振动传感器的原理及应用1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近来发展了一种采用压电激励、压电拾 振的新方案,见下图压电陶瓷元件直接贴 于圆柱壳的波节处,筒内完全形成真空。
a
15
压电激励方案
a
16
(2)振动膜式传感器
a
17
这种传感器的Q值很高,一般约为104, 因此,输出信号的通频带很窄。膜片是振 荡器中的谐振元件,振荡器的输出是频率 变化的正弦波信号,经放大、整形、限幅 后,作为高分辨力计数器的门控信号。这 样,就提供了正比于加在膜片上压力的计 数输出。使用的数字线性化电路与振筒式 压力传感器相类似,不再赘述。
a
22
(3)振弦夹紧装置 传感器工作时振弦处于拉紧的状态,振
弦两端必须与支架和运动部分固接,一般采 用专门的夹紧装置。对它的要求是:
① 抗滑能力好,振弦在长期受拉或反复 振动的情况下,夹头不松动;
② 加工简单,安装振弦方便,易拆卸, 能反复使用,能任意调整弦的初始频率。
a
23
2.工作原理
要测量振弦固有频率f0的变化,必须先激发振弦起振, 其激发方法有两种:
a
25
振动梁式传感器
下图所示为由石英晶体谐振器构成的振
梁式差压传感器。两个相对的波纹管用来接
收输入压力P1与P2,作用在波纹管有效面 积上的压力差产生一个合力,造成了一个绕
支点的力矩,该力矩由石英晶体的拉伸力或
压缩力来平衡,这样就改变了晶体的谐振频
率。频率的变化是被测压力的单值函数,从
而达到了测量目的。
a
18
(3)振动弦式传感器
1. 结构特点 振弦式压力传感器的主要结构如下图所示
(1)振弦 振弦是把待测压力值的变化转变为频率
变化的敏感元件,对传感器的精度、灵敏 度、稳定性起决定的作用。对振弦材料的 要求是:
a
19
① 抗拉强度高。 ② 弹性模量大。
③ 磁性和导电性能好。 ④ 线膨胀系数小,尺寸随时间的稳定性好。
a
20
a
21
(2)磁铁 根据振弦振动的激发方式不同,可以只用
一块磁铁,或者用两块性能相同的磁铁,见 图5-14。磁场可以由永久磁铁或直流电磁铁 产生,永久磁铁一般用AlNiCo-5硬磁合金制 造。在采用电磁铁的场合,常把磁铁做成U 形,电磁线圈安置在U形磁铁的一臂,这时, 磁力线的通路是磁铁-纯铁片-振弦-磁铁,形 成一个封闭的磁回路。
(1)间歇激发法 图所示为间歇激发 的振弦压力传感器 的示意图。
(2)连续激发法
a
24
连续激发时,振弦也是置于电磁铁的磁 场中,同时,振弦通以交变电流,由于电磁 感应,振弦受到一个垂直于磁力线的作用力, 从而激发振弦作频率等于其自振频率的周期 运动。然而,同间歇激发一样,由于阻力作 用,振弦的自振也将逐渐衰减,因此必须补 给能量以维持振弦稳定的等幅振荡。
a
26
下面扼要叙述差压传感器的主要组件及其作 用。
a
27
1、 振动梁谐振器
振动梁是压力传感器的敏感元件,横 跨在传感中央。石英晶体振动梁不直接固 定在产生输出力的构件上,以防止反作用 力和力矩造成基座上的能量损失,从而使 品质因素Q值降低。同时外界的有害干扰 也会
a
28
传递进来,降低稳定性,直接影响谐振器 的性能。梁的形状选择得使其成为一种以 弯曲方式振动的两端固定梁,这种形状的 感受力的灵敏度高,即施加单位应力引起 的频率变化大。
④ 相对与谐振子的振动能量,系统的功 耗是极小量。这一特征决定了传感器系统 的抗干扰性强,稳定性好。
a
10
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
a
11
(1)振动筒传感器
振动筒传感器是一种典型的敏感频率的 振动传感器,于60年代末实用。下图给出 了一种用于绝压测量的振动筒压力传感器 最早使用的原理结构。其测量敏感元件是 一个恒弹合金(如3J53)制成的带有顶盖 的薄壁圆柱壳。
a
8
(2) 谐振式传感器的本质特征与独特 优势是:
① 输出信号是周期的,被测量能够通过 检测周期信号而解算出来。这一特征决定 了谐振式传感器便于与计算机连接,便于 远距离传输;
② 传感器系统是一个闭环结构,处于谐
振状态。这一特征决定了传感器系统的输
出自动跟踪输入;
a
9
③ 谐振式传感器的敏感元件即谐振子固 有的谐振特性,决定其具有高的灵敏度和 分辨率;
Fra Baidu bibliotek
a
29
2、机械隔离器
为了避免振梁与产生力的机械系统直 接连接,在振动梁两端固定着机械隔离系 统,它包括隔离器弹性体,隔离器质量块 以及弯曲去载区。隔离系统的自振频率要 选择得比振动梁的低得多(约低几个数 级),从而能有效地消除固定件对振动梁 的影
振动传感器的 原理及应用
a
1
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
a
2
一、概述
基于谐振技术的谐振式传感器,自身 为周期信号输出(准数字信号),只用简 单的数字电路即可转换为微处理器容易接 受的数字信号。谐振式传感器的重复性、 分辨率和稳定性等非常优良,又便于和微 处理器直接结合组成数字控制系统,自然 成为当今人们研究的重点。
a
3
谐振式传感器大体分为两类:一类是基 于机械谐振结构谐振式传感器;另一类是 MOS环振式谐振传感器。这里主要介绍基 于机械谐振结构的谐振式传感器。它们可 利用振动频率、相位和幅值作为敏感信息 的参数。由于谐振式传感器有许多优点,也
a
4
适于多种参数测量,如压力、力、转角、 流量、温度、湿度、液位、粘度、密度和 气体成分等,所以这类传感器已迅速发展 成为一个新的传感器家族。
a
12
振动与激励元件均由铁芯和线圈组成, 为尽可能减小它们之间的电磁耦合,在空 间呈正交安置,由环氧树脂骨架固定。圆 柱壳与外壳之间形成真空腔,被测压力引 入圆柱壳内腔。为减小温度引起的测量误 差,在圆柱壳内安置了一个起补偿作用的 温度敏感元件。
a
13
电磁激励振动筒压力传感器原理结构
a
14
采用电磁方式作为激励、拾振手段最突 出的优点是与壳体无接触,但也有一些不 足。如电磁转换效率低,激励信号中需引 入较大的直流分量,磁性材料的长期稳定 性差,易于产生电磁耦合等。
a
5
(1)基本结构
a
6
由ERD组成的电— 机— 电谐振子环节, 是谐振式传感器的核心。适当地选择激励 和拾振手段,构成一个理想的ERD,对设 计谐振式传感器至关重要。
a
7
由ERDA组成的闭环自激环节,是构成 谐振式传感器的条件。
由RDO(C)组成的信号检测、输出环节, 是实现检测被测量的手段。
相关文档
最新文档