开关电源技术课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源技术课程设计
一、总体设计思路及框图
1.1设计总体思路
输入——EMC等滤波——整流(也就一般的AC/DC类似全桥整
流模块)——DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC,)——输出。系统可以划分为变压器部分、整流滤波部分和DC-DC变换部分,以及负载部分,其中整流滤波和DC-DC变换器构成开关稳压电源。整流电路是直流稳压电路电源的组成部分。整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。直流/直流转换电路,是整个开关稳压电源的核心部分。
1.2开关稳压电源的基本原理框图如图1-1所示:
二、电路设计及原理分析
2.1单元电路设计
2.1.1整流滤波电路
图2-1 输入整流滤波电路
电子设备的电源线是电磁干扰(EMI)出入电子设备的一个重要途径,在设备电源线入口处安装电网滤波器可以有效地切断这条电磁干扰传播途径,本电源滤波器由带有IEC插头电网滤波器和PCB电源滤波器组成。IEC插头电网滤波器主要是阻止来自电网的干扰进入电
源机箱。PCB电源滤波器主要是抑制功率开关转换时产生的高频噪声。
交流输入220V时,整流采用桥式整流电路。如果将JTI跳线短连时,则适用于110V交流输入电压。由于输入电压高,电容器容量大,因此在接通电网瞬间会产生很大的浪涌冲击电流,一般浪涌电流值为- 1 -
稳态电流的数十倍。这可能造成整流桥和输入保险丝的损坏,也可能造成高频变压器磁芯饱和损坏功率器件,造成高压电解电容使用寿命降低等。所以在整流桥前加入由电阻R1和继电器K1组成的输入软启动电路。电路如图2-1所示:
2.1.2反激式变换器
根据电路的结构形式的不同,脉宽式变换器可分为:正激式、反激式、半桥式、全桥式、推挽式和阻塞式。所谓反激式是指变压器的初级极性与次级极性相反。反激式变换效率较高,线路简单,能多路输出。
当开关管VT截止时,变压器初级所积蓄的电能向次级传送,这时变压器的次级绕组下端为负,上端为正,二极管VD正向导通,导通电压经过电容C滤波后向负载RL供给电能。当变压器的初级储存的电能释放到一定程度后,电源电压Vin通过变压器的初级绕组N1向三极管VT的集电极充电,N1又开始储能。V1上升到一定程度后,三极管VT截止,又开始新一轮放电。在充电周期,变换器的输出电压为Vo=Vin *D*(N1/N2)。变换器电路如图2-2所示。
图2-2 变换器电路
2.1.3 TL431
图2-3 TL431基本原理图
TL431相当于一只可调节的齐纳稳压二极管,输出电压由外部的R1,R2来设定,Vo=VKA=(1+R1/R2)*VREF 。R3是限流电阻,VREF是常态下的基准稳压端。图所示是
- 2 -
TL431的等效电路,它主要由误差放大器A 、外接电阻分压器上所得到的取样电压、2.5V基准稳压源Vref 、NPN型晶体管VT(用以调节负载电流)和保护二极管VD(防止A、K极性相反)组成。当输出电压Vo上升时,取样电压VREF也随之上升,使取样电压大于基准电压Vref 致使晶体管VT导通,其集电极电位下降,即输出电压Vo下降。TL431的基本原理图分别如图2-3所示:
2.1.4 MC33374
MC33374采用8引脚双列直插式封装(DIP-8)或五脚TO-220式封装管脚排列。内部结构主要包括九个部分:振荡器、并联调整器\误差放大器、脉宽调制比较器与脉宽调制触发器、电流极限比较器及功率开关管、启动电路、欠压锁定电路、过热保护电路和状态控制器。MC33374内部结构如图2-5所示,其各管脚功能说明如下:管脚1(VCC):工作电源电压输入端。在启动芯片时,必须通过管脚5(D)给该管脚供给10V以下的工作电压。当VCC>8.5V(工作阀值电压)时,启动电路中的MOS场效应管立即关断,而功率开关管开始工作,从高频变压器次级线圈上即可获得正常输出电压,此时改由反馈给芯片供电。一旦电源发生过载或短路故障,致使
VCC<7.5V(欠压阀值电压),功率开关管就关断,而共启动用的MOS 场效应管则工作,芯片进入自启动工作模式。管脚2(FB):反馈输入端。该端经内部15Ω电阻接误差放大器的反向输入端,能周期性的控制功率开关管的通断。反馈的上下阀值电压分别为8.5V 7.5V,有1V的滞后电压。此端通常与VCC端连通,并且接反馈线圈的输出电压。显然,反馈电压值就就反映了开关电源输出电压的高低。反馈线圈的输出电压,经高频整流滤波后形成反馈输出电压,再通过光耦合器中的光敏三极管接反馈端。光耦合器的发射管接在取样电路中。反馈端经过R3,C5接地。C5具有三个作用:(1)启动电路定时电容;(2)兼做补偿电容,与R3 一起对反馈环路进行频率补偿;(3)作为工作电压VCC的旁路电容,在启动过程中对C5充电,建立VCC。
管脚3(GND):接地。该端是控制电路与功率开关管的公共地,给元件加装散热器时兼作为散热器的地端。
管脚4(state control input,SCI):状态控制输入端。它也是一个多功能的引出端,只需配少量的外围元器件,就能用多种方式来控制变换器的开关状态。它所具有的六种状态控制如下:(1)利用按键触发方式来选择工作模式或备用模式;(2)配微控制器进行关断操作;
(3)给状态控制器配以低压保护电路,使之在工作模式装换过程种不会引起开关电源输出电压的波动;(4)利用数字信号进行控制;(5)配上电延时电路;(6)禁止对状态控制器进行操作。
管脚5(power switch drain,D):功率开关管漏极引出端。该端能直接驱动高频变压器的初级。此外,它还与内部启动用mos场效应管
的漏极相连。
整流桥VD1~VD4采用4只1N5406型3A/600V的硅整流管。初级保护电路由RC吸收电路(R2、C2 ) 钳位电路(VDZ、VD5 )构成,能有效的抑制因高频变压器存在漏感而产生的尖峰电压,保护内部功率开关管不受损坏。VDz采用P6KE200A型瞬变电压抑制二极管(TVS),其反相击穿电压UB=200V,VD5选用的是MUR160型超快恢复二极管(SRD)。
C5为VCC的旁路电容。S为控制开关稳压电源通断状态的按键。S上串接R7后,能提高模式转换的可靠性。VD6与C6组成反馈线圈输出端的高频整流滤波器。
次级高频整流管采用大电流,低压降的肖特基二极管,型号为MBR20100CT (20A/100V),此管属于阴极对管,两个负极在内部短接,使用时需将两个正极在外部连接,进行并联。由C8、C11、L 、C12 、C13组成输出滤波电路。鉴于滤波电感L的电感量很小,仅为3.3uF
而大容量滤波电容C8 、C11上存在的等效电感L0,会直接影响到实
际电感量从L 变成L+L0. 因此需要将C8 、C11 并联使用,使L0
减小1/2,对L的影响随之减
- 3 -
小。结构如图2-4所示:
图2-4 MC33374
2.1.5反馈电路
反馈的基本类型又四种,即基本的反馈电路改进型基本反馈电