结论:①DP=DB;②DA+DB=DC;③DA ⊥BP;④若连接BH,当△BDH为等边三角形时,则CP=3DP,其中正确的有.(只需要填写序号)14.已知点O是三角形ABC的重心,DE经过点O且平行于BC,则△ADE与四边形DBCE的面积比为.15.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =5cm,AC=3cm,BC=4cm,则△DEB的周长为.16.如图,将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半,已知BC=2,△ABC平移的距离为.17.在△ABC中,边BC、AC上的中线AD、BE相交于点G,AD=6,那么AG=.18.如图,在△ABC中,中线BD,CE相交于点O,若S△ABC=4,则S△DOE=.19.在△ABC中,AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,则AC=,AB=.20.如图,∠MAN是一个钢架结构,已知∠MAN=15°,在角内部构造钢条BC,CD,DE,……且满足AB=BC=CD=DE=……则这样的钢条最多可以构造根.三.解答题(每题8分,共40分)21.如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF﹣AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为.22.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=25°,求∠A的度数.23.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC 于E,点F是AE的中点.(1)线段FD与线段FC的数量关系,位置关系;(2)如图2,将△BDE绕点B逆时针旋转a(0°<a<90°),其它条件不变,线段FD 与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.24.已知,如图,∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC.求证:E是CD的中点.25.△ABC是等边三角形,BD是角平分线,过点D作DE⊥AB于E,交BC边的延长线于点F,AE=2.(1)求证:△DCF是等腰三角形;(2)求BF的长.参考答案一.选择题1.解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选:A.2.解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故选:C.3.解:∵AB=AC,∠A=40°,∴∠ABC=∠ACB=70°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=40°∴∠BCD=∠ACB﹣∠ACD=30°.故选:B.4.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.5.解:(1)∵a=b,∠A=45°,∴∠A=∠B=45°,∴∠C=90°,∴△ABC是直角三角形;(2)∵∠A=32°,∠B=58°,∴∠C=90°,∴△ABC是直角三角形;(3)a=5,b=12,c=13,∴a2+b2=c2,∴∠C=90°,△ABC是直角三角形;(4)a=52,b=122,c=132,∴a2+b2≠c2,∴△ABC不是直角三角形.∴是直角三角形的有(1)(2)(3).故选:C.6.解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠P=38°,∴∠C=2×38°﹣40°=36°,故选:A.7.解:设第二个小的等边三角形的边长为x,则第三个小的等边三角形的边长为:x+a,第四个小的等边三角形的边长为:x+2a,最大的个小的等边三角形的边长b=x+3a,又∵b=3x,∴3x=x+3a,∴x=a,∴b=3x=a,故选:D.8.解:∵直线ME为线段AB的垂直平分线,∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NF为线段BC的垂直平分线,∴NB=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△BMN的周长=BM+MN+BN=AM+MN+NC=AC=24(等量代换),故选:B.9.解:∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°,∵EH平分∠AEG,∴∠AEH=∠GEH∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG,∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°,∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确,∴∠AFE=∠CFG=90°,∴∠FCG=∠FGC=45°,∴CF=FG,∵∠ADC=∠GFC=90°,∠ACD=∠GCF,AC=GC,∴△ADC≌△GFC(AAS),∴AD=CF=FG,∵AE=EG,∴EF=DE,∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠ECD=∠DBG,EC=GB,∵∠DHC=∠DHB,∠HCD=∠HBD,HD=HD,∴△HDC≌△HDB(AAS),∴HC=HB,∴HE=EG,∵∠DHE=∠DHG,DH=DH,∴△HDE≌△HDG(SAS),∴∠HDG=∠HDE=45°,故①正确,∴DE=DM,EF=DE≠2DM,故③错误,作ET∥AC交CD于T.∵∠DET=∠A=45°,∠DTE=∠ACD=45°,∴DE=DT=DG,∵DA=DC,∴AE=CT,∴CG=CT+TG=AE+2DG,故④正确,故选:B.10.解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,P A=PF,故②正确.在△APH和△FPD中,∴△APH≌△FPD(ASA),∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选:D.二.填空题(共10小题)11.解:∵△ABC是等边三角形,∴AB=AC.∴∠BAC=∠C.在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).∴∠ABD=∠CAE,BD=AE,∴∠APD=∠ABP+∠P AB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴BP=2PF=8,∵PD=1,∴BD=BP+PD=9,∴AE=BD=9.故答案为9.12.解:假设AB=AC=1,那么在△ACB和△BCD中,∠C=∠C,∠A=∠CBD=36°,∴△ACB∽△BCD,∴AC:BC=BC:DC,∴AC:BC=BC:DC,而BC=BD=DA(等腰的性质)所以设AD=x,那么CD=1﹣x,1:x=x:(1﹣x),所以舍负根,得到:x=,∴AD:AC=.13.解:①∵AH是PC的垂直平分线,∴P A=AC=AB,∵AD平分∠P AB,∴∠P AD=∠BAD,在△P AD和△BAD中,,∴△P AD≌△BAD(SAS),∴DP=DB;故①符合题意;②在CP上截取CQ=PD,连接AQ,如图所示:∵AP=AC,∴∠APD=∠ACQ,在△APD和△ACQ中,,∴△APD≌△ACQ(SAS),∴AD=AQ,∠CAQ=∠P AD,∴∠BAC=∠CAQ+∠BAQ=∠P AD+∠BAQ=∠BAD+∠BAQ=∠DAQ=60°,∴△ADQ为等边三角形,∴DA=DQ,∴DC=DQ+CQ=DA+DB,即DA+DB=DC.故②符合题意;③∵AB=AP,AD平分∠P AB,∴AD⊥PB,故③符合题意;④∵AH垂直平分PC,∴PH=CH,∵△BDH为等边三角形,∴DB=DH,∵PD=DB,∴PD=DH,∴PH=2PD,∴CP=4PD,故④不合题意,故答案为:①②③.14.解:连接AO并延长交BC于F,如图,∵点O是三角形ABC的重心,∴OA=2OF,∴AO:AF=2:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴△ADE与四边形DBCE的面积比为4:5.故答案为4:5.15.解:∵AD平分∠CAB交BC于D,DE⊥AB,DC⊥AC,∴DC=DE,在Rt△ADC和△ADE中,∴Rt△ADC≌△ADE(HL),∴AE=AC=3,∴BE=AB=5﹣3=2,∴△DEB的周长=BE+BD+DE=BE+BD+CD=BE+BC=2+4=6(cm).故答案为6cm.16.解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥EG,∴△ABC∽△GEC,∴=()2=,∴BC:EC=:1,∵BC=2,∴EC=,∴△ABC平移的距离为:BE=2﹣,故答案为2﹣.17.解:∵AD、BE为△ABC的中线,且AD与BE相交于点G,∴G点是三角形ABC的重心,∴AG===4,故答案为4.18.解:∵BD,CE分别是边AC,AB上的中线,∴DE是△ABC的中位线,∴DE∥BC,DE=,∴△DOE∽△BOC,,∴S△DOE=S△BDE=S△ABD=S△ABC==,故答案为.19.解:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理;综合上述:AC=48,AB=28.故答案为:48;28.20.解:∵BC=AB,∴∠BCA=∠A=15°,∴∠DBC=∠BCA+∠A=30°.同理,∠CDB=∠DBC=30°,∴∠DCE=∠CDB+∠A=45°,∠DEC=∠DCE=45°,∴∠FDE=∠DEC+∠A=60°,∠DFE=∠FDE=60°,∴∠FEM=∠DFE+∠A=90°.再作与AB相等的线段时,90°的角不能是底角,则最多能作出的线段是:BC、CD、DE、EF共有5条.故答案是:5.三.解答题(共5小题)21.(1)证明:∵CF⊥BD于点F,AE⊥BD,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,又∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∴CF﹣AE=BE﹣BF=EF;(2)证明:如图1,过点C作CF⊥BD于点F,∵BC=CD,∴BF=DF,由(1)得AE=BF,∴AE=DF,∴BD=2AE;(3)解:如图2,过点C作CG⊥MB,交MB的延长线于点G,过点C作CH⊥BE,交BE于点H,∵BM⊥BE,CH⊥BE,CG⊥MB,∴∠NBG=∠CHB=∠CGB=90°,∴四边形BGCH为矩形,∴BG=HC,BH=GC,由(1)得△AEB≌△BHC,∴AE=BH,BE=CH,∵BM=BE,∴BM=CH,∵∠MBN=∠CHN=90°,∠MNB=∠CNH,∴△BMN≌△HCN(AAS),∴BM=CH,BN=HN,∵AE=BH=2,∴BN=1,∴BE=BM=BN+EN=1+4=5,∴=.故答案为:5.22.(1)证明:∵CD是∠ACB的平分线,∴∠BCD=∠ECD,∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)解:∵∠ECD=∠EDC=25°,∴∠ACB=2∠ECD=50°,∵AB=AC,∴∠ABC=∠ACB=50°,∴∠A=180°﹣50°﹣50°=80°.23.解:(1)如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠F AD=∠FDA,∠F AC=∠FCA,∴∠DFE=∠FDA+∠F AD=2∠F AD,∠EFC=∠F AC+∠FCA=2∠F AC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠F AD+∠F AC)=90°,∴DF=FC,DF⊥FC,故答案为:DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF≤3.24.证明:作EF⊥AB于点F,∵∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC,∴EF=ED,EF=EC,∴ED=EC,∴点E为CD的中点.25.证明:(1)∵△ABC是等边三角形,BD是中线,∴∠A=∠ACB=60°,AC=BC,AD=CD=AC,∵DE⊥AB于E,∴∠ADE=90°﹣∠A=30°,∴CD=AD=2AE=4,∴∠CDF=∠ADE=30°,∴∠F=∠ACB﹣∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴△DCF是等腰三角形,(2)∵DC=CF,∴BF=BC+CF=2AD+AD=12。
2020年中考数学试卷含答案
2020年中考数学试卷含答案一、选择题1.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.2.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.22D.23.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个4.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣55.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .36.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°7.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒8.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm9.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A .1 个B .2 个C .3 个D .4个10.若0xy <,则2x y 化简后为( )A .x y -B .x yC .x y -D .x y --11.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°12.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则 2019a =___________ .15.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.17.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.18.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.19.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____.20.若ab=2,则222a ba ab--的值为________.三、解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.已知抛物线y=ax2﹣13x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒(1)求抛物线的解析式;(2)当BQ=13AP时,求t的值;(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.25.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.2.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB+=22.故选C.3.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.4.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.5.C解析:C【解析】【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB22()22;211=++=路径二:AB22().=++=21110<,∴蚂蚁爬行的最短路程为22.∵2210故选C.【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.6.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.7.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】m n,解:Q直线//+︒,∴∠+∠∠+∠=21180ABC BAC∠=︒,Q,90ABC=︒30∠∠=︒,140BAC︒︒︒,︒︒=∴∠=---218030904020故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.8.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.9.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C .10.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简. 解答【详解】y>0,∵xy<0,∴x<0,∴原式=-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义11.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB ∥CD ,∴∠BAD=∠D=40°.故选D .12.C解析:C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019解析:3 4 .【解析】【分析】利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y =ax 2+bx +c把A. B. C 三点分别代入得出c =2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.16.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x 轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.17.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E 连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣43【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.19.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1, 则a 的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系: ①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.20.【解析】分析:先根据题意得出a=2b 再由分式的基本性质把原式进行化简把a=2b 代入进行计算即可详解:∵=2∴a=2b 原式==当a=2b 时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本 解析:32【解析】分析:先根据题意得出a =2b ,再由分式的基本性质把原式进行化简,把a =2b 代入进行计算即可. 详解:∵a b =2,∴a =2b , 原式=()()()a b a b a a b +-- =a b a+ 当a =2b 时,原式=22b b b +=32. 故答案为32. 点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.24.(1)y=-23x2-13x+2;(2)当BQ=13AP时,t=1或t=4;(3)存在.当t=13-+M(1,1),或当t=333+M(﹣3,﹣3),使得△MPQ为等边三角形.【解析】【分析】(1)把A(﹣2,0),B(0,2)代入y=ax2-13x+c,求出解析式即可;(2)BQ=13AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP关于t的表示,代入BQ=13AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【详解】(1)∵抛物线经过A(﹣2,0),B(0,2)两点,∴240,32.a cc⎧++=⎪⎨⎪=⎩,解得2,32.ac⎧=-⎪⎨⎪=⎩∴抛物线的解析式为y=-23x2-13x+2.(2)由题意可知,OQ=OP=t,AP=2+t.①当t≤2时,点Q在点B下方,此时BQ=2-t.∵BQ=13AP,∴2﹣t=13(2+t),∴t=1.②当t>2时,点Q在点B上方,此时BQ=t﹣2.∵BQ=13AP,∴t﹣2=13(2+t),∴t=4.∴当BQ=13AP时,t=1或t=4.(3)存在.作MC⊥x轴于点C,连接OM.设点M的横坐标为m,则点M的纵坐标为-23m2-13m+2.当△MPQ为等边三角形时,MQ=MP,又∵OP=OQ,∴点M点必在PQ的垂直平分线上,∴∠POM=12∠POQ=45°,∴△MCO为等腰直角三角形,CM=CO,∴m=-23m2-13m+2,解得m1=1,m2=﹣3.∴M点可能为(1,1)或(﹣3,﹣3).①如图,当M 的坐标为(1,1)时,则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2﹣2t +2=2t 2,解得t 1=1+3-,t 2=13--(负值舍去).②如图,当M 的坐标为(﹣3,﹣3)时,则有PC =3+t ,MC =3,∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ , ∴t 2+6t +18=2t 2,解得t 1=333+t 2=333-∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.【点睛】本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.25.123米.【解析】【分析】在Rt△ABC中,利用tanBC CABAB∠=即可求解.【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.。
2020年陕西省中考数学试题(含答案解析)
2020年陕西省中考数学试卷(共25题,满分120)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.・18的相反数是( ) A. 18B. - 18C.1 1 Q1D.——1 C 2.若ZA = 23° , 则Z4余角的大小是( )A. 57°B. 67°C. 77°D. 157°3・2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示 为()A. 9.9087XKFB. 9.9087X 104C. 99.087X 104D. 99.087X1034.如图,是4市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最 6. 如图,在3X3的网格中,每个小正方形的边长均为1, 若是△ABC 的高,则的长为()C. 12°C D ・ 16°C8 C • -------点A, B, C 都在格点上,低气温的差)是(D.AA. -V13B. -V13 c. -V13 D. -V1312 12 1Q 127.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=・2r交于点A、B,则ZLAOB的面积为()A. 2B. 3C. 4D. 68.如图,在「ABCD中,AB=5, BC=S. E是边BC的中点,F是Q ABCD内一点,且ZBFC=90°•连接AF并延长,交CD于点G.若EF//AB,则DG的长为()9•如图,AABC内接于OO, ZA = 50° • E是边BC的中点,连接OE并延长,交OO于点D,连接BD,则ZD的大小为()A. 55°B. 65°C. 60°D・ 75°10.在平面直角坐标系中,将抛物线『=齐・(〃厂l)x+加(加>1)沿),轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D・第四象限二、填空题(共4小题,每小题3分,计12分)11.________________________________ 计算:(2+V^)(2—— .12.如图,在正五边形ABCDE中,DW是边CD的延长线,连接BD,则ZBDM的度数是_______.13.在平面直角坐标系中,点A (・2, 1), B(3, 2), C ( - 6, m)分别在三个不同的象限.若反比例函数y=-(^0)的图象经过其中两点,则加的值为_____________ .14.如图,在菱形ABCD中,AB = 6, ZB = 60°,点E在边AD上,且AE=2.若直线/经过点E.将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF三、解答题(共11小题,计78分.解答应写出过程)(3 兀>6,15・(5分)解不等式组:\Y—9 216・(5分)解分式方程:—=1--V* v—017. (5分)如图,已知ZVIBC, AC>AB, ZC=45° .请用尺规作图法,在AC边上求作一点P使ZPBC=45°•(保留作图痕迹.不写作法)A18. (5分)如图,在四边形ABCD中,AD//BC, ZB=ZC. E是边BC上一点,且19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)______________________________ 这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.佔讣王大伯近期售完鱼塘里的这种鱼可收入多少元?所捕捞鱼的质量统计图20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的I S J MN.他俩在小明家的窗台B处,测得商业大厦顶部W的仰角Z1的度数,山于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角Z2的度数,竟然发现Z1与Z2恰好相等.已知A, B, C三点共线,CA丄AM, NM丄AM, AB=3\m, BC=18〃7,试求商业大厦的高MN.21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20c枷时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度),(c/n)与生长时间x (天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80c加时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球, 一个口球和一个黃球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黃球的概率.23.(8分)如图,△4BC是OO的内接三角形,ZBAC=75。
2020年山西省中考数学试题(word版含答案)
中考数学试题与答案第Ⅰ卷选择题(共20分)一、选择题(本大题10个小题,每题2分,共20分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.-3的绝对值是()BA .-3B .3C .-13D .132.如图,直线a ∥b ,直线c 分别与a 、b 相交于点A 、B 。
已知∠1=35º, 则∠2的度数为()CA .165ºB .155ºC .145ºD .135º3.山西是我国古代文明发祥地之一,其总面积约为16万平方千米,这个数据用科学记数法表示为()D A .0.16×106平方千米 B .16×104平方千米 C .1.6×104平方千米 D .1.6×105平方千米 4.下列运算正确的是()BA .(a -b )2=a 2-b 2B .(-a 2)3=-a 6C .x 2+x 2=x 4D .3a 3·2a 2=6a 6 5.在R t △ABC 中,∠C =90º,若将各边长度都扩大为原来的2倍,则∠A 的正弦值()DA .扩大2倍B .缩小2倍C .扩大4倍D .不变6.估算31-2的值()CA .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间7.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为 14 ,那么袋中球的总个数为()BA .15个B .12个C .9个D .3个8.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()A9.现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm .从中任取一根木棒,能组成三角形的个数为()CA .1个B .2个C .3个D .4个10.如图,直线y =k x +b 交坐标轴于A (-3,0)、B(0,5)两点,则不等式-k x -b <0的解集为()AA .x >-3B .x <-3C .x >3D .x <3AB2 1 ab c (第2题)A BC (第5题)A B C D第Ⅱ卷选择题(共100分)二、填空题(本大题共8个小题,每小题3分,共24分.把答案写在题中横线上) 11.计算:9x 3÷(—3x 2) =______________.—3x12.在R t △ABC 中,∠ACB =90°,D 是AB 的中点,CD =4cm ,则AB =________ cm .813.随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜外完全一样),那么这粒豆子停在黑色方格中的概率是______________.1314.方程2x +1 - 1x -2=0的解为______________.x =515.如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,则这个反比例函数的解析式为______________.y = 4x16.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1、2、3.将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜该游戏对双方______________(填“公平”或“不公平”).不公平17.图1是以AB 为直径的半圆形纸片,AB =6cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ’A ’C ’ .如图2,其中O ’是OB 的中点.O ’C ’交BC ⌒ 于点F ,则BF ⌒ BF 的长为_______cm .π18.如图,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是______________.6013A B(第10题)O xyy =k x +b(第13题) (第15题)AB P xy O(第17题)AB OCC B A O O ’ C ’ 图1图2F三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤) 19.(每小题5分,共10分)(1)计算:9 +(-12 )-1-2sin45º+(3-2)0(2)先化简,再求值:(3x x -1 -xx +1)·x 2-12x ,其中x =-320.(本题6分)山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的.图3是图2放大后的部分,虚线给出了作图提示,请用圆规和直尺画图.(1)根据图2将图3补充完整;(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.(1) 将图3补充完整得3分(画出虚线不扣分) (2) 图略,答案不唯一,只要符合题目要求均得3分21.(本题10分)某课题小组为了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A 、B 、C 、D 四种型号的销量做了统计,绘制成如下两幅统计图(均不完整). (1)该店第一季度售出这种品牌的电动自行车共多少辆? (2)把两幅统计图补充完整;(3)若该专卖店计划订购这四款型号电动自行车1800辆,求C 型电动自行车应订购多少辆?22.(本题8分)如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,E 是⊙O 上一点,且A BCD E (第18题) ABCD 60 (第21题 图1)60 150210120180 240 辆数 型号B 35%A C 30% D(第21题 图2)∠AED =45º.(1)试判断CD 与⊙O 的关系,并说明理由.(2)若⊙O 的半径为3cm ,AE =5 cm .求∠ADE 的正弦值.23.(本题10分)已知二次函数y =x 2-2x -3的图象与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A 、B 、C 、D 的坐标,并在下面直角坐标系中画出该二次函数的大致图象; (2)说出抛物线y =x 2-2x -3可由抛物线y =x 2如何平移得到? (3)求四边形OCDB 的面积.24.(本题8分)某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服. (1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400无,乙款每套300元的价格全部出售,哪种方案获利最大?25.(本题10分)如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边D E 上,连接AE 、GC . (1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图2,连接AE 和CG 。
2020全国中考数学试卷分类汇编第二期专题2 实数(无理数,平方根,立方根)(含解析)
实数(无理数,平方根,立方根)一.选择题1.(2020•山东省枣庄市•3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1-a>1【分析】直接利用a,b在数轴上位置进而分别分析得出答案.【解答】解:A.|a|>1,故本选项错误;B.∵a<0,b>0,∴ab<0,故本选项错误;C.a+b<0,故本选项错误;D.∵a<0,∴1-a>1,故本选项正确;故选D.【点评】此题主要考查了实数与数轴,正确结合数轴分析是解题关键.2. (2020•四川省达州市•3分)下列各数中,比3大比4小的无理数是()A.3.14 B.C.D.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.解:3=,4=,A.3.14是有理数,故此选项不合题意;B.是有理数,故此选项不符合题意;C.是比3大比4小的无理数,故此选项符合题意;D.比4大的无理数,故此选项不合题意;故选:C.3. (2020•山东东营市•3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A. 2-B. 2C. 2±D. 4【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.【详解】4的算术平方根42,故选:B.【点睛】本题主要考查了算术平方根的求解方法,考生需要将其与平方根进行对比掌握.4.(2020•山东聊城市•3分)在实数﹣1,﹣,0,中,最小的实数是()A.﹣1 B.C.0 D.﹣【分析】直接利用实数比较大小的方法得出答案.【解答】解:∵|﹣|>|﹣1|,∴﹣1>﹣,∴实数﹣1,﹣,0,中,﹣<﹣1<0<.故4个实数中最小的实数是:﹣.故选:D.【点评】此题主要考查了实数比较大小,正确掌握实数大小比较方法是解题关键.5. (2020•四川省凉山州•4分)下列等式成立的是()A.=±9 B.|﹣2|=﹣+2C.(﹣)﹣1=﹣2 D.(tan45°﹣1)0=1【分析】根据算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定逐一判断即可得.【解答】解:A.=9,此选项计算错误;B.|﹣2|=﹣2,此选项错误;C.(﹣)﹣1=﹣2,此选项正确;D.(tan45°﹣1)0无意义,此选项错误;故选:C.【点评】本题主要考查实数的运算,解题的关键是掌握算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定.6. (2020•四川省凉山州•4分)函数y=中,自变量x的取值范围是x≥﹣1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x +1≥0, 解得x ≥﹣1. 故答案为:x ≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 二.填空题1. (2020•四川省遂宁市•4分)下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有 3 个.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3.【点评】本题考查了无理数的知识,解答本题的掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 2. (2020•山东省潍坊市•3分)若|a -2|+=0,则a +b = .【分析】根据非负数的性质列式求出A.b 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得,a -2=0,b -3=0,解得a =2,b =3,∴a +b =2+3=5. 故答案为5.【点评】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 3. 2020年内蒙古通辽市计算:(1)0(3.14)π-= ______;(2)2cos45︒=______;(3)21-= ______.【答案】 (1). 1 (2). 2 (3). -1【解析】 【分析】根据零指数幂,特殊角的三角函数值,乘方运算法则分别计算即可.【详解】解:0(3.14)π-=1,2cos45︒=2×22=2, 21-=-1,故答案为:1,2,-1.【点睛】本题考查了零指数幂,特殊角的三角函数值,乘方运算,掌握运算法则是关键. 4. (2020•山东淄博市•4分)计算:+= 2 .【分析】分别根据立方根的定义与算术平方根的定义解答即可. 【解答】解:+=﹣2+4=2.故答案为:2【点评】本题主要考查了立方根与算术平方根,熟记立方根与二次根式的性质是解答本题的关键.5. (2020•陕西•3分)计算:(2+)(2﹣)= 1 .【分析】先利用平方差公式展开得到原式=22﹣()2,再利用二次根式的性质化简,然后进行减法运算. 【解答】解:原式=22﹣()2=4﹣3 =1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.6. (2020•广东省•4分)若2-a +|b +1|=0,则(a +b )2020=_________. 【答案】1【解析】算术平方根、绝对值都是非负数,∴a =2,b =-1,-1的偶数次幂为正 【考点】非负数、幂的运算 7. (2020•北京市•2分)写出一个比大且比小的整数 2或3(答案不唯一) .【分析】先估算出和的大小,再找出符合条件的整数即可.【解答】解:∵1<<2,3<<4,∴比大且比小的整数2或3(答案不唯一).故答案为:2或3(答案不唯一).【点评】本题主要考查了估算无理数的大小,根据题意估算出和的大小是解答此题的关键.8. (2020•四川省南充市•4分)计算:0122+=__________. 2 【解析】 【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值. 【详解】解:0122+ 2-1+1 22.【点睛】此题考查了实数的运算,零指数幂,熟练掌握运算法则是解本题的关键.三、解答题1.(2020•山东东营市•4分)(1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(136-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+---36=-;2.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 3. (2020•山东东营市•4分)(1)计算:()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(1)36-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+--- 36=-;4.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.5.(2020•广东省深圳市•5分)计算:【考点】实数的计算【答案】2【解析】6.(2020•广西省玉林市•6分)计算:•(π﹣3.14)0﹣|﹣1|+()2.【分析】先计算(π﹣3.14)0、|﹣1|、()2,再加减求值.【解答】解:原式=×1﹣(﹣1)+9=﹣+1+9=10.【点评】本题考查了零指数幂的意义、绝对值的化简、及开平方乘方运算.掌握零指数幂及绝对值的意义,是解决本题的关键.7. (2020•甘肃省天水市•6分)计算:114sin60|32|2020124-︒⎛⎫--+-+ ⎪⎝⎭【答案】33+;【解析】【分析】先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;【详解】原式34(23)12342=⨯--+-+,23231234=-++-+,33=+;【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握运算法则.8.(2020•北京市•5分)计算:()﹣1++|﹣2|﹣6sin45°.【分析】直接利用负整数指数幂的性质以及二次根式的性质和特殊角的三角函数值分别化简得出答案. 【解答】解:原式=3+3+2﹣6×=3+3+2﹣3=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 9.(2020•贵州省黔西南州•12分)计算(﹣2)2﹣|﹣|﹣2cos 45°+(2020﹣π)0;【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;【解答】解:原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;【点评】此题主要考查了实数运算,正确掌握相关运算法则是解题关键. 10. (2020•四川省内江市•7分)计算:(﹣)﹣1﹣|﹣2|+4sin 60°﹣+(π﹣3)0.【分析】先计算负整数指数幂、去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.【点评】本题主要考查实数的运算,解题的关键是掌握负整数指数幂和零指数幂的规定、熟记三角函数值、绝对值的性质、二次根式的性质.11. (2020•四川省乐山市•9分)计算:022cos60(2020)π--︒+-. 【答案】2 【解析】 【分析】根据绝对值,特殊三角函数值,零指数幂对原式进行化简计算即可.【详解】解:原式=12212-⨯+ =2.【点睛】本题考查了绝对值,特殊三角函数值,零指数幂,掌握运算法则是解题关键. 12. (2020•四川省遂宁市•7分)计算:﹣2sin 30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.【分析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=2﹣2×﹣(﹣1)+4﹣1=2﹣1﹣+1+4﹣1=+3.【点评】本题主要考查实数的运算,解题的关键是掌握二次根式和绝对值的性质、熟记特殊锐角三角函数值、负整数指数幂与零指数幂的规定.13. (2020•四川省自贡市•8分)计算:)-⎛⎫--+- ⎪⎝⎭11256π. 【解析】561)61(1121-=-=-+- (2020•四川省自贡市•10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式-x 2的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以+x 1的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离. ⑴. 发现问题:代数式++-x 1x 2的最小值是多少?⑵. 探究问题:如图,点A,B,P 分别表示的是-1,2,x ,=AB 3.∵++-x 1x 2的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时+>PA PB 3∴++-x 1x 2的最小值是3. ⑶.解决问题:①.-++x 4x 2的最小值是;②.利用上述思想方法解不等式:++->x 3x 14x–1–2–3–412340A BP③.当a 为何值时,代数式++-x a x 3的最小值是2.【解析】(3)①设A 表示4,B 表示-2,P 表示x ∴线段AB 的长度为6,则|2||4|++-x x 的几何意义表示为P A +PB ,当P 在线段AB 上时取得最小值6 ②设A 表示-3,B 表示1,P 表示x ,∴线段AB 的长度为4,则|1||3|-++x x 的几何意义表示为P A +PB ,∴不等式的几何意义是P A +PB >AB ,∴P 不能在线段AB 上,应该在A 的左侧或者B 的右侧,即不等式的解集为3-<x 或1>x③设A 表示-a ,B 表示3,P 表示x ,则线段AB 的长度为|3|--a ,|3|||-++x a x 的几何意义表示为P A +PB ,当P 在线段AB 上时P A +PB 取得最小值,∴2|3|=--a ∴23=+a 或23-=+a ,即1-=a 或5-=a ;14. (2020•新疆维吾尔自治区新疆生产建设兵团•6分)计算:()()213π-++-【解析】 【分析】分别计算平方,绝对值,零次幂,算术平方根,再合并即可得到答案. 【详解】解: ()()213π-++-112=-=【点睛】本题考查的是乘方,绝对值,零次幂,算术平方根的运算,掌握以上运算是解题的关键.–1–2–3–41234。
2020年江西省中考数学试题及参考答案(word解析版)
江西省2020年中等学校招生考试数学试题卷(全卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.如图所示,正方体的展开图为()A.B.C.D.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC =49°,则∠BAE的度数为.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:14.先化简,再求值:(﹣)÷,其中x=.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …﹣2 ﹣1 0 1 2 …y …m 0 ﹣3 n ﹣3 …(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE =2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.答案与解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.【知识考点】倒数.【思路分析】根据倒数的定义即可得出答案.【解答过程】解:﹣3的倒数是﹣.故选:C.【总结归纳】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【知识考点】合并同类项;同底数幂的乘法;同底数幂的除法.【思路分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答过程】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.【总结归纳】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:50175亿=5017500000000=5.0175×1012.故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG【知识考点】平行线的判定;三角形的外角性质.【思路分析】依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答过程】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.【总结归纳】本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.如图所示,正方体的展开图为()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答过程】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.【总结归纳】本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2【知识考点】待定系数法求一次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点;坐标与图形变化﹣平移.【思路分析】求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答过程】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴A(3,0),B(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.【总结归纳】本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.【知识考点】完全平方公式.【思路分析】直接利用完全平方公式计算即可解答.【解答过程】解:(a﹣1)2=a2﹣2a+1.【总结归纳】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【知识考点】一元二次方程的解;根与系数的关系.【思路分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答过程】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.【总结归纳】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.【知识考点】用数字表示事件.【思路分析】根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答过程】解:由题意可得,表示25.故答案为:25.【总结归纳】本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.【知识考点】近似数和有效数字;数学常识;频数(率)分布表;众数.【思路分析】直接根据众数的定义可得答案.【解答过程】解:圆周率的小数点后100位数字的众数为9,故答案为:9.【总结归纳】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.【知识考点】全等三角形的判定与性质.【思路分析】证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答过程】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.【总结归纳】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB =30°时或当∠ABA′=30°时求AE的长.【解答过程】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.【总结归纳】本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:【知识考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组.【思路分析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=[﹣]÷=•=,当x=时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【知识考点】列表法与树状图法.【思路分析】(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答过程】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.【总结归纳】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.【知识考点】作图﹣旋转变换.【思路分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答过程】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.【总结归纳】本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答过程】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;直角三角形斜边上的中线.【思路分析】(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答过程】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.【总结归纳】本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【知识考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图;频数(率)分布折线图.【思路分析】(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答过程】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.【总结归纳】本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)【知识考点】解直角三角形的应用.【思路分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答过程】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.【总结归纳】本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).【知识考点】圆的综合题.【思路分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答过程】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,。
2020年江西省中考数学试卷(附答案解析)
2020年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)-3的倒数是()A.3B.-3C.-D.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3-a2=a C.a3•a2=a6D.a3÷a2=a3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.(3分)如图所示,正方体的展开图为()A.B.C.D.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a-1)2=.8.(3分)若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1-)0-|-2|+()-2;(2)解不等式组:14.(6分)先化简,再求值:(-)÷,其中x=.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x >0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y 的部分对应值如下表:x…-2-1012…y…m0-3n-3…)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>-2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.【试题答案】一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.C【解答】解:-3的倒数是-.2.D【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.3.B【解答】解:50175亿=5017500000000=5.0175×1012.4.C【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°-35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确.5.A【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意.6.B【解答】解:如图,∵抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=-1或3,令x=0,求得y=-3,∴B(3,0),A(0,-3),∵抛物线y=x2-2x-3的对称轴为直线x=-=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16-8-3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1.二、填空题(本大题共6小题,每小题3分,共18分)7.a2-2a+1【解答】解:(a-1)2=a2-2a+1.8.-2【解答】解:∵a=1,b=-k,c=-2,∴x1•x2==-2.∵关于x的一元二次方程x2-kx-2=0的一个根为x=1,∴另一个根为-2÷1=-2.9.25【解答】解:由题意可得,表示25.10.9【解答】解:圆周率的小数点后100位数字的众数为9。
2020年全国中考数学试题精选分类(8)——三角形(含解析)
2020年全国中考数学试题精选分类(8)——三角形一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x23.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28 5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3 7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6 9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2 17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm218.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6 21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4 22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1 24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4 25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1 27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3 31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a 33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)38.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为.39.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.40.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.三.解答题(共10小题)41.(2020•西藏)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.42.(2020•大连)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.43.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD 上,AE=AF,CE=CF,求证:CB=CD.44.(2020•山西)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).45.(2020•沈阳)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.46.(2020•毕节市)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:(a+b)2=a2+2ab+b2.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:.(2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,CH是斜边AB边上的高.用上述“面积法”求CH的长;(3)如图(4),等腰△ABC中,AB=AC,点O为底边BC上任意一点,OM⊥AB,ON ⊥AC,CH⊥AB,垂足分别为点M,N,H,连接AO,用上述“面积法”求证:OM+ON =CH.47.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE 的数量关系,并说明理由.48.(2020•吉林)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s 的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.49.(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.50.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC 上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.2020年全国中考数学试题精选分类(8)——三角形参考答案与试题解析一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④【答案】D【解答】解:如图,过点O作OH∥BC交AE于点H,过点O作OQ⊥BC交BC于点Q,过点B作BK⊥OM交OM的延长线于点K,∵四边形ABCD是正方形,∴,∴OB=OC,∠BOC=90°,∴∠BOM+∠MOC=90°.∵OP⊥OF,∴∠MON=90°,∴∠CON+∠MOC=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴,∴,∴.∵CE=2BE,∴,∴.∵BF⊥AE,∴,∴,∴,∴,∴,∴,∴.∵AD∥BC,∴,故①正确;∵OH∥BC,∴,∴.∵∠HGO=∠EGB,∴△HOG≌△EBG(AAS),∴OG=BG,故④正确;∵OQ2+MQ2=OM2,∴,∴,故③正确;∵,即,∴,∴,故②错误;∴正确的有①③④.故选:D.2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x2【答案】B【解答】解:设芦苇长x尺,由题意得:(x﹣1)2+52=x2,故选:B.3.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【答案】D【解答】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28【答案】B【解答】解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE∥BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴BC==10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【答案】D【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【答案】A【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.【答案】B【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BCF=90°,∵BF⊥CD,∴∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ACE=∠CBF,∵AE⊥CD,∴∠AEC=∠CFB=90°,∴△ACE∽△CBF,∴,∵FB=FE=2,FC=1,∴CE=CF+EF=3,BC===,∴=,∴AC=,故选:B.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6【答案】A【解答】解:∵在△ABC中,AB=1,BC=,∴﹣1<AC<+1,∵﹣1<2<+1,4>+1,5>+1,6>+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴F A平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,故选:C.10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【答案】B【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【答案】C【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 【答案】D【解答】解:过点C作CE⊥AD于E,如图所示:则四边形ABCE是矩形,∴AB=CE,∠CED=∠DAP=90°,∵∠BPC=45°,∠APD=75°,∴∠CPD=180°﹣45°﹣75°=60°,∵CP=DP=a,∴△CPD是等边三角形,∴CD=DP,∠PDC=60°,∵∠ADP=90°﹣75°=15°,∴∠EDC=15°+60°=75°,∴∠EDC=∠APD,在△EDC和△APD中,,∴△EDC≌△APD(AAS),∴CE=AD,∴AB=AD=c,故选:D.13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C【解答】解:如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【答案】A【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∵∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=180°﹣∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°【解答】解:∵∠ACB=75°,∠ECD=50°,∴∠ACE=180°﹣∠ACB﹣∠ECD=55°,∵AB∥CE,∴∠A=∠ACE=55°,故选:B.16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【答案】A【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AE=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,x2+4y2=b2,②在Rt△BFD中,4x2+y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm2【答案】C【解答】解:如图:设OF=EF=FG=x(cm),∴OE=OH=2x,在Rt△EOH中,EH=2x,由题意EH=20cm,∴20=2x,∴x=5,∴阴影部分的面积=(5)2=50(cm2)故选:C.18.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【答案】A【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH不是l的垂直平分线,故此选项错误;故选:A.19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°【答案】D【解答】解:分情况讨论:(1)若等腰三角形的顶角为70°时,底角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【答案】A【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4【答案】A【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°【答案】D【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B,∵∠ACD=110°,∠B=50°,∴∠A=60°,故选:D.23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1【答案】B【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,……∴OA n的长度为()n﹣1.故选:B.24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【答案】B【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【答案】D【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【答案】B【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【答案】A【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△P AB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.故选:A.28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【答案】D【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【答案】B【解答】解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3【答案】D【解答】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的面积=2×=3,故选:D.31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【答案】D【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a【答案】C【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC﹣AD=a﹣b,故选:C.33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【答案】B【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10【答案】A【解答】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.【答案】.【解答】解:∵把△ABC沿AB边平移到△A1B1C1的位置,∴AC∥A1C1,∴△ABC∽△A1BD,∵S△A1BD:S四边形ACDA1=4:5,∴S:S△ABC=4:9,∴A1B:AB=2:3,∵AB=4,∴A1B=,∴AA1=4﹣=.故答案为:.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于×4n﹣1.(用含有正整数n的式子表示)【答案】.【解答】解:设△ADC的面积为S,。
人教版七年级上册数学 第三章一元一次方程 中考真题专练 (含答案)
中考真题专练:第三章一元一次方程一.选择题1.(2020•黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元2.(2020•毕节市)由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元3.(2020•呼和浩特)中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里4.(2020•盐城)把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1 B.3 C.4 D.6 5.(2020•青海)如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×56.(2020•张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程()A.﹣9 B.+2=C.﹣2=D.+9 7.(2020•重庆)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x8.(2020•金华)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2 9.(2019•阜新)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元10.(2019•襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=二.填空题11.(2020•牡丹江)“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是元.12.(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元13.(2020•牡丹江)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.14.(2020•衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有名.15.(2020•绍兴)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.16.(2019•济南)代数式与代数式3﹣2x的和为4,则x=.17.(2019•南通)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为.三.解答题18.(2020•凉山州)解方程:x﹣=1+.19.(2020•杭州)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.20.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.21.(2020•泸州)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?22.(2020•攀枝花)课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?23.(2020•山西)2020年5月份,省城太原开展了“活力太原•乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.参考答案一.选择题1.解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.2.解:设该商品的原售价为x元,根据题意得:75%x+25=90%x﹣20,解得:x=300,则该商品的原售价为300元.故选:D.3.解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,答:此人第一和第六这两天共走了198里,故选:D.4.解:由题意,可得8+x=2+7,解得x=1.故选:A.5.解:依题意,得:π×()2x=π×()2×(x+5).故选:B.6.解:依题意,得:+2=.故选:B.7.解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.8.解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.9.解:设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x﹣20,解得:x=200.故选:C.10.解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.二.填空题(共7小题)11.解:设该书包的进价为x元,根据题意得:130×80%﹣x=30%x,整理得:1.3x=104,解得:x=80,则该书包的进价是80元.故答案为:80.12.解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.13.解:设商店打x折,依题意,得:180×﹣120=120×20%,解得:x=8.故答案为:8.14.解:设女生有x名,则男生人数有(2x﹣17)名,依题意有2x﹣17+x=52,解得x=23.故女生有23名.故答案为:23.15.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为:100或85.16.解:根据题意得:+3﹣2x=4,去分母得:2x﹣1+9﹣6x=12,移项合并得:﹣4x=4,解得:x=﹣1,故答案为:﹣117.解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.三.解答题(共6小题)18.解:去分母,得:6x﹣3(x﹣2)=6+2(2x﹣1),去括号,得:6x﹣3x+6=6+4x﹣2,移项,得:6x﹣3x﹣4x=6﹣6﹣2,合并同类项,得:﹣x=﹣2,系数化为1,得:x=2.19.解:圆圆的解答过程有错误,正确的解答过程如下:去分母,得:3(x+1)﹣2(x﹣3)=6.去括号,得3x+3﹣2x+6=6.移项,合并同类项,得x=﹣3.20.解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=a,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.21.解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得 30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而增大,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.22.解:设这些学生共有x人,根据题意得,解得x=48.答:这些学生共有48人.23.解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x元,根据题意,得80%×(1+50%)x﹣128=568,解得x=580.答:该电饭煲的进价为580元.。
2020人教版中考数学专题《一元一次不等式(组)的应用》含解答
2020中考数学专题《一元一次不等式(组)的应用》含解答第一批一、选择题1. (2019·怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则可有一户可分得母羊但不足3只.这批种羊共( )只.A.55B.72C.83D.89【答案】C.【解析】设该村有x 户,则这批种羊中母羊有(5x+17)只,根据题意可得()()517710517713x x x x +--⎧⎪⎨+--⎪⎩><,解得10.5<x <12.∵x 为正整数,∴x=11∴这批种羊共有11+5×11+17=83只.故选C.2. (2019·无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 ( )A. 10B. 9C. 8D. 7【答案】B 【解析】设原计划 m 天完成,开工 n 天后有人外出,则 15am=2160,am=144,15an+12(a+2)(m-n)<2160,化简可得:an+4am+8m-8n<720,将am=144 代入得 an+8m-8n<144,an+8m-8n<am ,a(n-m)<8(n-m),其中 n-m<0,a>8, 至少为 9 ,故选 B.三、解答题23.(2019浙江省温州市,23,10分)(本题满分10分)某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【解题过程】(1)该旅行团中成人有x 人,少年有y 人,根据题意,得:103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩.答:该旅行团中成人有17人,少年有5人; (2)①∵成人8人可免费带8名儿童,∴所需门票的总费用为:100×8+100×0.8×5+100×0.6×(10-8)=1320(元).②设可以安排成人a 人、少年b 人带队,则1≤a ≤17,1≤b ≤5.设10≤a ≤17时,(i) 当a=10时,100×10+80b ≤1200,∴b ≤52,∴ b 最大值=2,此时 a+b=12,费用为1160元;(ii) 当a=11时,100×11+80b ≤1200,∴b ≤54,∴ b 最大值=1,此时 a+b=12,费用为1180元;(iii) 当a ≥12时,100a ≥1200,即成人门票至少需要1200元,不符合题意,舍去.设1≤a <10时,(i) 当a=9时,100×9+80b+60≤1200,∴b ≤3,∴ b 最大值=3,此时 a+b=12,费用为1200元;(ii) 当a=8时,100×8+80b+60×2≤1200,∴b ≤72,∴ b 最大值=3,此时 a+b=11<12,不符合题意,舍去;(iii) 同理,当a <8时,a+b <12,不符合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人、少年2人;成人11人、少年1人;成人9人、少年3人.其中当成人10人、少年2人时购票费用最少.22.(2019山东滨州,22,12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【解题过程】解:(1)设辆甲种客车与1辆乙种客车的载客量分别为a 人,b 人,23=1802=105a b a b ,ì+ïïíï+ïî,………………………………………………………………………3分 解得=45=30.a b ,ìïïíïïî 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人.………………5分(2)设租用甲种客车x 辆,租车费用为y 元,根据题意,得y=400x+280(6-x )=120x+1680.………………………………8分由45x+30(6-x )≥240,得x≥4.………………………………………………10分∵120>0,∴y 随x 的增大而增大,∴当x 为最小值4时,y 值最小.即租用甲种客车4辆,乙种客车2辆,费用最低,………………………………11分此时,最低费用y=120×4+1680=2160(元).……………………………………12分第二批一、选择题9.(2019·绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( )A .3种B .4种C .5种D .6种【答案】C【解析】设该店购进甲种商品x 件,则购进乙种商品(50﹣x )件,根据题意,得:{60x +100(50−x)≤420010x +20(50−x)>750, 解得:20≤x <25,∵x 为整数,∴x =20、21、22、23、24,∴该店进货方案有5种,故选C .【知识点】一元一次不等式组的应用二、填空题三、解答题21.(2019·遵义) 某校计划组织240名师生到红色教育基地开展革命传统教育活动,旅游公司有A,B 两种客车可供租用,A 型客车每辆载客量45人,B 型客车每辆载客量30人,若租用4辆A 型客车和3辆B 型客车共需费用10700元;若租用3辆A 型客车和4辆B 型客车共需费用10300元(1)求租用A,B 两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有几种租车方案?哪种方案最省钱?【思路分析】(1)设租用A 型客车的费用是x 元,B 型客车的费用是y 元,根据题意列出二元一次方程组,可求每辆车的费用;(2)设租用A 型客车a 辆,B 型客车b 辆,由师生240人都有车坐,根据座位列出不等式;再由租车费用列出不等式,组成不等式组,根据a,b 的值为正整数,可求出方案【解题过程】解:(1)设租用A 型客车的费用是x 元,B 型客车的费用是y 元,根据题意得4x+3y=10700;3x+4y=10300,解得,x=1700,y=1300;答:租用A 型客车的费用1700元,B 型客车的费用是1300元.(2)设租用A 型客车a 辆,B 型客车b 辆,根据题意得45a+30b ≥240;1700a+1300b ≤10000; ∴17b 13-1003b 2-16≤≤a ∵a,b 均为正整数,∴a=2,b=5;a=4,b=2两种方案当a=2,b=5时,费用为99005130021700=⨯+⨯(元)当a=4,b=2时,费用为94002130041700=⨯+⨯(元)答:租用A 型客车4辆,B 型客车2辆时费用最低,最低费用为9400元【知识点】二元一次方程组,不等式组22.(2019 ·福建)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理. 但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理. 已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m ;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.【思路分析】(1)根据每天花费废水处理费370元,判断每天处理废水量是否8元,若超过则需要交给第三方企业处理,然后列式求出m 的值;(2)分为该车间每天自己处理废水,和将废水交给第三方企业处理,两种情况列不等式分别讨论,然后取其公共部分,即可求得该厂一天产生的工业废水量的范围.【解题过程】解:(1)因为工厂产生工业废水35吨,共花费废水处理费370元,又3530370-=768>8,所以m <35,依题意得,30+8m +12(35-m)=370,解得m =20,故该车间的日废水处理量为20吨.(2)设一天生产废水x 吨.①当0<x ≤20时,依题意得,8x+30≤10x ,解得x ≥15,所以15≤x ≤20.②当x >20时,依题意得,12(x -20)+20×8+30≤10x ,解得x ≤25,所以20<x ≤25.综上所述,15≤x ≤25.故该厂一天产生的工业废水量的范围在15吨到25吨之间.【知识点】一元一次方程;一元一次不等式;反比例函数21.(2019·广东) 某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【思路分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出不等式求解。
通用版2020中考数学热点专练十一三角形解析版
2020中考数学热点专练11 三角形一、选择题1.如图,在△ABC中,△B=90°,tan△C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm22.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A.6 B.12 C.18 D.243.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.△EBC=△BAC D.△EBC=△ABE4.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20B.24C.D.5.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.166.如图,点B、F、C、E在一条直线上,AB△ED,AC△FD,那么添加下列一个条件后,仍无法判定△ABC△△DEF的是()A.△A=△D B.AC=DFC.AB=ED D.BF=EC7.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8.下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,9.已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个10.如图,在Rt ABC∆中,90B∠=︒,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于12DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若1BG=,4AC=,则ACG∆的面积是()A.1B.32C.2D.5211.满足下列条件时,△ABC不是直角三角形的为()A .AB =,BC =4,AC =5 B .AB :BC :AC =3:4:5 C .△A :△B :△C =3:4:5D .|cos A ﹣|+(tan B ﹣)2=012.如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若BC=6,AC=5,则△ACE 的周长为( ) A.8 B.11 C.16D.1713.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和14.如图,在ABC ∆中,AC BC =,40A ∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( ) A .40︒B .45︒C .50︒D .60︒15.如图,点D 在BC 的延长线上,DE △AB 于点E ,交AC 于点F .若△A =35°,△D =15°,则△ACB 的度数为( ) A .65° B .70°C .75°D .85°二、填空题16.腰长为5,高为4的等腰三角形的底边长为 .17.如图,在Rt△ABC 中,△ACB =90°,△B =60°,DE 为△ABC 的中位线,延长BC 至F ,使CF =BC ,连接FE 并延长交AB 于点M .若BC =a ,则△FMB 的周长为 .18.如图,在△ABC 中,△ACB =120°,BC =4,D 为AB 的中点,DC △BC ,则△ABC 的面积是 .19.如图,已知直线121//l ,含30︒角的三角板的直角顶点C 在1l 上,30︒角的顶点A 在2l 上,如果边AB 与1l 的交点D 是AB 的中点,那么1∠= 度.20.等腰三角形的两边长分别为6cm ,13cm ,其周长为 cm .三、证明题21.已知:如图,△ABC是任意一个三角形,求证:△A+△B+△C=180°.22.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出△A与△B的和与△C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.23.已知,在如图所示的“风筝”图案中,AB AD=,AC AE=,BAE DAC∠=∠.求证:E C∠=∠.24.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE△直线m于点E,BD△直线m于点D.△求证:EC=BD;△若设△AEC三边分别为a、b、c,利用此图证明勾股定理.25.如图,已知:在△ABC中,△BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.四、作图题26.如图,已知等腰ABC∠=︒.A∆顶角30(1)在AC上作一点D,使AD BD=(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:BCD∆是等腰三角形.五、应用题27.如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)28.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程..................六.探究题根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x作AD⊥BC于D,设BD = x,用含x 的代数式表示CD 利用勾股定理求出AD的长,再计算三角形面积29.如图△,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图△中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图△,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图△中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图△,写出PM与PN的数量关系,并加以证明.30.已知:如图,△ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在△ABC内部,且点P到△ABC两边的距离相等.2020中考数学热点专练11 三角形【命题趋势】首先说明——三角形是中考必考内容,而且也是热点内容,无论是小题还是大题.因为三角形包括的内容很多,例如三角形的基本知识(内角和定理推论、三边关系)、三角形的三线(角平分线、中线、高线)五心(内心,外心,重心,垂心,旁心),特殊的三角形(等腰三角形,直角三角形,等腰直角三角形,等边三角形)的性质及判定方法,全等三角形的性质与判定,相似三角形的性质与判定,最后在此要特别强调的是直角三角形的勾股定理及逆定理、三角函数的相关知识是重中之重,它是我们计算线段长度的最重要的工具,所以这是考查的重点中的重点。
2020年数学中考试卷(及答案)
2020年数学中考试卷(及答案)一、选择题1.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm2.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <0 3.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .14.如图,⊙O 的半径为5,AB 为弦,点C 为AB 的中点,若∠ABC=30°,则弦AB 的长为( )A .12B .5C .532D .535.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A .B .C .D .6.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 27.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q8.如果,则a 的取值范围是( ) A .B .C .D .9.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 12.cos45°的值等于( )A .2B .1C .32D .22二、填空题13.分解因式:x 3﹣4xy 2=_____. 14.分解因式:2x 3﹣6x 2+4x =__________.15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 16.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______. 18.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .19.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.20.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是三、解答题21.解方程:x 21x 1x-=-. 22.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线. (2)求证:CD BE AD DE ⋅=⋅.23.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全..表格.654 3.53 2.5210.5000.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.24.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: 当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值.25.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据菱形的性质得出AB=BC=CD=AD ,AO=OC ,根据三角形的中位线求出BC ,即可得出答案. 【详解】∵四边形ABCD 是菱形, ∴AB=BC=CD=AD ,AO=OC , ∵AM=BM ,∴BC=2MO=2×5cm=10cm , 即AB=BC=CD=AD=10cm , 即菱形ABCD 的周长为40cm , 故选D . 【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC 是解此题的关键.2.D解析:D 【解析】 【分析】 【详解】试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12bx a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D.考点:二次函数的图象及性质.3.A解析:A 【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.4.D解析:D 【解析】 【分析】连接OC 、OA ,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可. 【详解】 连接OC 、OA ,∵∠ABC=30°, ∴∠AOC=60°,∵AB 为弦,点C 为AB 的中点, ∴OC ⊥AB , 在Rt △OAE 中,53∴AB=53, 故选D . 【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.5.D解析:D 【解析】 【分析】 【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D6.D解析:D【解析】 由题意得:1212k ky y x x ==-=- ,故选D. 7.C解析:C 【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.8.B解析:B 【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.9. C解析:C 【解析】 【分析】由题意,可得A (1,1),C (1,k ),B (2,),D (2,k ),则△OAC 面积=(k-1),△CBD 的面积=×(2-1)×(k-)=(k-1),根据△OAC 与△CBD 的面积之和为,即可得出k 的值. 【详解】∵AC ∥BD ∥y 轴,点A ,B 的横坐标分别为1、2, ∴A (1,1),C (1,k ),B (2,),D (2,k ),∴△OAC 面积=×1×(k-1),△CBD 的面积=×(2-1)×(k-)=(k-1), ∵△OAC 与△CBD 的面积之和为, ∴(k-1)+ (k-1)=, ∴k =4. 故选C . 【点睛】本题考查反比例函数系数k 的几何意义,三角形面积的计算,解题的关键是用k 表示出△OAC 与△CBD 的面积.10.C解析:C 【解析】 【分析】 【详解】 ∵A (﹣3,4),∴, ∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8, 故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C .考点:菱形的性质;反比例函数图象上点的坐标特征.11.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.D解析:D 【解析】 【分析】将特殊角的三角函数值代入求解. 【详解】解:cos45°= 2. 故选D .【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.二、填空题13.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E 连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣43【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.19.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式解析:14.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)=416=14.故答案为14.考点:列表法与树状图法;概率公式.20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.三、解答题x=.21.2【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行线的性质得到CD⊥OD,于是得到结论;(2)连接BD,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD,∠,∵AD平分BAC∠=∠,∴CAD BAD∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅. 【点睛】 本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键. 23.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是. 【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,,故答案为:,.(2)①当时,,当时,,故答案为2,6.②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为.性质2:函数图象在第一象限,随的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵23(3)a b m n +=+,∴223323a b m n mn +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 25.(1)DE 与⊙O 相切,理由见解析;(2)阴影部分的面积为2π﹣332. 【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE 与⊙O 相切,理由:连接DO ,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE⊥BE,DF⊥AB,∴DE=DF=3,=6, ∵sin∠DBF=31=62, ∴∠DBA=30°,∴∠DOF=60°,∴sin60°=3DF DO DO ==则1322π-= 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.。
2020年中考数学复习:几何 专项练习题(含答案)
2020年中考数学复习:几何 专项练习题一、选择题1.如图,直角三角板ABC 的斜边AB=12cm ,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6cmB.4cmC.cmD.cm2.如图,△ABC 和△DEF 是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B 与点D 重合,点A ,B (D ),E 在同一条直线上,将△ABC 沿DE 方向平移,至点A 与点E 重合时停止.设点B ,D 之间的距离为x ,△ABC 与△DEF 重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( )A B C D 二、填空题3.如图,将两块直角三角板的斜边重合,E 是两直角三角形公共斜边AC 的中点.D 、B 分别为直角顶点,连接DE 、BE 、DB ,∠DAC=60°,∠BAC=45°.则∠EDB 的度数为_______.(6-()64.如图,一块直角三角形木板△ABC,将其在水平面上沿斜边AB所在直线按顺时针方向翻滚,使它滚动cm.三、解答题5.如图,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)EF+AC =AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与点A1运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图,AF1平分∠B A1C1,交BD于F1,过F1作F1E1⊥A1C1,垂足为E1,试猜想F1E1,A1C1与AB之间的数量关系,并证明你的猜想.(3)在(2)的条件下,当A1 E1=3,C1 E1=2时,求BD的长.21216.如图,等腰Rt△ABC 中,∠C=90°,AC=6,动点P 、Q 分别从A 、B 两点同时以每秒1个单位长的速度按顺时针方向沿△ABC 的边运动,当Q 运动到A 点时,P 、Q 停止运动.设Q 点运动时间为t 秒,点P 运动的轨迹与PQ 、AQ 围成图形的面积为S.求S 关于t 的函数解析式.7.正方形ABCD中,点F为正方形ABCD 内的点,△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合. (1)如图1,若正方形ABCD 的边长为2,BE=1,FC=,求证:AE ∥BF ;(2)如图2,若点F 为正方形ABCD 对角线AC 上的点,且AF :FC=3:1,BC=2,求BF 的长.8.将正方形ABCD 和正方形BEFG 如图1摆放,连DF .∠DMC=_____;∠DMC 的值,并证明你的结论;3∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).9.已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.10.将正方形ABCD和正方形CGEF如图1摆放,使D点在CF边上,M为AE中点,(1)连接MD、MF,则容易发现MD、MF间的关系是______________(2)操作:把正方形CGEF绕C点旋转,使对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M,探究线段MD、MF的关系,并加以说明;(3)将正方形CGEF绕点C旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明.DMDC交射线ON 于点B ,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB ;(2)如图2,若点C 是AB 与OP 的交点,当S △POB =3S △PCB 时,求PB 与PC 的比值;(3)若∠MON=60°,OB=2,射线AP 交ON 于点D ,且满足且∠PBD=∠ABO ,请借助图3补全图形,并求OP 的长.12、在中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在①的条件下,设CP 1=,S =,求与之间的函数关系式,并写出自变量的取值范围.图1 备用图13、已知:如图,N 、M 是以O 为圆心,1为半径的圆上的两点,B 是上一动点(B 不与点M 、N 重合),ABCD Y 90o90o 90o43x 11P FC V y y xx ¼MN∠MON=90°,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)四边形EPGQ (填“是”或者“不是”)平行四边形; (2)若四边形EPGQ 是矩形,求OA 的值.14、已知如图,在梯形中,点是的中点,是等边三角形.(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变.设 求与的函数关系式;(3)在(2)中,当取最小值时,判断的形状,并说明理由.15、已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处. (1)当=1 时,CF=______cm , (2)当=2 时,求sin∠DAB′ 的值; (3)当= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).ABCD 24AD BC AD BC ==∥,,,M AD MBC △ABCD P Q BC MC 60MPQ =︒∠PC x MQ y ==,,y x y PQC△CEBECEBECEBE16、在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)17、已知:如图(1),射线射线,是它们的公垂线,点、分别在、 上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合), 在运动过程中始终保持,且. (1)求证:∽;(2)如图(2),当点为边的中点时,求证:;(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由.3=BC xx //AM BN AB D C AM BN D A C B E AB E A B EC DE ⊥a AB DE AD ==+ADE ∆BEC ∆E AB CD BC AD =+m AE =BEC ∆m m BEC∆18、已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接. (1)直接写出线段与的数量关系;(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)参考答案 一、选择题 1.【答案】C. 2.【答案】B. 二、填空题 3.【答案】15°.4.三、解答题5.【答案与解析】(1)证明:如图1,过点F 作FM ⊥AB 于点M ,在正方形ABCD 中,AC ⊥BD 于点E . ∵AF 平分∠BAC , ∴EF=MF , 又∵AF=AF ,ABCD E BD E EF BD ⊥BC F DF G DF EG CG ,EG CG BEF ∆B 45︒DF G EG CG ,BEF ∆B 图3图2图1FEABCDABC DEFGGFED C BA∴Rt △AMF ≌Rt △AEF , ∴AE=AM ,∵∠MFB=∠ABF=45°, ∴MF=MB,MB=EF , ∴EF+AC=MB+AE=MB+AM=AB .(2)E 1F 1,A 1C 1与AB 三者之间的数量关系:E 1F 1+A 1C 1=AB 证明:如图2,连接F 1C 1,过点F 1作F 1P ⊥A 1B 于点P ,F 1Q ⊥BC 于点Q , ∵A 1F 1平分∠BA 1C 1,∴E 1F 1=PF 1;同理QF 1=PF 1,∴E 1F 1=PF 1=QF 1, 又∵A 1F 1=A 1F 1,∴Rt △A 1E 1F 1≌Rt △A 1PF 1, ∴A 1E 1=A 1P ,同理Rt △QF 1C 1≌Rt △E 1F 1C 1, ∴C 1Q=C 1E 1, 由题意:A 1A=C 1C ,∴A 1B+BC 1=AB+A 1A+BC -C 1C=AB+BC=2AB , ∵PB=PF 1=QF 1=QB ,∴A 1B+BC 1=A 1P+PB+QB+C 1Q=A 1P+C 1Q+2E 1F 1, 即2AB=A 1E 1+C 1E 1+2E 1F 1=A 1C 1+2E 1F 1, ∴E 1F 1+A 1C 1=AB . (3)解:设PB=x ,则QB=x , ∵A 1E 1=3,QC 1=C 1E 1=2,Rt △A 1BC 1中,A 1B 2+BC 12=A 1C 12, 即(3+x )2+(2+x )2=52, ∴x 1=1,x 2=-6(舍去), ∴PB=1, ∴E 1F 1=1, 又∵A 1C 1=5,121212126.【答案与解析】当P运动到C点时:t=6当Q运动到A点:t=∴分两种情况讨论(1)当0≤t≤6时,如图:作PH⊥AB于H,则△APH为等腰直角三角形此时AP=t,BQ=t,则AQ=-tPH=APsin45°=t∴S△AQP=AQ·PH=·(-t)·t=t2+3t(2)当6<t≤时,如图:过P过PH⊥AB于H,此时△PBH为等腰直角三角形AC+CP=t,BQ=t∴BP=AC+CB-(AC+CP)=12-t∴PH=BPsin45°=(12-t)∴S四边形AQPC=S△ABC-S△BPQ=AC·BC-BQ·PH=·6·6-·t·(12-t)=18-t+t2=t2-t+18.综上,.7.【答案与解析】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC在△BFC中,BC2=22=4∴BF2+FC2=BC2∴∠BFC=90°…(3分)∴∠AEB+∠EBF=180°∴AE ∥BF …(4分)(2)解:∵Rt △ABC 中,AB=BC=2,由勾股定理,得∵AF :FC=3:1,∵△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合∵四边形ABCD 是正方形∴∠ABC=90°∴∠BAC+∠ACB=90° ∴∠EAB+∠BAC=90°即∠EAF=90° 在Rt △EBF 中,EF 2=BE 2+BF 2∵BE=BF8.【答案与解析】(1)如图2,连接BF ,∵四边形ABCD 、四边形BEFG 是正方形,∴∠FBC=∠CBD=45°,∴∠CBD=∠GBC=90°,而BF=BG ,BD=BC ,∴△BFD ∽△BGC ,22而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,(2)如图3,∵将图1中的正方形BEFG 绕B 点顺时针旋转45°,DF 的延长线交CG 于M ,∴B 、E 、D 三点在同一条直线上,而四边形ABCD 、四边形BEFG 是正方形,∴△BFD ∽△BGC ,而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,即∠DMC=45°;9.【答案与解析】(1)CE ⊥BD .(2)延长CE 交BD 于M ,设AB 与EM 交于点F .∵∠BAC=∠DAE=90°, ∴∠CAE=∠BAD .又∵△ABC ≌△ADE ,∴AC=AE ,AB=AD , ∴∠ACE=,∠ABD=,∴∠ACE=∠ABD .又∵∠AFC=∠BFM ,∠AFC+∠ACE=90°,∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE ⊥BD .(3)过C ′作C ′G ⊥AM 于G ,过D 作DH ⊥AM 交延长线于点H .∵∠∠E ′NA=∠AGC ′=90°,∴∠NE ′A+∠NAE ′=90°,∠NAE ′+∠C ′AG=90°,∴∠NE ′A=∠C ′AG ,∵AE ′=AC ′∴△ANE ′≌△C ′GA (AAS ),∴AN=C ′G .同理可证△BNA ≌△AHD ,AN=DH .∴C ′G=DH .在△C ′GM 与△DHM 中,∠C ′GM=∠DHM=90°,∠C ′MG=∠DMH ,C ′G=DH ,∴△C ′GM ≌△DHM ,∴C ′M=DM ,01802CAE -∠01802BAD -∠10.【答案与解析】如图1,延长DM交FE于N,图1∵正方形ABCD、CGEF,∴CF=EF,AD=DC,∠CFE=90°,AD∥FE,∴∠1=∠2,又∵MA=ME,∠3=∠4,∴△AMD≌△EMN,∴MD=MN,AD=EN.∵AD=DC,∴DC=NE.又∵FC=FE,∴FD=FN.又∵∠DFN=90°,∴FM⊥MD,MF=MD;(2)MD=MF,MD⊥MF.如图2,延长DM交CE于N,连接FD、FN.∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2.又∵AM=EM,∠3=∠4,∴△ADM≌△ENM,∴AD=EN,MD=MN.∵AD=DC,∴DC=NE.又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°.又∵正方形ABCD,∴∠BCD=90°,∴∠DCF=∠NEF=45°,∴△FDC≌△FNE,∴FD=FN,∠5=∠6,∠DFN=∠5+∠CFN=∠6+∠CFN=90°,∴△DFN为等腰直角三角形,且FM为斜边DN上的中线,∴MD=MF,MD⊥MF;(3)FM⊥MD,MF=MD.如图3,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,AD∥EH,∴∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN,∴DM=NM,AD=EN.∵正方形ABCD、CGEF,∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°.∴∠H=90°,∠5=∠NEF,DC=NE.∴∠DCF+∠7=∠5+∠7=90°,∴∠DCF=∠5=∠NEF.∵FC=FE,∴△DCF≌△NEF.∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°,∴∠DFN=90°.∴FM⊥MD,MF=MD.11、 【答案】(1)作PE ⊥OM ,PF ⊥ON ,垂足为E 、F ∵四边形OEPF 中,∠OEP=∠OFP=90°, ∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB ,即∠EPA+∠APF=∠APF+∠FPB ,∴∠EPA=∠FPB , 由角平分线的性质,得PE=PF ,∴△EPA ≌△FPB ,即PA=PB ;(2)∵S △POB =3S △PCB ,∴PO=3PC ,由(1)可知△PAB 为等腰三角形,则∠PBC=(180°-∠APB )=∠MON=∠BOP , 又∵∠BPC=∠OPB (公共角),∴△PBC ∽△POB ,∴, 即PB 2=PO •PC=3PC 2,∴ (3)作BH ⊥OT ,垂足为H ,当∠MON=60°时,∠APB=120°,由PA=PB ,得∠PBA=∠PAB=(180°-∠APB )=30°, 又∵∠PBD=∠ABO ,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°, 在△OBP 中,∵∠BOP=30°,∴∠BPO=45°,在Rt △OBH 中,BH=OB=1,OH=, 1212PB PC PO PB=3PB PC=1212123在Rt △PBH 中,PH=BH=1,∴OP=OH+PH=+1.12、【答案与解析】(1)①直线与直线的位置关系为互相垂直.证明:如图1,设直线与直线的交点为.∵线段分别绕点逆时针旋转90°依次得到线段,∴.∵,, ∴. ∴. ∴. ∵,∴, ∴.31FG CD 1FG CD H 1EC EP 、E 1EF EG 、111190PEG CEF EG EP EF EC ∠=∠===°,,1190G EF PEF ∠=-∠°1190PEC PEF ∠=-∠°11G EF PEC ∠=∠11G EF PEC △≌△11G FE PCE ∠=∠EC CD ⊥190PCE ∠=°190G FE ∠=°FDC BAE 图1 G 2 G 1P 1 H P 2∴.∴.∴.②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.(2)∵四边形是平行四边形,∴.∵, ∴. 可得. 由(1)可得四边形为正方形.∴. ①如图2,当点在线段的延长线上时,∵, ∴. 90EFH ∠=°90FHC ∠=°1FG CD ⊥12G G CD ABCD B ADC ∠=∠461tan 3AD AE B ===,,45tan tan 3DE EBC B =∠==,4CE =EFCH 4CH CE ==1P CH 1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯⨯=△D G 1P 1 H C BAE F∴. ②如图3,当点在线段上(不与两点重合)时, ∵, ∴. ∴. ③当点与点重合时,即时,不存在.综上所述,与之间的函数关系式及自变量的取值范围是或. 13、【答案】(1)是.证明:连接OB ,如图①,212(4)2y x x x =->1P CH C H 、1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯=△212(04)2y x x x =-+<<1P H 4x =11PFG △y x x 212(4)2y x x x =->212(04)2y x x x =-+<<FG 1 P 1 CAB E D H∵BA ⊥OM ,BC ⊥ON , ∴∠BAO=∠BCO=90°, ∵∠AOC=90°, ∴四边形OABC 是矩形.∴AB ∥OC ,AB=OC ,∵E 、G 分别是AB 、CO 的中点,∴AE ∥GC ,AE=GC ,∴四边形AECG 为平行四边形.∴CE ∥AG ,∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,∴GF ∥OB ,DE ∥OB ,∴PG ∥EQ ,∴四边形EPGQ 是平行四边形;(2)解:如图②,∵口EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE .∴△AED ∽△BCE ,∴, AD AE BE BC得y 2=2x 2,又∵OA 2+AB2=OB 2, 即x 2+y 2=12.∴x 2+2x 2=1,14、【答案与解析】(1)证明:∵是等边三角形∴∵是中点∴∵∴∴∴∴梯形是等腰梯形.(2)解:在等边中, ∴ ∴ ∴∴ MBC △60MB MC MBC MCB ===︒,∠∠M AD AM MD =AD BC ∥60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠AMB DMC △≌△AB DC =ABCD MBC △4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠120BMP BPM BPM QPC +=+=︒∠∠∠∠BMP QPC =∠∠BMP CQP △∽△PC CQ BM BP=∵∴∴∴(3)解:为直角三角形,∵∴当取最小值时,∴是的中点,而∴∴∴为直角三角形.15、【答案与解析】(1)CF=6cm;(2)①如图1,当点E在BC上时,延长AB′交DC于点M,PC x MQ y==,44BP x QC y=-=-,444x yx-=-2144y x x=-+PQC△()21234y x=-+y2x PC==P BC MP BC⊥,60MPQ=︒∠,30CPQ=︒∠,90PQC=︒∠PQC△图1∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴ . ∵ =2, ∴ CF=3. ∵ AB ∥CF,∴∠BAE=∠F .又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF .设MA=MF=k ,则MC=k -3,DM=9-k .在Rt △ADM 中,由勾股定理得:k 2=(9-k)2+62, 解得 k=MA=. ∴ DM=. ∴ sin ∠DAB ′=; ②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N ,同①可得NA=NE .设NA=NE=m ,则B ′ N=12-m .在Rt △AB ′ N 中,由勾股定理,得m 2=(12-m)2+62, 解得 m=AN=. ∴ B ′N=. ∴ sin ∠DAB ′=. (3)①当点E 在BC 上时,y=; FCAB CE BE =CEBE 13252135=AM DM 1529253='AN N B 18x x 1+图2②当点E 在BC 延长线上时,y=. 16、【答案与解析】(1)结论:CF ⊥BD ; 证明如下:AB=AC ,∠ACB =45º,∴∠ABC=45º.由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º,∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD .∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .(2)CF ⊥BD .(1)中结论仍成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q ,①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴DQ=4-x ,易证△AQD ∽△DCP ,∴ ,∴, .18x 18x-ΘCP CD DQ AQ =44CP x x =-24x CP x ∴=-+②点D 在线段BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x .过A 作AQ ⊥BC , ∴∠Q=∠FQC=90°,∠ADQ=∠AFC ,则△AQD ∽△ACF .∴CF ⊥BD ,∴△AQD ∽△DCP ,∴, ∴, . 17、【答案】(1)证明:∵,∴.∴.又∵,∴.∴.∴∽.(2)证明:如图,过点作,交于点,∵是的中点,容易证明. CD DQ AQ 4+4x x =24x CP x ∴=+EC DE ⊥︒=∠90DEC ︒=∠+∠90BEC AED ︒=∠=∠90B A ︒=∠+∠90EDA AED EDA BEC ∠=∠ADE ∆BEC ∆E EF BC //CD F E AB )(21BC AD EF +=在中,∵ ,∴ . ∴ . ∴ .(3)解:的周长,. 设,则.∵ ,∴ .即.∴ . 由(1)知∽,∴ . ∴ 的周长的周长. ∴ 的周长与值无关.18、【答案与解析】(1)(2)(1)中结论没有发生变化,即.证明:连接,过点作于,与的延长线交于点. 在与中,∵,∴.∴.DEC Rt ∆CF DF =CD EF 21=)(21BC AD +CD 21=CD BC AD =+AED ∆DE AD AE ++=m a +=m a BE -=x AD =x a DE -=︒=∠90A 222AD AE DE +=22222x m x ax a +=+-am a x 222-=ADE ∆BEC ∆的周长的周长BEC ∆∆ADE BEAD =m a a m a --=222a m a 2+=BEC ∆⋅+=m a a 2ADE ∆a 2=BEC ∆m CG EG =CG EG =AG G MN AD ⊥M EF N DAG ∆DCG ∆AD CD ADG CDG DG DG =∠=∠=,,DAG DCG ∆∆≌AG CG =在与中,∵, ∴.∴在矩形中,在与中,∵,∴.∴.∴(3)(1)中的结论仍然成立.DMG ∆FNG ∆DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,DMG FNG ∆∆≌MG NG =AENM AM EN =Rt AMG ∆Rt ENG ∆AM EN MG NG ==,AMG ENG ∆∆≌AG EG =EG CG =M N图2A B CDE F GG图3FE A B CD。
2020年数学中考试题(附答案)
去掉一个最高分和一个最低分对中位数没有影响,故选 A. 【点睛】 考查了统计量的选择,解题的关键是了解中位数的定义.
4.A
解析:A 【解析】
【分析】 设索长为 x 尺,竿子长为 y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一 托”,即可得出关于 x、y 的二元一次方程组. 【详解】
设索长为 x 尺,竿子长为 y 尺,
后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定
不发生变化的是( )
A.中位数
B.平均数
C.众数
D.方差
4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿
子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索
去量竿,绳索比竿长 5 尺;如果将绳索对半折后再去量竿,就比竿短 5 尺.设绳索长 x
∴a、b 异号,
∴ab<0,故正确;
②∵对称轴 x b 1, 2a
∴2a+b=0;故正确;
,
则小球落地点距 O 点水平距离为 7 米,C 正确,不符合题意;
∵斜坡可以用一次函数 y= 1 x 刻画, 2
∴斜坡的坡度为 1:2,D 正确,不符合题意;
故选:A. 点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二
次函数的性质是解题的关键.
8.C
解析:C 【解析】
从上面看,看到两个圆形,
尺,竿长 y 尺,则符合题意的方程组是( )
x y5 A.{1 x y 5
2
x y5 B.{1 x y+5
2
x y5 C.{
2x y-5
x y-5 D.{接于⊙O,点 D 在⊙O 外(与点 C 在 AB 同侧),则下列三个结
四川省成都市2020年中考数学试题及答案(word版含答案)
2020年成都中考数学试题A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. -2的绝对值是(A) -2 (B) 1 (C) 2 (D)122.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是3.2020 年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成。该卫星距离地面约36000千米,将数据36000用科学记数法表示为 ()3A 3.610⨯ 4()3.610B ⨯ 5()3.610C ⨯ 4()3610D ⨯4.在平面直角坐标系中将点P(3,2)向下平移2个单位长度得到的点的坐标是(A) (3,0) (B) (1,2) (C) (5,2) (D) (3,4)5.下列计算正确的是()325A a b ab += 326()B a a a ⋅=3262()()C a b a b -= 233()D a b a b ÷=6.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴。某班同学分小组到以上五个地方进行研学旅行,人数分别为:12 ,5,11,5,7(单位:人) ,这组数据的众数和中位数分别是(A)5人,7人 (B) 5人,11人 (C) 5人,12人 (D) 7人,11人7.如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N;②作直线MN交AC 于点D,连接BD.若AC=6,AD=2,则BD 的长为(A) 2 (B) 3 (C) 4 (D) 68.已知x=2是分式方程311k x x x -+=-的解,那么实数k 的值为 (A) 3 (B)4 (C) 5 (D) 69. 如图,直线123////,l l l 直线AC 和DF 被123,,l l l 所截,AB=5, BC=6,EF=4,则DE 的长为(A) 2 (B) 3(C) 4 10()3D 10.关于二次函数228y x x =+-,下列说法正确的是(A)图象的对称轴在y 轴的右侧(B)图象与y 轴的交点坐标为(0,8)(C)图象与x 轴的交点坐标为(-2 ,0)和(4,0)(D)y 的最小值为-9第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.分解因式:23x x += ______.12.一次函数y=(2m-1)x + 2的值随x 值的增大而增大,则常数m 的取值范围为________.13.如图,A,B,C 是⊙O 上的三个点,∠AOB=50°,∠B=55° ,则∠A 的度数为_______.14.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系。其中卷八方程【七】中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为______.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算: 212sin 60()|22︒-++ (2)解不等式组:4(1)2,21 1.3x x x x -≥+⎧⎪⎨+>-⎪⎩②①16. (本小题满分6分)先化简,再求值:212(1)39x x x +-÷+-,其中3x =17. (本小题满分8分)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会。目前,运动会相关准备工作正在有序进行,比赛项目已经确定。某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图。根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为____.(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率。18. (本小题满分8分)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地。如图,为测量电视塔观景台A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶D 处测得塔A 处的仰角为45° ,塔底部B 处的俯角为22°.已知建筑物的高CD 约为61米,请计算观景台的高AB 的值.(结果精确到1米;参考数据:sin22°≈0.37 ,cos22°≈0.93 ,tan22°≈0.40)19. (本小题满分10分)在平面直角坐标系xOy 中,反比例函数(0)m y x x=>的图象经过点A(3,4) ,过点A 的直线y=kx+b 与x 轴、y 轴分别交于B,C 两点。(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式。20. (本小题满分10分)如图,在△ABC 的边BC 上取一点O,以O 为圆心,OC 为半径画⊙O, ⊙O 与边AB 相切于点D,AC=AD,连接OA 交⊙O 于点E,连接CE ,并延长交线段AB 于点F.(1)求证:AC 是⊙O 的切线;(2)若AB=10,tanB=43,求⊙O 的半径; (3)若F 是AB 的中点,试探究BD+CE 与AF 的数量关系并说明理由。B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知a =7-3b,则代数式2269a ab b ++的值为______.22.关于x 的一元二次方程232402x x m -+-=有实数根,则实数m 的取值范围是___.23.如图,六边形ABCDEF 是正六边形,曲线111111FA B C D E F ⋅⋅⋅叫做“正六边形的渐开线”,11111111111,,,,,FA A B B C C D D E E F …的圆心依次按A,B,C,D,E,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线111111FA B C D E F 的长度是____.24.在平面直角坐标系xOy 中,已知直线y=mx (m> 0)与双曲线4y x=交于A,C 两点(点A 在第一象限),直线y=nx(n<0)与双曲线1y=-交于B,D两点。当这两条直线互相垂直,且四边形ABCD的x周长为时,点A的坐标为___.25.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P 的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为_____,线段DH长度的最小值为____.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26. (本小题满分8分)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫。已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售。调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27. (本小题满分10分)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C 恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE 的度数;(2)如图2,当AB=5,且AF·FD= 10时,求BC 的长;(3)如图3,延长EF,与∠ABF 的角平分线交于点M , BM 交AD 于点N,当NF=AN+FD 时,求AB BC的值.28. (本小题满分12分)在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于A(-1 ,0),B(4,0)两点,与y 轴交于点C(0,-2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD,BC 交于点E,连接BD,记△BDE 的面积为1,S △ABE 的面积为2,S 求12S S 的最大值;(3)如图2,连接AC,BC,过点O 作直线l//BC,点P,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB ∽△CAB.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.。
2020年河南中考数学试卷(附答案)
2020年河南省普通高中招生考试数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 2的相反数是()A.12- B.12C. 2D. 2-【答案】D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.2.如下摆放的几何体中,主视图与左视图有可能不同的是()A. B.C. D.【答案】D【解析】【分析】分别确定每个几何体的主视图和左视图即可作出判断.【详解】A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,故选:D.【点睛】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.3.要调查下列问题,适合采用全面调查(普查)的是()A. 中央电视台《开学第--课》 的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A 、中央电视台《开学第--课》 的收视率适合采用抽样调查方式,故不符合题意;B 、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C 、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D 、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A. 100︒B. 110︒C. 120︒D. 130︒【答案】B【解析】【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答的关键.5.电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( )A. 302BB. 308BC. 10810B ⨯D. 30210B ⨯ 【答案】A【解析】【分析】根据题意及幂的运算法则即可求解.【详解】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.6.若点()()()1231,,2,,3,A y B y C y -在反比例函数6y x =-的图像上,则123,,y y y 的大小关系为( ) A. 123y y y >>B. 231y y y >>C. 132y y y >>D. 321y y y >> 【答案】C【解析】【分析】根据点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,可以求得123,,y y y 的值,从而可以比较出123,,y y y 的大小关系.【详解】解:∵点()()()1131,,2,,3,A y B y C y -在反比例函数6y x =-的图象上, ∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<,∴132y y y >>,故选:C .【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.7.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根【答案】A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案.【详解】解:根据定义得:2110,x x x =--=☆ 1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A【点睛】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.8.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A. ()5000127500x +=B. ()5000217500x ⨯+=C. ()2500017500x +=D. ()()2500050001500017500x x ++++= 【答案】C【解析】【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程.【详解】设我国2017年至2019年快递业务收入的年平均增长率为x ,∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元即2019年我国快递业务收入为7500亿元, ∴可列方程:()2500017500x +=, 故选C .【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系得到方程. 9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为( )A. 3,22⎛⎫ ⎪⎝⎭B. ()2,2C. 11,24⎛⎫ ⎪⎝⎭D. ()4,2【答案】B【解析】【分析】 先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.【详解】解:由题意知:()2,0,C -四边形COED 为正方形,,CO CD OE ∴== 90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B -6,9,AC BC ∴== 由tan ,AC EO ABC BC O B'∠==' 62,9O B∴=' 3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B【点睛】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.如图,在ABC ∆中,3,30AB BC BAC ==∠=︒ ,分别以点,A C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接,,DA DC 则四边形ABCD 的面积为( )A. 63B. 9C. 6D. 33【答案】D【解析】【分析】 连接BD 交AC 于O ,由已知得△ACD 为等边三角形且BD 是AC 的垂直平分线,然后解直角三角形解得AC 、BO 、BD 的值,进而代入三角形面积公式即可求解.【详解】连接BD 交AC 于O ,由作图过程知,AD=AC=CD ,∴△ACD 为等边三角形,∴∠DAC=60º,∵AB=BC,AD=CD ,∴BD 垂直平分AC 即:BD ⊥AC ,AO=OC ,在Rt △AOB 中,3,30AB BAC =∠=︒ ∴BO=AB ·sin30º=3, AO=AB ·cos30º=32,AC=2AO=3, 在Rt △AOD 中,AD=AC=3,∠DAC=60º,∴DO=AD ·sin60º=33, ∴ABC ADC ABCD S S S ∆∆=+四边形=131********⨯⨯+⨯⨯=, 故选:D .【点睛】本题考查了作图-基本作图、等边三角形的判定与性质、垂直平分线、解直角三角形、三角形的面积等知识,解题的关键是灵活运用所学知道解决问题,属于中考常考题型.二、填空题:(每题3分,共15分)11.请写出一个大于1且小于2的无理数: .2.【解析】【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】大于1且小于2的无理数可以是2,?3,?2π-等,故答案为:2(答案不唯一).考点:1.开放型;2.估算无理数的大小.12.已知关于x 的不等式组x a x b >⎧⎨>⎩,其中,a b 在数轴上的对应点如图所示,则这个不等式组的解集为__________.【答案】x >a .【解析】【分析】先根据数轴确定a ,b 的大小,再根据确定不等式组的解集原则:大大取大,小小取小,大小小大中间找,小小大大找不了(无解)确定解集即可. 【详解】∵由数轴可知,a >b ,∴关于x 的不等式组x a x b>⎧⎨>⎩的解集为x >a , 故答案为:x >a . 【点睛】本题考查的是由数轴确定不等式组的解集,根据“大大取大,小小取小,大小小大中间找,小小大大找不了(无解)”得出不等式组的解集是解答此题的关键.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________.【答案】14 【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次颜色相同的情况数,再利用概率公式求解即可求得答案.【详解】画树状图得:∵共有16种等可能的结果,两次颜色相同的有4种情况, ∴两个数字都是正数的概率是41164=, 故答案为:14. 【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.14.如图,在边长为22的正方形ABCD 中,点,E F 分别是边,AB BC 的中点,连接,,EC FD 点,G H 分别是,EC FD 的中点,连接GH ,则GH 的长度为__________.【答案】1【解析】【分析】过E 作EP DC ⊥,过G 作GQ DC ⊥,过H 作HR BC ⊥,HR 与GQ 相交于I ,分别求出HI 和GI 的长,利用勾股定理即可求解.【详解】过E 作EP DC ⊥,过G 作GQ DC ⊥,过H 作HR BC ⊥,垂足分别P ,R ,R ,HR 与GQ相交于I ,如图,∵四边形ABCD 是正方形, ∴22AB AD DC BC ==== 90A ADC ∴∠=∠=︒,∴四边形AEPD 是矩形, ∴22EP AD ==,∵点E ,F 分别是AB ,BC 边的中点, ∴122PC DC ==122FC BC == EP DC ⊥,GQ DC ⊥,GQ EP ∴//∵点G 是EC 的中点,GQ ∴是EPC ∆的中位线, 122GQ EP ∴== 同理可求:2HR =,由作图可知四边形HIQP 是矩形, 又HP=12FC ,HI=12HR=12PC , 而FC=PC ,∴ HI HP =,∴四边形HIQP 是正方形, ∴22IQ HP ==, ∴22222GI GQ IQ HI =-===HIG ∴∆是等腰直角三角形, 21GH HI ∴== 故答案为:1.【点睛】此题主要考查了正方形的判定与性质,三角形的中位线与勾股定理等知识,正确作出辅助线是解答此题的关键.15.如图,在扇形BOC 中,60,BOC OD ∠=︒平分BOC ∠交狐BC 于点D .点E 为半径OB 上一动点若2OB =,则阴影部分周长的最小值为__________.【答案】2.3π【解析】【分析】 如图,先作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,再分别求解,AD CD 的长即可得到答案.【详解】解:C 阴影=,CE DE CD ++∴ C 阴影最短,则CE DE +最短,如图,作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,则,CE AE =,CE DE AE DE AD ∴+=+= 此时E 点满足CE DE +最短,60,COB AOB OD ∠=∠=︒平分,CB30,90,DOB DOA ∴∠=︒∠=︒2,OB OA OD ===222222,AD ∴=+=而CD 的长为:302,1803ππ⨯= ∴ C 阴影最短为22.3π+故答案为:22.3π+【点睛】本题考查的是利用轴对称求最短周长,同时考查了圆的基本性质,扇形弧长的计算,勾股定理的应用,掌握以上知识是解题的关键.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中51a = 【答案】1a -5【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 值代入计算即可.【详解】原式=(1)(1)1a a a a a+-+=1a -, 当51a =时,原式5115-=【点睛】本题考查的是分式的化简求值,解答的关键是熟练掌握分式的混合运算顺序和运算法则,注意运算结果要化成最简分式或整式.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下:甲: 501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 512 499 499 501[整理数据]整理以上数据,得到每袋质量()x g 的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:()1表格中的a = b =()2综合上表中统计量,判断工厂应选购哪一台分装机,并说明理由. 【答案】(1)501a =,=15%b .(2)选择乙分装机,理由见解析;【解析】【分析】 (1)把乙的数据从小到大进行排序,选出10、11两项,求出他们的平均数即为乙组数据的中位数;由题可得合格产品的范围是490510x ≤≤,根据这个范围,选出不合格的产品,除以样本总量就可得到结果;(2)根据方差的意义判断即可;【详解】(1)把乙组数据从下到大排序为:487 490 491 493 498 499 499 499 499 501 501 501 502 502 502 503 505 505 506 512,可得中位数=501+501=5012; 根据已知条件可得出产品合格的范围是490510x ≤≤,甲生产的产品有3袋不合格,故不合格率为3100%=15%20⨯. 故501a =,=15%b .(2)选择乙分装机;根据平均数相同,中位数乙跟接近标准适质量,方差的意义可知:方差越小,数据越稳定,由于22甲乙=42.01>=31.81S S ,并且乙的不合格率要低于甲,综上则应选取乙分装机.【点睛】本题主要考查了根据图标数据进行中位数的求解,准确理解表中各项数据是解题的关键. 18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水 平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22︒,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45︒.测角仪的高度为1.6m ,()1求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:220.37,220.93,222 1.41sin cos tan ︒≈︒≈︒≈≈);()2“景点简介”显示,观星台的高度为12.6m ,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【答案】(1)12.3m ;(2)0.3m ,多次测量,求平均值【解析】【分析】(1)过点A 作AE ⊥MN 交MN 的延长线于点E ,交BC 的延长线于点D ,根据条件证出四边形BMNC 为矩形、四边形CNED 为矩形、三角形ACD 与三角形ABD 均为直角三角形,设AD 的长为xm ,则CD=AD=xm ,BD=BC+CD=(16+x )m ,在Rt △ABD 中,解直角三角形求得AD 的长度,再加上DE 的长度即可; (2)根据(1)中算的数据和实际高度计算误差,建议是多次测量求平均值.【详解】解:(1)如图,过点A 作AE ⊥MN 交MN 的延长线于点E ,交BC 的延长线于点D ,设AD 的长为xm ,∵AE ⊥ME ,BC ∥MN ,∴AD ⊥BD ,∠ADC=90°,∵∠ACD=45°,∴CD=AD=xm ,BD=BC+CD=(16+x )m ,由题易得,四边形BMNC 为矩形,∵AE ⊥ME ,∴四边形CNED 为矩形,∴DE=CN=BM=1.6m ,在Rt △ABD 中,tan ABD=0.4016AD x BD x==+∠, 解得:10.7x ≈,即AD=10.7m ,AE=AD+DE=10.7+1.6=12.3m ,答:观星台最高点A 距离地面的高度为12.3m .(2)本次测量结果的误差为:12.6-12.3=0.3m ,减小误差的合理化建议:多次测量,求平均值.【点睛】本题考查解直角三角形的实际应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x (次),按照方案一所需费用为1y ,(元),且11y k x b =+;按照方案二所需费用为2y (元) ,且22.y k x =其函数图象如图所示. ()1求1k 和b 的值,并说明它们的实际意义;()2求打折前的每次健身费用和2k 的值;()3八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【答案】(1)k 1=15,b=30;k 1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元;(2)打折前的每次健身费用为25元,k 2=20;(3)方案一所需费用更少,理由见解析.【解析】【分析】(1)用待定系数法代入(0,30)和(10,180)两点计算即可求得1k 和b 的值,再根据函数表示的实际意义说明即可;(2)设打折前的每次健身费用为a 元,根据(1)中算出的1k 为打六折之后的费用可算得打折前的每次健身费用,再算出打八折之后的费用,即可得到2k 的值;(3)写出两个函数关系式,分别代入x=8计算,并比较大小即可求解.【详解】解:(1)由图象可得:11y k x b =+经过(0,30)和(10,180)两点,代入函数关系式可得:13018010b k b =⎧⎨=+⎩, 解得:13015b k =⎧⎨=⎩, 即k 1=15,b=30,k 1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元; (2)设打折前的每次健身费用为a 元,由题意得:0.6a=15,解得:a=25,即打折前的每次健身费用为25元,k 2表示每次健身按八折优惠的费用,故k 2=25×0.8=20;(3)由(1)(2)得:11530y x =+,220y x =,当小华健身8次即x=8时,115830150y =⨯+=,2208160y =⨯=,∵150<160,∴方案一所需费用更少,答:方案一所需费用更少.【点睛】本题考查一次函数的实际应用,用待定系数法求解函数关系式并结合题意计算出原价是解题的关键.20.我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的,人们根据实际需要,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线 上,且AB 的长度与半圆的半径相等;DB 与AC 重直F 点 ,B DB 足够长.使用方法如图2所示,若要把MEN ∠三等分,只需适当放置三分角器,使DB 经过MEN ∠的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则,EB EO 就把MEN ∠三等分了. 为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点在,,,A B O C 同一直线上,,EB AC ⊥垂足为点B ,求证:【答案】E 在BD 上,ME 过点A ,,AB OB OC == EN 为半圆O 的切线,切点为F ;EB ,EO 为∠MEN 的三等分线.证明见解析.【解析】【分析】如图,连接OF .则∠OFE=90°,只要证明EAB EOB ≌,OBE OFE ≌,即可解决问题;【详解】已知:如图2,点在,,,A B O C 同一直线上,,EB AC ⊥垂足为点B , E 在BD 上,ME 过点A ,,AB OB OC ==EN 为半圆O 的切线,切点为F .求证: EB ,EO 为∠MEN 的三等分线..证明:如图,连接OF .则∠OFE=90°,∵EB ⊥AC ,EB 与半圆相切于点B ,∴∠ABE=∠OBE=90°,∵BA=BO .EB=EB ,EAB EOB ∴≌∴∠AEB=∠BEO ,∵EO=EO .OB=OF ,∠OBE=∠OFE 90=︒,∴OBE OFE ≌,∴∠OEB=∠OEF ,∴∠AEB=∠BEO=∠OEF ,∴EB ,EO 为∠MEN 的三等分线.故答案为:E 在BD 上,ME 过点A ,,AB OB OC ==EN 为半圆O 的切线,切点为F .EB ,EO 为∠MEN 的三等分线.【点睛】本题考查的是全等三角形的判定和性质、切线的性质等知识,解题的关键学会添加常用辅助线,构造全等三角形解决问题.21.如图,抛物线22y x x c =-++与x 轴正半轴,y 轴正半轴分别交于点,A B ,且,OA OB =点G 为抛物线的顶点.()1求抛物线的解析式及点G 的坐标;()2点,M N 为抛物线上两点(点M 在点N 的左侧) ,且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点,M N 之间(含点,M N )的一个动点,求点Q 的纵坐标Q y 的取值范围.【答案】(1)2y x 2x 3=-++,G (1,4);(2)﹣21≤Q y ≤4.【解析】【分析】 (1)根据,OA OB =用c 表示出点A 的坐标,把A 的坐标代入函数解析式,得到一个关于c 的一元二次方程,解出c 的值,从而求出函数解析式,求出顶点G 的坐标. (2)根据函数解析式求出函数图像对称轴,根据点M,N 到对称轴的距离,判断出M,N 的横坐标,进一步得出M,N 的纵坐标,求出M,N 点的坐标后可确定Q y 的取值范围. 【详解】解:(1)∵抛物线22y xx c =-++与y 轴正半轴分别交于点B , ∴B 点坐标为(c ,0),∵抛物线22y x x c =-++经过点A ,∴﹣c 2+2c+c=0,解得c 1=0(舍去),c 2=3,∴抛物线的解析式为2y x 2x 3=-++∵2y x 2x 3=-++=﹣(x -1)2+4,∴抛物线顶点G 坐标为(1,4).(2)抛物线2y x 2x 3=-++的对称轴为直线x=1,∵点M,N 到对称轴的距离分别为3个单位长度和5个单位长度 ,∴点M 的横坐标为﹣2或4,点N 的横坐标为﹣4或6,点M 的纵坐标为﹣5,点N 的纵坐标为﹣21,又∵点M 在点N 的左侧,∴当M 坐标为(﹣2,﹣5)时,点N 的坐标为(6,﹣21),则﹣21≤Q y ≤4当当M 坐标为(4,﹣5)时,点N 的坐标为(6,﹣21),则﹣21≤Q y ≤﹣5,∴Q y 的取值范围为﹣21≤Q y ≤4.【点睛】本题考查的是二次函数的基本的图像与性质,涉及到的知识点有二次函数与坐标轴交点问题,待定系数法求函数解析式,对称轴性质等,解题关键在于利用数形结合思想正确分析题意,进行计算. 22.小亮在学习中遇到这样一个问题: 如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y 的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.23.将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ' ,记旋转角为α.连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接,DB CE ',()1如图1,当60α=︒时,DEB '∆的形状为 ,连接BD ,可求出BB CE'的值为 ;()2当0360α︒<<︒且90α≠︒时,①()1中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由; ②当以点,,,B E C D '为顶点的四边形是平行四边形时,请直接写出'BE B E的值.【答案】(12(2)①结论不变,理由见解析;②3或1.【解析】【分析】(1)根据题意,证明ABB '是等边三角形,得60AB B '∠=,计算出45DB E ︒'∠=,根据DE BB '⊥,可得DEB '∆为等腰直角三角形;证明BDB CDE '△△,可得BB CE'的值; (2)①连接BD ,通过正方形性质及旋转,表示出45EB D AB D AB B ︒'''∠=∠-∠=,结合DE BB '⊥,可得DEB '∆为等腰直角三角形;证明B DB EDC '△△,可得BB CE'的值; ②分为以CD 为边和CD 为对角线两种情况进行讨论即可. 【详解】(1)由题知60BAB '∠=°,90BAD ∠=°,AB AD AB '==∴30B AD '∠=°,且ABB '为等边三角形∴60AB B '∠=°,1(18030)752AB D ︒︒︒'∠=-= ∴180607545DB E ︒︒︒︒'∠=--=∵DE BB '⊥∴90DEB '∠=°∴45B DE '∠=°∴DEB '△为等腰直角三角形连接BD ,如图所示∵45BDC B DE '∠=∠=°∴BDC B DC B DE B DC '''∠-∠=∠-∠即BDB CDE '∠=∠∵22CD DE BD DB =='∴BDB CDE '△△∴=22BB BD CE CD '=2(2)①两个结论仍然成立连接BD ,如图所示:∵AB AB '=,BAB α'∠= ∴902ABB α︒'∠=-∵90,B AD AD AB α︒''∠=-= ∴1352AB D α︒'∠=-∴45EB D AB D AB B ︒'''∠=∠-∠=∵DE BB '⊥∴45EDB EB D ︒''∠=∠=∴DEB '△是等腰直角三角形 ∴2DB DE'=∵四边形ABCD 为正方形 ∴2,45BD BDC CD︒=∠= ∴BD DB CD DE '= ∵EDB BDC '∠=∠∴B DB EDC '∠=∠∴B DB EDC '△△ ∴2BB BD CE CD'==∴结论不变,依然成立②若以点,,,B E C D '为顶点的四边形是平行四边形时,分两种情况讨论第一种:以CD 为边时,则//CD B E ',此时点B '在线段BA 的延长线上,如图所示:此时点E 与点A 重合,∴BE CE B E '==,得1BE B E='; ②当以CD 为对角线时,如图所示:此时点F 为CD 中点,∵DE BB '⊥∴CB BB ''⊥∵90BCD ︒∠=∴BCF CB F BB C ''△△△∴2BC CB BB CF B F CB ''===''∴4BB B F ''=∴6,2BE B F B E B F '''==∴3BE B E=' 综上:BE B E '的值为3或1. 【点睛】本题考查了正方形与旋转综合性问题,能准确的确定相似三角形,是解决本题的关键.考试小提示:同学们,天道酬勤,十年寒窗十年苦,大巧若拙勤为路。
2020年中考数学一次函数专题复习(含答案)
2020年中考数学一次函数专题复习【名师精选全国真题,值得下载练习】第Ⅰ卷(选择题)一.选择题1.已知一次函数的图象过点(0,3),且与两坐标轴在第一象限所围成的三角形面积为3,则这个一次函数的表达式为()A.y=1.5x+3 B.y=1.5x﹣3 C.y=﹣1.5x+3 D.y=﹣1.5x﹣3 2.如图,直线y=kx+b与直线y=3x﹣2相交于点(,﹣),则不等式3x﹣2<kx+b 的解为()A.x>B.x<C.x>﹣D.x<﹣3.如图,一次函数y=x+6的图象与x轴,y轴分别交于点A,B,过点B的直线l平分△ABO的面积,则直线l相应的函数表达式为()A.y=x+6 B.y=x+6 C.y=x+6 D.y=x+6 4.已知点(1,y1),(﹣1,y2),(﹣2,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3>y1>y2 5.已知一次函数y=(m+1)x+m2﹣1的图象经过原点,则m的值为()A.1 B.﹣1 C.±1 D.06.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A.甲的速度保持不变B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人不相遇D.在起跑后第50秒时,乙在甲的前面7.若点P在一次函数y=﹣4x+2的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限8.关于函数y=﹣2x﹣1,下列结论正确的是()A.图象必经过(﹣2,1)B.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,y1<y2C.函数的图象向下平移1个单位长度得y=﹣2x﹣2的图象D.当x>0.5时,y>09.在某次物理实验课上,小明同学测得在弹簧的弹性限度内弹簧的长度y与物体质量x 的关系如下表,则y与x的关系式是()x/g0 20 40 60 ……y/cm10 11 12 13 ……A.y=x B.y=0.1x+10 C.y=0.05x+10 D.y=0.2x+10 10.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5 B.x<﹣2 C.﹣2<x<5 D.﹣2<x<1 11.如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B',则点B'的坐标是()A.(7,3)B.(4,5)C.(7,4)D.(3,4)12.如图,已知平面直角坐标系中,A点在x轴上,C点在y轴上,OC=6,OA=OB =10,且BC∥OA,PQ∥AB交AC于D点,且∠ODQ=90°,则D点的坐标为()A.B.C.D.第Ⅱ卷(非选择题)二.填空题13.已知一次函数y=kx+b的图象经过点A(0,﹣3)和B(1,﹣1),则此函数的表达式为.14.已知函数y=(k﹣1)x﹣1,若y随x的增大而减小,则k的取值范围为.15.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:则正确的序号有.①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.16.如图,OA和BA分别表示甲、乙两名学生运动的一次函数的图象,图中s和t分别表示路程和时间,根据图象判定快者比慢者每秒多跑米.17.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线l将这10个正方形分成面积相等的两部分,则该直线的解析式为.18.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一定的速度匀速前往铁山坪体验“飞越丛林”.出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车、取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的倍匀速按原路赶往铁山坪,由于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y(千米)与乙车行驶时间x(小时)之间的部分图象如图所示,则乙车出发小时到达目的地.三.解答题19.如图,一次函数的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)若点D在x轴上,使得S△DOC=2S△BOC的值,请求出D点的坐标;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,则k的值为.20.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息,解决下列问题:(1)求乙离开A城的距离y与x的关系式;(2)求乙出发后几小时追上甲车?21.某企业生产并销售某种产品,整理出该商品在第x(1≤x≤90,x为整数)天的售价y 与x函数关系如图所示,已知该商品的进价为每件30元,第x天的销售量为(200﹣2x)件.(1)试求出售价y与x之间的函数关系式;(2)请求出该商品在销售过程中的最大利润;22.在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于点A,B,点D的坐标为(0,3),点E是线段AB上的一点,以DE为腰在第二象限内作等腰直角△DEF,∠EDF=90°.(1)请直接写出点A,B的坐标:A(,),B(,);(2)设点F的坐标为(a,b),连接FB并延长交x轴于点G,求点G的坐标.23.【模型建立】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】①已知直线l1:y=x+4与x轴交于点A,与y轴交于点B,将直线l1绕着点A逆时针旋转45°至直线l2,如图2,求直线l2的函数表达式;②如图3,在平面直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q是直线y=2x﹣6上的动点且在第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.参考答案一.选择题1.解:设这个一次函数的表达式为y=kx+b(k≠0),与x轴的交点是(a,0).∵一次函数y=kx+b(k≠0)图象过点(0,3),∴b=3.∵这个一次函数与两坐标轴所围成的三角形面积为3,∴×3×|a|=3,解得:a=2或﹣2.∵一次函数的图象与两坐标轴在第一象限围成的三角形,∴a=﹣2把(﹣2,0)代入y=kx+3,得k=1.5,则函数的解析式是y=1.5x+3.故选:A.2.解:不等式3x﹣2<kx+b的解集为x<.故选:B.3.解:∵一次函数y=x+6的图象与x轴,y轴分别交于点A,B,∴令y=0,则求得x=﹣8,令x=0,求得y=6,∴A(﹣8,0),B(0,6),∵过点B的直线l平分△ABO的面积,∴AC=OC,∴C(﹣4,0),设直线l的解析式为y=kx+6,把C(﹣4,0)代入得﹣4k+6=0,解得k=,∴直线l的解析式为y=x+6,故选:D.4.解:∵直线y=﹣x+b,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1<y2<y3.故选:B.5.解:∵一次函数y=(m+1)x+m2﹣1的图象经过原点,∴,解得m=1.故选:A.6.解:由图象可知,甲的速度保持不变,故选项A正确;甲的速度为:800÷180=4米/秒,乙的平均速度为:800÷220=3米/秒,∵4>3,∴乙的平均速度比甲的平均速度小,故选项B错误;在起跑后第180秒时,甲到达终点,乙离终点还有一段距离,他们不相遇,故选项C 正确;在起跑后第50秒时,乙在甲的前面,故选项D正确;故选:B.7.解:∵﹣4<0,2>0,∴一次函数y=﹣4x+2的图象经过第一、二、四象限,即不经过第三象限.∵点P在一次函数y=﹣4x+2的图象上,∴点P一定不在第三象限.故选:C.8.解:A、把x=﹣2代入函数y=﹣2x﹣1得,(﹣2)×(﹣2)﹣1=3≠1,故点(﹣2,1)不在此函数图象上,故本选项错误;B、∵函数y=﹣2x+1中.k=﹣2<0,∴y随x的增大而减小,若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,y1>y2,故本选项错误;C、根据平移的规律,函数y=﹣2x﹣的图象向下平移1个单位长度得y=﹣2x﹣1﹣1,即y=﹣2x﹣2,故本选项正确;D、把x=0.5代入函数y=﹣2x﹣1=﹣2,故本选项错误.故选:C.9.解:在弹簧的弹性限度内弹簧的长度y与物体质量x的关系为一次函数关系,设y与x的关系式为y=kx+b,把,代入,可得,解得,∴y与x的关系式为y=0.05x+10,故选:C.10.解:y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,不等式组的解集即为:x<﹣2,故选:B.11.解:当x=0时,y=4,所以B点坐标为(0,4),所以OB=4,当y=0时,x=3,所以A点坐标为(3,0),所以OA=3.根据旋转的性质可知:O′A=OA=3,O′B′=OB=4,且O′A⊥x轴,O′B′∥x轴,∴B′点到x轴距离为3,到y轴距离为4+3=7,因为B′点在第一象限,所以点B′的坐标为(7,3).故选:A.12.解:如图,作BH⊥OA于H.作DK⊥OA于K.∵BC∥OA,BH∥OC,∴四边形OCBH是平行四边形,∵∠AOC=90°,∴四边形OCBH是矩形,∴OC=BH=6,∵OA=OB=10,∴OH===8,∴AH=OA﹣BH=2,∵C(0,6),A(10,0),∴直线AC的解析式为y=﹣x+6,∵∠ODQ=90°,∴∠DOQ+∠OQD=90°,∵AB∥PQ,∴∠BAH=∠OQD,∵∠BAH+∠ABH=90°,∴∠DOK=∠ABH,∵∠OKD=∠AHB=90°,∴△OKD∽△BHA,∴=,∴==,设DK=m,则OK=3m,∴D(3m,m),代入y=﹣x+6,可得m=,∴D(,),故选:A.二.填空题(共6小题)13.解:由题意可得方程组,解得,则此函数的解析式为:y=2x﹣3,故答案为y=2x﹣3.14.解:∵一次函数y=(k﹣1)x﹣1,当k﹣1<0时,即k<1时,一次函数图象经过第二、四象限,y随x的增大而减小,所以k的取值范围为k<1.故答案为k<1.15.解:∵直线y1=kx+b经过第一、三象限,∴k<0,所以①正确;∵直线y2=x+a与y轴的交点在x轴下方,∴a<0,所以②错误;∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,∴关于x的方程kx+b=x+a的解是x=3,所以③正确;当x>3时,y1<y2,所以④正确.故答案为①③④.16.解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),8﹣6.5=1.5(米),所以快者比慢者每秒多跑1.5米.故答案为:1.517.解:将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD的面积只要等于5即可,∴设BC=4﹣x,则[(4﹣x)+3]×3÷2=5,解得,x=,∴点B的坐标为(,3),设过点A和点B的直线的解析式为y=kx+b,,解得,,即过点A和点B的直线的解析式为y=,故答案为:y=.18.解:设甲车的速度为a千米/小时,乙车回家时的速度是b千米/小时,a=b,,设a=8m,b=9m(m>0),由图象得乙车行驶小时两边相距千米,﹣=,m=5,∴a=40,b=45,设t小时两车相距3千米,=+3+(t﹣)×40,t=,故答案为:.三.解答题(共5小题)19.解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,在y=﹣x+5中,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∵S△DOC=2S△BOC,∴OD×4=2×,∴OD=5,∴D点的坐标为(5,0)或(﹣5,0);(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣,故答案为或2或﹣.20.解:(1)设乙对应的函数关系式为y=kx+b将点(4,300),(1,0)代入y=kx+b得:解得:,∴乙对应的函数关系式y=100x﹣100;(2)易得甲车对应的函数解析式为y=60x,联立,解得:,2.5﹣1=1.5(小时),∴乙车出发后1.5小时追上甲车.21.解:(1)当0≤x≤50时,设y与x的解析式为:y=kx+40,则50k+40=90,解得k=1,∴当0≤x≤50时,y与x的解析式为:y=x+40,∴售价y与x之间的函数关系式为:y=;(2)y=x+40,∵k=1>0,y随x的增大而增大,∴x=50时,该商品在销售过程中的利润最大,最大值为:(90﹣30)×(200﹣2×50)=6000(元).答:第50天时,该商品在销售过程中的利润最大,最大利润为6000元.22.解:(1)∵直线y=x+2与x轴,y轴分别交于点A,B,∴点A(﹣2,0),点B(0,2)故答案为:(﹣2,0),(0,2)(2)如图,过点F作FM⊥y轴,过点E作EN⊥y轴,∴∠FMD=∠EDF=90°∴∠FDM+∠DFM=90°,∠FDM+∠EDN=90°,∴∠DFM=∠EDN,且FD=DE,∠FMD=∠END=90°,∴△DFM≌△EDN(AAS)∴EN=DM,FM=BN,∵点F的坐标为(a,b),∴FM=DN=﹣a,DM=b﹣3,∴点E坐标(﹣b+3,3+a),∵点E是线段AB上的一点,∴3+a=﹣b+3+2∴a+b=2,∴点F(a,2﹣a)设直线BF的解析式为y=kx+2,∴2﹣a=ka+2∴k=﹣1,∴直线BF的解析式为y=﹣x+2,∴点G(2,0)23.解:(1)证明:∵△ABC为等腰直角三角形∴CB=CA又∵AD⊥CD,BE⊥EC∴∠D=∠E=90°∠ACD+∠BCE=180°﹣90°=90°又∵∠EBC+∠BCE=90°∴∠ACD=∠EBC在△ACD与△CBE中,∠D=∠E,∠ACD=∠EBC,CA=BC,∴△ACD≌△CBE(AAS);(2)过点B作BC⊥AB交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°∴△ABC为等腰Rt△由(1)可知:△CBD≌△BAO∴BD=AO,CD=OB∵,y=0,x=﹣3∴A(﹣3,0),x=0,y=4∴B(0,4)∴BD=AO=3,CD=OB=4∴OD=4+3=7.∴C(﹣4,7),直线l2表达式中的k为:﹣7,点C(﹣4,7),则l2的解析式:y=﹣7x﹣21;(3)如下图,设点Q(m,2m﹣6),当∠AQP=90°时,由(1)知,△AMQ≌△QNP(AAS),∴AM=QN,即|8﹣m|=6﹣(2m﹣6),解得:m=4或,故:Q(4,2),.。