聚羧酸系高性能减水剂发展现状与技术难题

合集下载

聚羧酸盐高效减水剂的现状与发展趋势

聚羧酸盐高效减水剂的现状与发展趋势

聚羧酸盐高效减水剂的现状与发展趋势
一.综述
聚羧酸盐是一种新型的高效减水剂,相对于传统的水减剂而言,它具有超高的水减速率和良好的抗氧化性能。

由于其优越的特性,聚羧酸盐已成为了工业应用领域中最重要的高效水减剂之一
目前,聚羧酸盐在各种领域得到了广泛应用,包括水处理行业、煤炭行业、药物制造行业、医疗器械行业等。

在水处理行业,聚羧酸盐可以用于脱水、凝聚、浓缩、去离子和抑制氢氧化钾等。

在煤炭行业,聚羧酸盐可用于减少煤中有害物质,如硫酸根、硝酸根和氨基酸的含量,从而提高煤炭的品质,同时也可用于煤水混合物处理,以减少污水的排放量,保护环境。

在药物制造行业,聚羧酸盐可用于药物中有害物质的减少,如氯代烃、氧化物和氟化物,同时也可以用于药物的浓缩、浓缩和脱水等加工工艺。

在医疗器械行业,聚羧酸盐可用于制造各种含水量较高的医疗器械,如股骨头镶嵌物、膝关节关节松动器、人工关节等,可以提高材料的耐久性和可靠性。

聚羧酸减水剂应用中产生的问题

聚羧酸减水剂应用中产生的问题

聚羧酸系高性能减水剂应用中的几个问题随着高性能混凝土技术的发展,特别是今后混凝土不但性能要高,而且必须向着绿色的,与环境和谐相处的可持续发展方向发展。

聚羧酸系减水剂做为第三代减水剂,由于它在高性能混凝土中发挥了不可替代的优势,本身与环境友好的特点,在国内外已得到了普遍的认可。

聚羧酸系减水剂从1986年日本触媒公司首次将产品打入市场至今也不过短短的20年时间。

国内近几年来(进入21世纪以后),也给予极大的关注,最近这些年发展势头更加汹涌。

仅仅四五年时间,进入商品领域的生产厂家由几家发展到了几十家。

不少科研单位,高等院校都拥有了自主的知识产权,产品进入了各种工程用混凝土领域。

国内发达地区近年建设的一些标志性工程几乎都使用了聚羧酸系高减水剂,如上海磁悬浮列车轨道梁工程,北京奥运主场馆工程、三峡工程、首都国际机场扩建工程、杭州湾跨海大桥工程,大小洋山深水港工程,北京——天津城际轨道交通工程等,都取得了满意的效果,同时也积累了许多的应用技术方面的经验,也发现了不少应用技术中的新问题。

铁道部为即将开工的京沪高速铁路制定的高性能混凝土技术条件,空军的军用机场自密实水泥混凝土道面施工技术规范,在这些混凝土中也都考虑主要使用聚羧酸系高减水剂,为此,从06年就开展了相关的试验研究工作。

我们有机会接触到了一些聚羧酸系高性能减水剂应用技术工作,在叹服聚羧酸系高性能减水剂优越性能的同时,也发现了一些应用当中出现的各种问题,这些现象的出现对长期习惯于应用以萘系为主的高效减水剂的人会感到非常不合常理、或者叫做在我们的预料之外,这与我们对聚羧酸系高减水剂原来过高的期望值产生了差距。

人们原本期望新的外加剂不但性能优越而且能解决混凝土其它组分的在的一些问题,因为聚羧酸系高减水剂的“适应性”很好。

过去已经习惯了一种好的外加剂应当能解决一切混凝土性能方面的问题,当混凝土出现了性能方面的问题,人们首先向外加剂供应方提出要求,而外加剂厂商也习惯了立即用各种复配手段来满足要求,很少或不能去考虑其它方面的原因,只能在复配原料及相对参量上去做文章,往往是事倍而功半。

聚羧酸系高性能减水剂现状与技术问题

聚羧酸系高性能减水剂现状与技术问题

聚羧酸系高性能减水剂发展现状与技术难题从2000年左右起我国混凝土工程界逐渐认识聚羧酸系减水剂,到现在广大铁路系统混凝土工程和越来越多的海工工程、隧道重点工程以及市政重点工程的全面推荐应用,聚羧酸系减水剂的用量快速递增,如下图。

我国聚羧酸系减水剂年用量的统计(包括进口和国产产品,按20%浓度计算)与此同时,我国生产聚羧酸系减水剂的企业也在快速增加,比如上海市2002至2005年间只有1家企业能生产聚羧酸系减水剂,2006年也只有3家企业新建聚羧酸系减水剂生产线,而据称2007年上海拥有聚羧酸系减水剂生产线的外加剂企业已增加到18家。

仅2007年一年间,贵州、云南、广西等边远地区因大型铁路交通、隧道和水利工程的兴起,也先后建立起10余条聚羧酸系减水剂生产线。

所以,近二、三年来我国聚羧酸系减水剂在生产线的建设和产量方面取得可喜的成绩。

的确,聚羧酸系减水剂作为继萘系、密胺系、脂肪族系和氨基磺酸盐系减水剂之后研制生产成功的新型高效减水剂,以其在掺量较低时(固体掺量0.15%-0.25%)就能产生理想的减水和增强效果、对混凝土凝结时间影响较小、坍落度保持性较好、与水泥和掺合料适应性相对较好、对混凝土干缩性影响较小(指通常不过分增加干缩)、生产过程中不使用甲醛和不排出废液、SO42-和Cl-含量低等突出特点,从一开始就受到研究者和部分应用者的推崇。

目前,我国制定的《聚羧酸系高性能减水剂》JG/T 223-2007标准已于2007年12月1日起开始实施,而我国铁道部科学技术司早在2006年9月印发的《客运专线高性能混凝土用外加剂产品检验细则》,主要就是为强制使用聚羧酸系减水剂实施的一次重要举措。

已经修定完成的《混凝土外加剂》GB8076标准中,也对两种类型的聚羧酸系高性能减水剂的性能指标和试验方法做出了明确规定。

然而,我国聚羧酸系减水剂在实际工程应用中却也同时表现出越来越多、越来越复杂的技术问题,亟需通过大量的研究工作指导解决。

聚羧酸系减水剂的研究现状与发展趋势

聚羧酸系减水剂的研究现状与发展趋势

聚羧酸系减水剂的研究现状与发展趋势聚羧酸系减水剂是混凝土添加剂中的一种重要成员,具有优异的分散性和流动性,能够有效减少混凝土的水灰比,提高混凝土的强度和耐久性,因此在工程建设中得到广泛应用。

随着现代工程建设的发展,对混凝土性能要求越来越高,聚羧酸系减水剂也在不断地发展和完善。

本文将对聚羧酸系减水剂的研究现状和发展趋势进行探讨。

1. 聚羧酸系减水剂的种类和特点聚羧酸系减水剂是一类由聚羧酸高分子化合物制成的减水剂,其分子结构具有丰富的羧基和疎水基团,能够与水泥颗粒发生强烈的吸附作用,形成高度分散的胶体颗粒,从而改善混凝土的流动性和分散性。

根据其分子结构和性能特点的不同,聚羧酸系减水剂可分为缩微粉聚羧酸系减水剂、液态聚羧酸系减水剂和固体聚羧酸系减水剂等多种形式。

目前,聚羧酸系减水剂已经成为混凝土中不可或缺的重要添加剂,被广泛应用于各类重要工程建设中,如高层建筑、大型桥梁、高速公路、地铁隧道等。

在实际应用中,聚羧酸系减水剂不仅能够显著降低混凝土的水灰比,提高混凝土的流动性和抗渗性,还能够控制混凝土的凝结时间和提高混凝土的强度等方面发挥积极作用。

目前,针对聚羧酸系减水剂的研究主要集中在以下几个方面:(1) 新型聚羧酸系减水剂的合成和性能改进。

随着材料科学和化学工程技术的不断进步,新型聚羧酸高分子化合物的合成技术和改性方法不断涌现,以提高聚羧酸系减水剂的分散性、流动性和稳定性,以适应不同混凝土工程的需求。

(2) 聚羧酸系减水剂与水泥混合体系的相互作用机制研究。

混凝土是复杂的多相体系,聚羧酸系减水剂与水泥、矿物掺合料等各种材料之间的相互作用机制对其性能表现起着关键作用。

深入研究聚羧酸系减水剂在混凝土中的分子尺度相互作用机制,对于指导聚羧酸系减水剂的合理应用具有重要的理论和实用意义。

(3) 聚羧酸系减水剂在不同混凝土体系中的应用性能研究。

由于混凝土在不同工程条件下具有不同的性能要求,且受到原材料和环境条件的影响较大,因此需要深入研究聚羧酸系减水剂在各种不同混凝土体系中的应用性能,以便更好地指导其在实际工程中的应用。

聚羧酸系减水剂的研究现状与发展趋势

聚羧酸系减水剂的研究现状与发展趋势

聚羧酸系减水剂的研究现状与发展趋势聚羧酸系减水剂是一种在建筑材料领域广泛应用的化学添加剂,可以显著降低混凝土和水泥浆体系的黏性,从而达到减少水灰比、提高混凝土强度和改善工作性能的效果。

随着我国建筑行业的快速发展,聚羧酸系减水剂的使用量也在不断增加,并且已成为混凝土搅拌站和混凝土制品生产企业的必备品。

本文将对聚羧酸系减水剂的研究现状和未来发展趋势进行全面分析,以期为相关行业的从业人员和研究工作者提供参考。

聚羧酸系减水剂是近年来被广泛应用的一类高性能减水剂,其主要特点是对混凝土具有显著的减水和增稠效果,可显著减少水灰比,改善混凝土的流动性和可泵性,提高混凝土的强度和耐久性,同时还能显著改善混凝土的工作性能和耐久性。

聚羧酸系减水剂主要应用于普通混凝土、高性能混凝土、自流平混凝土、高韧性混凝土、自密实混凝土等各种类型的混凝土材料中。

在我国,聚羧酸系减水剂已被广泛应用于桥梁、高层建筑、地铁、隧道等重大工程项目中,并且取得了显著的经济和社会效益。

目前,国内外对聚羧酸系减水剂的研究主要集中在以下几个方面:1. 减水剂的分子设计和合成技术:随着化学合成技术的不断进步,聚羧酸系减水剂的分子设计和合成技术也在不断完善。

近年来,国内外已有不少研究机构对聚羧酸系减水剂的分子结构和性能进行了深入研究,提出了一系列新的分子设计思路和合成方法,如基于乙烯基聚醚酮单体的合成方法、基于有机高分子合成的方法等,为聚羧酸系减水剂的研发和应用提供了新的思路和方法。

2. 减水剂的性能研究和应用技术:随着对混凝土性能要求的不断提高,对聚羧酸系减水剂的性能研究也日益深入。

目前,国内外已有许多研究机构对聚羧酸系减水剂的分散性、减水率、流动性、分散稳定性、复合性能等进行了系统研究,并取得了一系列重要研究成果。

针对不同类型和配合比的混凝土材料,研究人员还提出了一系列针对性的应用技术和施工工艺,为混凝土生产和施工提供了新的思路和方法。

在聚羧酸系减水剂的研究领域,我国的研究水平已经达到了国际先进水平,并且取得了不少重要研究成果。

聚羧酸系减水剂的发展历程及现状

聚羧酸系减水剂的发展历程及现状

聚羧酸系减水剂的发展历程及现状摘要:聚羧酸高效减水剂作为混凝土的化学外加剂,具有掺量低、减水率高等特点,一直受到国内外研究人员的关注。

本文概述了混凝土外加剂的发展历程,主要性能及发展现状,介绍了高性能减水剂的种类与组成,提出了有关高性能减水剂的研究内容及今后研究方向。

关键词:聚羧酸系高性能减水剂发展现状高性能混凝土指具有高耐久、高强度、高流动性的混凝土。

而减水剂又称塑化剂或分散剂,拌和混凝土时加入适量的减水剂,可使水泥颗粒分散均匀,同时将水泥颗粒包裹的水份释放出来,从而能明显减少混凝土用水量,是一种重要的混凝土外加剂。

而高性能混凝土中的高性能减水剂,作为一种有机化学材料,能够最大限度地降低混凝土水灰比,提高混凝土的强度和耐久性。

所以提出新的合成方法和改进其性能的研究也成为当今国内外的一个热点。

一、发展历程减水剂在我国,相对于外国而言起步较晚。

20世纪30 年代初,国外已生产了以木质素磺酸盐为主成分的减水剂,随后又有新发展。

相继出现萘系和三聚氰胺系高效减水剂。

70 年代后期,许多人对木质素类减水剂进行了研究,对它进行改进,研究出了改性木质素磺酸盐高效减水剂。

1974 年,水电部、交通部联合研制了以扩散剂N N O 为主成分,辅以其它助剂组成的减水剂,接着又有以茶为原料,经磺化缩合而成的蔡磺酸盐甲醛缩合物的NF 高效减水剂。

MF 高效减水剂及建一1 型高效减水剂,其后的JN,D H 及T F 型减水剂和以葱油为原料的A F 高效减水剂都相继研发成功。

其中改性三聚氰胺、氨基磺酸盐、脂肪族高效减水剂快速发展;而聚羧酸系减水剂则是目前研究的重点。

二、高效减水剂的种类和特点1.减水剂的类型(1)单环芳烃型(monocyclic aromatic hydrocarbons type),主要以氨基磺酸盐类高效减水剂为代表,该类聚合物憎水主链由苯基和亚甲基交替连接而成,该类减水剂具有掺量小,减水率高的特点。

(2)多环芳烃型(polynuclear aromatic hydrocarbons type),主要以萘系和蒽系为代表,这类高效减水剂的特点是憎水基的主链为亚甲基连着的双环或单环芳烃,亲水性的官能团则是连在芳烃上的-SO3H 等,对水泥的分散性能较好,减水率较高。

2023年聚羧酸减水剂行业市场分析现状

2023年聚羧酸减水剂行业市场分析现状

2023年聚羧酸减水剂行业市场分析现状当前,聚羧酸减水剂行业市场竞争激烈,行业供需格局基本稳定,市场规模持续扩大,整体市场规模达到了数百亿元。

以下是对聚羧酸减水剂行业市场分析的现状:一、市场规模持续扩大随着建筑行业的快速发展和城市化进程的加快,对混凝土的需求不断增加,从而推动了聚羧酸减水剂的市场需求。

聚羧酸减水剂具有优异的减水性能和综合技术指标,可以有效地改善混凝土的工艺性能,受到了广泛的应用和推广。

目前,聚羧酸减水剂已逐渐成为建筑工程中不可或缺的一种材料,市场规模也逐年扩大。

二、市场竞争激烈聚羧酸减水剂行业市场竞争激烈,主要体现在两个方面:一是品牌竞争,目前市场上有较多的聚羧酸减水剂品牌,如中化、保利、高力、迅情等,品牌之间的竞争日益激烈;二是价格竞争,市场上聚羧酸减水剂的价格波动较大,厂家之间通过价格竞争来争夺市场份额。

三、技术创新成为市场发展关键随着聚羧酸减水剂市场的不断发展,技术创新成为了企业竞争的关键动力。

聚羧酸减水剂企业纷纷加大技术研发投入,提高产品的研发创新能力,不断推出新品种、新工艺,满足市场的需求。

高性能减水剂、绿色环保型减水剂、智能化减水剂等成为了市场发展的热点产品。

四、市场发展前景广阔随着建筑行业的快速发展和聚羧酸减水剂的应用推广,市场发展前景非常广阔。

未来,随着国家对环保要求的加大,绿色环保型减水剂将成为市场的主流产品;同时,随着城市化进程的加快和人们对建筑质量要求的提高,高性能减水剂将有更大的市场需求;此外,还有一些专业化的减水剂产品,如耐极端温度减水剂、耐腐蚀减水剂等,也将有市场空间。

总之,聚羧酸减水剂市场目前呈现出供需平衡、市场规模不断扩大、竞争激烈、技术创新成为关键的特点。

未来,随着建筑行业的不断发展,聚羧酸减水剂行业市场前景广阔,但同时也要面对技术创新、品牌竞争等挑战。

我们相信,在各方共同努力下,聚羧酸减水剂市场将迎来更加美好的未来。

中国聚羧酸系减水剂行业市场环境分析

中国聚羧酸系减水剂行业市场环境分析

中国聚羧酸系减水剂行业市场环境分析聚羧酸系减水剂是一种常见的混凝土外加剂,具有优化混凝土性能、减少水泥用量和改善施工操作性的作用。

近年来,聚羧酸系减水剂市场发展迅速,但市场环境也面临一些挑战和机遇。

本文将对聚羧酸系减水剂市场环境进行分析。

1. 市场规模和增长趋势聚羧酸系减水剂市场呈现出快速增长的趋势。

随着建筑业的发展和对混凝土性能要求的提高,聚羧酸系减水剂的需求量不断增加。

据市场研究机构数据显示,聚羧酸系减水剂市场规模已经达到XX亿元,并且呈现出稳定增长的趋势。

2. 市场竞争格局目前,聚羧酸系减水剂市场存在较为激烈的竞争。

市场上主要存在着多家知名的聚羧酸系减水剂生产企业,它们通过不断研发创新、提高产品质量和推广营销活动来争夺市场份额。

此外,进入门槛相对较低,也促使市场上出现了一些小规模的生产企业,增加了市场竞争的激烈程度。

3. 技术创新与发展趋势在聚羧酸系减水剂市场中,技术创新是企业竞争的关键因素之一。

随着科技和工艺的不断进步,聚羧酸系减水剂的性能和效果得到了不断提升。

越来越多的企业开始关注绿色环保和节能减排的要求,研发出更加环保、高效的聚羧酸系减水剂产品,以满足市场需求。

4. 政策环境和市场机遇政策环境对于聚羧酸系减水剂市场的发展起到重要的影响。

随着国家对建筑业的支持力度不断加大,政策鼓励使用高性能减水剂,这为聚羧酸系减水剂市场提供了良好的机遇。

此外,新型城镇化建设的推进也促进了聚羧酸系减水剂市场的增长。

5. 市场挑战和发展前景尽管聚羧酸系减水剂市场发展迅猛,但仍然面临一些挑战。

一方面,市场竞争激烈,企业需要不断提升产品质量和技术水平,以在市场中保持竞争优势。

另一方面,聚羧酸系减水剂市场仍然存在价格竞争和低附加值产品的问题,企业需要加强品牌建设和市场细分,以获取更高的市场份额。

展望未来,聚羧酸系减水剂市场有着广阔的发展前景。

随着技术的不断进步、政府政策的支持以及市场需求的不断提升,聚羧酸系减水剂市场将迎来更大的发展机遇。

2024年聚羧酸减水剂市场发展现状

2024年聚羧酸减水剂市场发展现状

2024年聚羧酸减水剂市场发展现状引言近年来,随着建筑行业的迅猛发展,聚羧酸减水剂作为一种重要的建筑材料,得到了广泛的应用。

本文将对聚羧酸减水剂市场的发展现状进行分析和总结,以期为相关研究和实践提供参考。

聚羧酸减水剂的定义和分类聚羧酸减水剂是一种常用的混凝土外加剂,主要用于调节混凝土的流动性和延迟凝结时间。

根据其分子结构和性能,聚羧酸减水剂可分为常规型、超塑型、高性能型等多个类别。

聚羧酸减水剂市场规模近年来,聚羧酸减水剂市场规模逐年扩大。

根据行业数据统计,目前我国聚羧酸减水剂市场的年销售额已超过亿元人民币。

随着建筑行业的快速发展,预计聚羧酸减水剂市场规模还将进一步增长。

聚羧酸减水剂市场发展趋势1.技术创新:聚羧酸减水剂行业在技术创新方面取得了显著的进展,不断推出更加高效、环保的产品。

例如,聚羧酸减水剂的分散性能和抗渗性能得到了显著提升。

2.市场竞争:随着市场规模的扩大,聚羧酸减水剂市场的竞争也日益激烈。

企业需要加强产品研发和品牌推广,提高自身的市场竞争力。

3.绿色发展:在环保意识日益增强的背景下,聚羧酸减水剂行业也在朝着绿色发展方向努力。

企业需要关注产品的环境影响,并推动绿色生产和可持续发展。

聚羧酸减水剂市场面临的挑战1.技术壁垒:聚羧酸减水剂行业技术要求较高,企业需要具备一定的技术实力和研发能力才能在市场竞争中占据优势。

2.法律法规限制:建筑行业受到很多法律法规的约束,聚羧酸减水剂作为建筑材料也需要符合相关的标准和规定,这对企业的生产和销售提出了一定的挑战。

3.市场需求变化:随着建筑行业需求的变化和技术进步,市场需求也在不断变化。

企业需要及时掌握市场动态,并灵活调整产品结构和销售策略。

建议与展望针对聚羧酸减水剂市场发展中的问题和挑战,提出以下建议: 1. 加强技术研发和创新能力,提高产品性能和质量,增强市场竞争力。

2. 关注环保需求,推动绿色生产和可持续发展,满足市场对环保产品的需求。

3. 加强行业协作,促进技术共享和合作创新,提高整个行业的整体竞争力。

2024年聚羧酸减水剂市场分析现状

2024年聚羧酸减水剂市场分析现状

2024年聚羧酸减水剂市场分析现状一、引言聚羧酸减水剂是一种广泛应用于混凝土和水泥制造业的化学添加剂。

它能够有效地改善混凝土的流动性和耐久性,使得混凝土的工作性能得到提升。

本文将对聚羧酸减水剂市场的现状进行分析。

二、市场规模聚羧酸减水剂市场在过去几年经历了快速增长,并且有望在未来几年继续保持较高的增长率。

据统计数据显示,2019年全球聚羧酸减水剂市场规模达到了XX亿美元。

美国、中国和欧洲地区是聚羧酸减水剂市场的主要消费地区。

三、市场驱动因素 1. 基础设施建设项目的增加:随着全球城市化进程的加速,基础设施建设项目大量增加,这促使了聚羧酸减水剂市场的增长。

例如,交通道路、桥梁、隧道等项目的兴建,都需要大量的混凝土,而聚羧酸减水剂能够提高混凝土的性能,因此需求量大增。

2.环境意识的提高:聚羧酸减水剂相对于传统的减水剂来说,对环境影响较小。

它能够减少混凝土中的水泥用量,降低碳排放,减少对环境的负面影响。

随着环境保护意识的提高,越来越多的工程项目开始选择使用聚羧酸减水剂。

3.技术创新:聚羧酸减水剂行业在技术研发方面取得了显著的进展。

新型的聚羧酸减水剂能够更好地满足混凝土在不同环境条件下的需求,提高混凝土的耐久性和性能。

技术创新的推动下,聚羧酸减水剂市场将得到进一步发展。

四、竞争格局聚羧酸减水剂市场存在着一定的竞争格局。

目前,市场上有着众多的聚羧酸减水剂供应商,其中包括国际大型企业和中小型企业。

这些供应商通过技术创新、产品质量和价格竞争来争夺市场份额。

同时,市场上的竞争也推动了聚羧酸减水剂的不断发展和进步。

五、市场前景与挑战聚羧酸减水剂市场具有较好的发展前景。

随着基础设施建设项目的增加以及环境保护意识的提高,聚羧酸减水剂的需求将继续增长。

同时,技术创新也将推动市场的发展。

然而,聚羧酸减水剂市场也面临一些挑战。

首先,行业竞争激烈,不同供应商之间的价格竞争可能会对利润产生压力。

其次,市场对产品质量和环保性能的要求越来越高,供应商需要不断提高产品质量和环保性能,以满足市场需求。

聚羧酸系减水剂的研究现状与发展趋势

聚羧酸系减水剂的研究现状与发展趋势

聚羧酸系减水剂的研究现状与发展趋势1. 引言1.1 背景介绍随着科技的不断发展和应用需求的不断提高,聚羧酸系减水剂研究领域也在不断拓展和深化。

对聚羧酸系减水剂的分类、应用领域、研究现状和发展趋势进行全面的分析,有助于更好地推动该领域的发展,提高混凝土工程的质量和效益。

1.2 研究意义聚羧酸系减水剂作为混凝土添加剂在建筑工程领域中扮演着重要的角色,其研究意义主要体现在以下几个方面:1. 提高混凝土的流动性和可塑性:聚羧酸系减水剂可以大幅提高混凝土的流动性和可塑性,使得混凝土更容易施工和成型,大大提高了施工效率和质量。

2. 降低混凝土的水灰比:聚羧酸系减水剂能够有效降低混凝土的水灰比,使得混凝土拥有更优良的力学性能,提高混凝土的强度和耐久性。

3. 减少混凝土的开裂和收缩:通过合理使用聚羧酸系减水剂可以有效减少混凝土的开裂和收缩现象,提高混凝土的耐久性和使用寿命。

4. 推动混凝土技术的发展:聚羧酸系减水剂的研究对混凝土技术的提升具有重要意义,可以促进混凝土材料的绿色化、材料节约和工艺创新,推动混凝土技术不断向前发展。

聚羧酸系减水剂的研究意义在于促进建筑工程领域的技术进步和质量提升,推动混凝土技术的创新和发展,为建筑行业的可持续发展做出贡献。

2. 正文2.1 聚羧酸系减水剂的特点聚羧酸系减水剂是一种具有优异分散性和吸附性能的混凝土外加剂,其特点主要包括以下几个方面:1. 分散性强:聚羧酸系减水剂通过分子链上的碳链段与水泥颗粒形成较强的吸附作用,能够有效降低水泥颗粒之间的静电和表面张力,使其分散均匀在混凝土中,从而提高混凝土的流动性和可泵性。

2. 减水效果显著:聚羧酸系减水剂能够在一定程度上降低混凝土的水灰比,减少混凝土内部孔隙结构,提高混凝土的密实性和强度,同时减水量较大,可显著提高混凝土的流动性和抗渗性。

3. 塑化作用好:聚羧酸系减水剂能够有效提高混凝土的塑性和可加工性,降低混凝土的黏结力,使混凝土更易于施工和成型。

HPWR聚羧酸系高性能减水剂的现状与发展方向探讨

HPWR聚羧酸系高性能减水剂的现状与发展方向探讨

聚羧酸系减水剂(HPWR)的发展现状与发展方向探讨聚羧酸减水剂是一种重要的混凝土外加剂,是新型建筑材料支柱产业的重要产品之一。

自上世纪80年代起,国外就开始着手研发聚羧酸系减水剂。

它以石油化工产品为原料,以极高的减水率,极好的坍落度保持性和优异的增强效应,逐渐受到混凝土工程界的亲睐。

聚羧酸减水剂研究的最终目标是通过不饱和单体在引发剂作用下共聚,将带活性基团的侧链接枝到聚合物的主链上,使其同时具有高效减水、控制坍落度损失和抗收缩、不影响水泥的凝结硬化等作用。

本文将概述国内外聚羧酸减水剂的研究和发展状况,探讨聚羧酸减水剂结构与性能之间的关系及其作用机理的研究成果,并分析聚羧酸减水剂研究中存在和亟待解决的一些问题,希望对我国从事聚羧酸系减水剂研究、应用的同行有所启发。

1聚羧酸系减水剂的发展1.1国外情况国外学者一开始通过所合成的反应性活性高分子作为混凝土坍落度损失控制剂,后来才真正意义上做到在分散水泥的作用机理上设计出各种最有效的分子结构,使外加剂的减水分散效果、流动性保持效果得以大大提高。

1986年日本专家首先研制成功聚羧酸系减水剂,9 0年代中期正式工业化生产,并开始在建筑施工中应用。

该类减水剂大体分为烯烃/顺丁烯二酸酐聚合物和丙烯酸/甲基丙烯酸脂聚合物等。

据报道,1995年后聚羧酸系减水剂在日本的使用量就已超过了萘系减水剂,且其品种、型号及品牌名目繁多。

尤其是近年来大量高强度、高流动性混凝土的应用带动了聚羧酸系减水剂的技术发展和应用水平。

目前日本生产聚羧酸系减水剂的厂家主要有花王、竹木油脂、NMB株式会社和藤泽药品等,每年利用此类减水剂生产的各类混凝土为1000万m3左右,并有逐年递增的发展趋势。

与此同时,其它国家对聚羧酸系减水剂的研究与应用也逐渐加强.虽然日本是研发应用聚羧酸系减水剂最早也是最为成功的国家,但目前北美和欧洲也十分重视对聚羧酸系减水剂的研究。

从最近的文献可知,聚羧酸系减水剂的研究已由第一代甲基丙烯酸/烯酸甲酯共聚物,到第二代丙烯基醚共聚物,又发展到第三代酰胺/酰亚胺型,而且专家们正在着手研发第四代聚酰胺-聚乙烯乙二醇支链的新型高效减水剂。

聚羧酸系减水剂的研究现状与发展趋势

聚羧酸系减水剂的研究现状与发展趋势

聚羧酸系减水剂的研究现状与发展趋势聚羧酸系减水剂是一种新型的混凝土外加剂,具有优异的分散性能和高效的减水效果,被广泛应用于混凝土、水泥砂浆等建筑材料中。

随着建筑行业的不断发展和对建筑材料性能要求的提高,聚羧酸系减水剂的研究与应用也日益受到关注。

本文将从聚羧酸系减水剂的研究现状和发展趋势两个方面对其进行深入探讨。

1. 聚羧酸系减水剂的性能特点聚羧酸系减水剂是一种高性能的分散剂,具有优异的分散性能和减水效果。

它可以显著降低混凝土和水泥砂浆的水灰比,提高材料的流动性和可泵性,从而实现混凝土的高强度、高耐久性和高致密性。

聚羧酸系减水剂还具有良好的稳定性和耐久性,能够在各种复杂环境下发挥稳定的分散效果,延长混凝土的初凝和终凝时间,提高其工艺性和施工性能。

目前,聚羧酸系减水剂已经广泛应用于混凝土、水泥砂浆、砂浆、砂浆等建筑材料中。

在混凝土中,聚羧酸系减水剂可以显著改善混凝土的工程性能和力学性能,提高混凝土的流动性和可泵性,降低混凝土的收缩和裂缝,改善混凝土的抗渗性和耐久性。

在水泥砂浆中,聚羧酸系减水剂能够显著提高水泥砂浆的张拉强度、抗压强度和耐久性,降低水泥砂浆的收缩率和渗透率,改善水泥砂浆的施工性能和装饰效果。

当前,聚羧酸系减水剂的研究主要集中在以下几个方面:一是聚羧酸系减水剂的分子设计与合成技术。

通过合理设计和精密合成聚羧酸分子结构,提高其分散性能和减水效果,实现聚羧酸系减水剂的高效化和可控化。

二是聚羧酸系减水剂的作用机理和性能评价技术。

通过深入研究聚羧酸系减水剂在混凝土和水泥砂浆中的作用机理,建立其性能评价体系,为其合理应用和精准控制提供科学依据。

三是聚羧酸系减水剂的应用技术与配方优化技术。

通过优化聚羧酸系减水剂的应用技术和配方优化技术,提高其在工程实践中的适用性和经济性,推动其在建筑材料中的广泛应用和推广。

二、聚羧酸系减水剂的发展趋势未来,随着建筑行业的不断发展和对建筑材料性能要求的不断提高,聚羧酸系减水剂的功能将呈现多样化趋势。

聚羧酸系减水剂研究亟待解决的6大难题

聚羧酸系减水剂研究亟待解决的6大难题

聚羧酸系减水剂(PCE)由于掺量低、减水率高(不小于25%)、增强效果好、分子可调节性强,以及合成过程中不使用甲醛等特点,自20世纪80年代末诞生起就受到研究者和工程应用者的推崇。

特别是21世纪初中国高铁和大坝工程开始推广应用PCE后,在PCE研究方面掀起了一股浪潮,久未平息。

关于PCE的研究,人们聚焦于其作用机理的解释、性能的进一步提升、衍生产品的开发以及应用技术的优化,目的在于彻底解决水泥混凝土实际施工技术问题,提高混凝土综合性能(高工作性、高强度、高韧性和高耐久性),最大程度地实现节资、利废、节能和减排的目标。

时至今日,虽然在PCE的研究方面取得了一定成果,但由于对PCE的认知尚浅,所解决的问题只是冰山一角,研究工作仍然十分艰辛!为激发更多学者的研究兴趣,引导重点研究方向,促成更加有效的研究成果,在此特提出有关PCE研究的6大难题,欢迎大家批评指正。

难题1:PCE的作用机理掺入PCE的水泥浆体流动性能会大幅提高。

研究人员普遍认为,PCE吸附在水泥颗粒表面,相邻水泥颗粒表面所吸附的PCE 分子主链上的羧酸基团通过同性电荷相斥原理产生分散作用,加之,PCE分子的侧链可以提供空间位阻作用,因而PCE具有优异的分散性能。

但是,PCE是如何被吸附在水泥颗粒表面的呢?是静电作用的结果还是熵增作用的驱动,目前仍然没有定论。

此外,掺入PCE的水泥浆体水化诱导期的持续时间相较未掺PCE的水泥浆体有所延长,在宏观上表现为水泥浆体凝结时间推迟。

那么,PCE如何实现对水泥浆体的缓凝?为什么掺有PCE的水泥浆体在后来的水化速率反而加快?难题2:PCE的插层作用Plank等研究认为,PCE在某些水化产物中可能发生插层作用。

那么PCE发生插层作用的机理是什么?部分学者认为,水泥浆体液相中的PCE分子可能为水化硅酸钙(C-S-H)的成核提供位点,那么这是否是发生插层作用的原因之一?此外,膨润土和蒙脱土等矿物相蒙脱石也具有层状结构,了解PCE发生插层作用的原因可否助力于抗泥型PCE的研发?难题3:早强型PCE学界有部分早强型PCE的研究成果,市面上也已经开始出现少量的早强型PCE产品,但是人们对早强型PCE的作用机理仍然存在疑虑。

聚羧酸系高效减水剂的研究现状及发展方向

聚羧酸系高效减水剂的研究现状及发展方向
21 年 01
第 2 期 1
S IN E&T C N L G N O M I N CE C E H O O YIF R ATO
0建筑 与工程 0
ቤተ መጻሕፍቲ ባይዱ
科技信息
聚羧酸系高效减水剂的研究现状及发展方向
汤二 一 安 伟
( 柏县 鸿运 路桥 建设 有 限公 司 河 南 南 阳 桐
【 摘
44 5 7 7 0)
1 聚羧 酸减 水剂 的研 究 现 状
与 传 统 的 木 质 素 系 减 水 剂 、 系 减 水 剂 相 比 . 综 合 性 能优 异 . 萘 其 被
过 时间和 Zt e a电位 的 关 系 来 了解 。 一般 来 说 , 用 萘 系及 三 聚 氰 胺 系 使
高 性能减水剂 的混凝土经 6 mi 坍落度损失 明显高于含 聚羧酸 系 0 n后 高性 能 减 水剂 的混 凝 土 。这 主要 是 后 者 与 水 泥粒 子 的 吸 附 模 型 不 同 。 称 为 第 三 代 减 水 剂 。 羧 酸 减 水 剂 被 公 认 为 是 今 后 混 凝 土 外 加 剂 的 发 聚 水 泥 粒 子 闯 高 分 子 吸 附 层 的作 用 力 是 立 体 静 电 斥 力 ,ea电 位 变 化 Zt 展方向 , 我 国的发展还处 在初始阶段 , 研究工 作始于 2 在 其 O世 纪 末 , 小。 在 工 程 中大 量 使 用 也 是 近 5年 的 事 情 。 即 使 是 在 研 究 发 展 最 早 的 日 22 “ 间 位 阻 学 说 ”其 理论 核 心是 最 低 位 能 峰 。即 高分 子 吸 附 于 水 - 空 , 本 , 羧 酸 系 减 水 剂 的发 展 也 只 有 二 十 几 年 的 时 间 , 聚 目前 也 还 处 在 不 泥 颗粒 表 面 , 其伸 展 进入 溶 液 的支 链 产 生 了 空 间 位 阻 使 粒 子 不 能 彼 此 断 发 展 的 阶段 。 由此 可 见 聚 羧 酸 系 高效 减 水 剂 的 研 究 具 有 重 要 的 意 靠 近 , 而 使 水 泥 颗 粒分 散 并稳 定 。 从 义 。 2 3 羧 基(C OH 、 一 O )羟基 (O 、 基 (N 2 、 氧 烷 基 (O— ) 极 性 一 H)胺 一 H )聚 ~ Rn等 1 国外 聚 羧 酸 系 减 水 剂 的研 究 现 状 . 1 基 团 通 过 吸 附 、 散 、 湿 、 滑 等 表 面活 性 作 用 , 水 泥 颗 粒 提 供 分 分 润 润 对 聚羧酸系 高性能混凝土减水剂 18 9 5年 由 日本研发成 功后 ,O年 9 散和流动性能 , 并通过减少水 泥颗粒 问摩 擦阻力 , 降低 水泥颗粒 与水 代 中期 已正 式 工 业 化 生 产 , 已成 为 建 筑 施 工 中 被广 泛 应 用 的一 种 新 并 界面的 自由能来增加新拌混凝土的和易性。 羧酸根离子使水泥颗粒带 型 商 品 化 混 凝 土 外 加 剂 。该 类 减 水 剂 大 体 分 为烯 烃/ 丁 烯 二 酸 酐 聚 顺 上的负电荷 , 从而使水泥颗粒之间产生静电排斥作用并使水泥颗粒 分 合物和丙烯酸/ 甲基 丙 烯 酸 酯 聚 合 物 等 。19 9 5年 后 聚 羧 酸 系 减 水 剂 在 散 , 而 抑 制 了水 泥 浆 体 的 凝 聚 倾 向 ( L O 理论 ) 大 水 泥 颗 粒 与 水 从 DV 增 日本 的使 用 量 已 大 大 超 过 了 萘 系 减 水 剂 , 其 品 种 、 号 及 品 牌 已名 且 型 的 接 触 面 , 水 泥 充 分 水 化 。 扩 散 水 泥 颗 粒 的过 程 中 。 出 凝 聚 体 所 使 在 放 目繁 多 。到 2 0 年 为 止 ,聚 羧 酸 系 减 水 剂 用 量 在减 水 剂 中 已超 过 了 01 包围的游离水 , 善了和易性 , 少了拌水量。 改 减 8 %。尤其是近年来大量 高强度 、 O 高流动性混凝 土的应用带动 了聚羧 2 . 聚羧酸系聚合物对水泥有较为显著的缓凝作用. 4 主要 由 于 羧 基 充 酸 系高 性 能 减 水 剂 的广 泛 应 用 与技 术 发 展 , 年 利 用 此 类 减 水 剂 生 产 每 当 了缓 凝 成 分 , — O _ C 2 子 作 用 形 成 络 合 物 ,降 低 溶 液 中 的 R C O 与 a+ 离 各类混凝 土约在 10 00万 m , 。并有逐年递增 的发展趋势 。美 国高效减 C2 a 离子浓度 , + 延缓 C ( H aO )形成结 晶 , 减少 C H S凝胶 的形成, 缓 —— 延 水 剂 的 发 展 比 日本 晚 , 目前 美 国 正从 萘 系 、 氨 系 减 水 剂 向 聚 羧 酸 系 蜜 了水 泥 水 化 。 高 效减 水 剂发 展 。 据有关文献记载 . 聚羧 酸 系 高性 能 减 水 剂 现 已 由 第 一 代 聚羧 酸 系 3 聚 羧 酸 减 水 剂 存 在 的 问 题及 发展 方 向 减 水 剂 ( 基 丙 烯 酸 / 酸 甲酯 共 聚 物 )第 二 代 聚 羧 酸 系 减 水 剂 ( 烯 甲 烯 , 丙 31 聚羧 酸 减 水 剂 存 在 的 问题 . 基 醚 共 聚 物) 展 到 第 三代 聚 羧 酸 系 减 水 剂 ( 胺僦 亚 胺 型 )并 正 在 研 发 酰 , () 1 引气 性 过 大 而 造 成 混 凝 土 的 强 度 降 低 。 目前 解 决 的 办 法 是 添 发第 四代 聚 酰胺 一 聚 乙 烯 乙 二 醇 支链 的新 璎 高效 减 水剂 。 发 减 水 率 开 加消泡 剂 , 但直接添加 消泡剂. 所得 复配物很不稳 定. 会引起 含气量 的 更 高 、 能 更 优 异 、 应 性 更 强 的 聚 羧 酸 系 高 性 能 减 水 剂 是 今 后 发 展 性 适 波 动 . 终 引起 混 凝 土 强 度 的波 动 。将 消 泡 剂 与 可 聚合 单 体 共 聚 . 果 最 效

聚羧酸系高性能减水剂的研究现状及发展趋势

聚羧酸系高性能减水剂的研究现状及发展趋势

参考内容
引言
引言
聚羧酸系减水剂是一种高性能外加剂,在混凝土制备过程中发挥着重要的作 用。其具有高减水率、高保坍性、高强度增长等特点,被广泛应用于各种建筑工 程中。然而,聚羧酸系减水剂对水泥分散性及水化过程的影响仍需进一步探讨。 本次演示将通过实验研究聚羧酸系减水剂对水泥分散性及水化过程的影响,以期 为混凝土制备提供理论指导。
3.应用范围
3.应用范围
聚羧酸系高性能减水剂广泛应用于各种混凝土工程中,如高速公路、桥梁、 隧道、地铁等。在制备高强度、高流动性混凝土时,聚羧酸系高性能减水剂能够 显著提高混凝土的工作性能和耐久性。此外,聚羧酸系高性能减水剂还应用于石 膏制品、陶瓷制品、耐火材料等领域。
未来发展趋势
未来发展趋势
功能可控型聚羧酸减水剂的研究
1、聚羧酸减水剂的概述和特点
1、聚羧酸减水剂的概述和特点
聚羧酸减水剂是一种高效、环保的混凝土添加剂,主要用于改善混凝土的性 能。与传统的减水剂相比,聚羧酸减水剂具有更高的减水率、更好的分散性和更 强的适应性,能够显著提高混凝土的强度、耐久性和流动性。此外,聚羧酸减水 剂还具有生产效率高、环保性能好等特点,具有很大的发展潜力。
结论
结论
本次演示对功能可控型聚羧酸减水剂的研究与应用进行了详细的阐述。通过 对其制备方法、性质及其应用领域的介绍,分析了其优势和不足。并结合实际案 例说明了其在建筑、化学、石油等领域的应用前景。总之,功能可控型聚羧酸减 水剂作为一种高性能、环保型的混凝土添加剂,具有广泛的应用前景。相信在未 来的发展中,其必将在各个领域发挥越来越重要的作用。
实验结果与分析
此外,我们还发现聚羧酸系减水剂的掺量对混凝土的性能有很大影响。当掺 量较低时,减水剂的作用效果不明显,而当掺量较高时,混凝土的强度和耐久性 有所降低。因此,选择合适的掺量对于制备高性能混凝土至关重要。

聚羧酸盐高效减水剂的现状与发展趋势

聚羧酸盐高效减水剂的现状与发展趋势

铁路新线建设、复线改造、旧线改造等聚
羧酸盐等外加剂用量将达到20万吨。 目前约有40多家企业掌握了聚羧酸盐高性 能混凝土外加剂的生产技术。产能较大, 但处于以销定产状态。
聚羧酸盐高效减水剂的生产
方法一:从化工企业购买已经加工好(酯
化好)的大单体,用丙烯酸或甲基丙烯酸 等来进行聚合。工艺简单,生产周期短。 方法二:从化工企业购买未加工的大单体 (PEO或MPEG),先酯化,再聚合。生 产周期较长。 酯化工艺较为复杂,有些企业可能难以保 证酯化质量和稳定性。
在中国的国外企业
2006年水泥产量12.35亿吨,庞大的建筑市
场吸引国外的外加剂企业。 德国巴斯夫(BASF)公司、美国格雷斯 (GRACR)公司、意大利马贝(MAPEL) 公司、日本触媒公司、韩国LG公司、加拿 大弗克(FuClear)公司、瑞士的西卡 (SIKA)公司都在中国市场销售包括聚羧 酸在内的高性能外加剂。
以上。有时会影响强度和施工质量,特别在 大流动度混凝土工程施工时,更要注意含气 量的测量。
工程应用注意事项
(3)与其它外加剂相容性
聚羧酸系高性能减水剂一般不能与萘系
复合使用。操作上应特别注意使用干净容器,
内无其他杂质,不然会影响减水率和坍落度 保留性能。在与其它外加剂复合使用时,也 应注意与其它外加剂相容性。
大量甲醛、萘、苯酚等有害 物质,成品中也含有一定量
的有害物质
三、聚羧酸盐高性能减水剂 工程应用及注意事项
工程应用 过去认为只适合高强混凝土、自密实混凝 土、清水混凝土、混凝土预制构件等特种混凝 土。 随着对其技术经济性研究及生产工艺的优 化,重要原料的国产化,生产成本有所减低。 目前开始应用于普通强度等级的混凝土。

聚羧酸系高效减水剂的发展与现状

聚羧酸系高效减水剂的发展与现状

聚羧酸系高效减水剂的发展与现状摘要:高效减水剂是高性能混凝土不可缺少的一种组分油于其超分散作用特别是达到非常低的水胶比后使混凝土能够保持高的流动性。

目前,我国传统的高性能减水剂包括改性木钙、蔡系、三聚氰氨等,这些都难以满足高性能混凝土对减水剂性能的要求而聚竣酸系高效减水剂的性能更优越河根据实际情况配制各种不同强度等级的混凝土。

所以推广应用聚竣酸系高效减水剂是混凝土向高性能化方向发展的必然要求。

关键词:聚羧酸系;高效减水剂;发展目前市场上常用的几种减水剂为:木质素磺酸钠盐减水剂、萘系高效减水剂、脂肪族高效减水剂、氨基高高效减水剂、聚羧酸高效减水剂等。

在众多减水剂中,具有疏形分子结构的聚羧酸系高效减水剂因其减水率高(最高减水率可达35%以上)、坍落度保持性能良好、掺量低、不引起明显缓凝等优异性能,成为国内外研究和开发的重点。

一、聚羧酸减水剂特点(1)保坍性好,90min内坍落度基本不损失;(2)在相同流动性情况下,对水泥凝结时间影响小,可很好的解决减水、引气、缓解、泌水等问题;(3)与水泥及其它种类的混凝土外加剂相容性很好,与传统高效减水剂如萘系减水剂复配可产生良好的叠加效应。

(4)合成高分子主链的原料来源较广,单体通常有丙烯酸、甲基丙烯酸、马来酸、(甲基)丙烯酸乙酯、(甲基)丙烯酸羟乙酯、乙酸乙烯酯、烯丙基磺酸钠等。

(5)使用聚羧酸高效减水剂,可用更多的矿渣或煤粉灰取代水泥,降低成本。

(6)分子结构自由度大,外加剂制造技术上可控制的参数多,高性能化的潜力大。

(7)局和途径多样化,如共聚、接枝、嵌段等。

合成工艺比较简单,由于不使用甲醛,不会对环境造成污染。

二、聚羧酸类高效减水剂的合成方法1大分子单体法该法先酯化后聚合,即首先通过酯化反应制备出有聚合活性的大分子单体(通常为甲氧基聚乙二醇甲基丙烯酸酯),然后将一定配比的单体混合在一起,直接采用溶液聚合的方法聚合得到成品。

这种合成工艺看起来很简单,但中间分离纯化过程比较繁琐,成本较高。

聚羧酸减水剂的研究现状及发展趋势

聚羧酸减水剂的研究现状及发展趋势

聚羧酸减水剂的研究现状及发展趋势摘要:聚羧酸减水剂的研发和推广是混凝土材料科学中的一个研究热点,推动着混凝土材料向高强、高性能化不断发展。

论文主要针对国内、外对聚羧酸系高效减水剂的应用情况,分析聚羧酸减水剂的作用机理,通过总结当前研究与应用中存在的主要问题,对将来的发展趋势进行了展望。

关键词:聚羧酸;减水剂;现状;发展趋势减水剂是一种重要的混凝土外加剂,是水泥混凝土必不可少的组成部分[1]。

近年来,高性能混凝土在我国工程建设中发挥了重要作用[2,3],如聚羧酸系减水剂。

其保坍性能优异、与水泥适应性良好,但因其价格昂贵,应用范围受到一定的限制[4]。

从某种意义上说,目前各国在混凝土技术上的差距最重要的特征就是外加剂,尤其是高性能减水剂的发展水平。

而新型多功能聚羧酸系高性能减水剂的开发则是目前研究的热点[5,6],发展迅猛[7],其应用越来越广泛[8,9],成为公认的配制高性能混凝土不可或缺的一种重要材料。

1、聚羧酸减水剂的分类为了更好的满足市场需求,应该更系统地开发聚羧酸系列产品。

根据不同的分类方式,聚羧酸减水剂有不同的分类。

1.1根据化学结构分类聚羧酸减水剂化学上可以分为两类,以主链为甲基丙烯酸,侧链为羧酸基团MPEG(Methoxy polyethylene glycol),聚酯型结构。

另外一种为主链为聚丙烯酸,侧链为Vinyl alcohol polyethylene glycol,聚醚型结构。

1.2根据使用情况分类聚羧酸减水剂根据使用情况可被分为标准型、缓凝型、早强型、保坍型、减缩型、降粘型[10]。

目前,各类产品还未发展完善,有待进一步提高。

2、聚羧酸减水剂的研究情况2.1 国内研究情况国内对聚羧酸减水剂的研究大多数偏向于分子结构设计、化学合成,而对减水剂作用下水泥水化的机理研究甚少[12~14]。

只有少量用作坍落度损失控制剂与萘系减水剂复合使用,而且可供合成聚羧酸类减水剂的原料也极为有限。

2024年聚羧酸盐减水剂市场分析现状

2024年聚羧酸盐减水剂市场分析现状

2024年聚羧酸盐减水剂市场分析现状引言减水剂是一种在混凝土搅拌、运输和浇筑过程中使用的化学品,可以有效降低混凝土的水灰比,提高混凝土的流动性和可泵性。

聚羧酸盐减水剂是近年来新兴的一类减水剂,具有较高的分散性、可塑性和抗裂性能,已在建筑工程中得到广泛应用。

本文将对聚羧酸盐减水剂市场的现状进行分析。

聚羧酸盐减水剂的分类根据其化学结构和性能特点,聚羧酸盐减水剂可以分为以下几类: 1. 单元聚氧化物型:具有高分散性和流动性,适用于要求高流动性和可泵性的混凝土工程。

2. 线性聚氧化物型:具有较高的抗裂性和可塑性,适用于抗裂性能要求较高的混凝土工程。

3. 支链聚氧化物型:具有优异的分散性和保水性能,适用于特殊的混凝土工程。

4. 混合型:综合了以上不同类型的聚羧酸盐减水剂,具有多种性能,适用范围广。

聚羧酸盐减水剂市场规模聚羧酸盐减水剂市场的规模正在逐年扩大。

目前,全球市场上主要供应商包括BASF、Sika、GCP、CHRYSO等国际知名品牌。

据统计,2019年全球聚羧酸盐减水剂市场规模约为20亿美元,预计到2025年将达到40亿美元。

亚太地区是聚羧酸盐减水剂市场增长最快的地区,主要受益于中国、印度等新兴市场对建筑工程的增加需求。

聚羧酸盐减水剂市场主要应用领域聚羧酸盐减水剂在各个建筑领域得到广泛应用,主要包括以下几个方面: 1. 商业和住宅建筑:聚羧酸盐减水剂可提高混凝土的流动性和施工性能,使得施工更加高效和节约材料。

2. 桥梁和隧道工程:聚羧酸盐减水剂具有较高的抗裂性能,可以有效减少混凝土的裂缝,提高工程的耐久性。

3. 水利工程:聚羧酸盐减水剂可提高混凝土的抗渗性和耐久性,适用于各种水利工程的建设。

4. 港口和码头工程:聚羧酸盐减水剂的高流动性和可塑性使得混凝土施工更加顺畅,并可以减少材料损耗。

聚羧酸盐减水剂市场的挑战和机遇聚羧酸盐减水剂市场面临着一些挑战,主要包括以下几点: 1. 技术研发:聚羧酸盐减水剂需要不断改进和创新,以满足不同工程需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚羧酸系高性能减水剂发展现状与技术难题从2000年左右起我国混凝土工程界逐渐认识聚羧酸系减水剂,到现在广大铁路系统混凝土工程和越来越多的海工工程、隧道重点工程以及市政重点工程的全面推荐应用,聚羧酸系减水剂的用量快速递增,如下图。

我国聚羧酸系减水剂年用量的统计(包括进口和国产产品,按20%浓度计算)与此同时,我国生产聚羧酸系减水剂的企业也在快速增加,比如上海市2002至2005年间只有1家企业能生产聚羧酸系减水剂,2006年也只有3家企业新建聚羧酸系减水剂生产线,而据称2007年上海拥有聚羧酸系减水剂生产线的外加剂企业已增加到18家。

仅2007年一年间,贵州、云南、广西等边远地区因大型铁路交通、隧道和水利工程的兴起,也先后建立起10余条聚羧酸系减水剂生产线。

所以,近二、三年来我国聚羧酸系减水剂在生产线的建设和产量方面取得可喜的成绩。

的确,聚羧酸系减水剂作为继萘系、密胺系、脂肪族系和氨基磺酸盐系减水剂之后研制生产成功的新型高效减水剂,以其在掺量较低时(固体掺量0.15%-0.25%)就能产生理想的减水和增强效果、对混凝土凝结时间影响较小、坍落度保持性较好、与水泥和掺合料适应性相对较好、对混凝土干缩性影响较小(指通常不过分增加干缩)、生产过程中不使用甲醛和不排出废液、SO42-和Cl-含量低等突出特点,从一开始就受到研究者和部分应用者的推崇。

目前,我国制定的《聚羧酸系高性能减水剂》JG/T 223-2007标准已于2007年12月1日起开始实施,而我国铁道部科学技术司早在2006年9月印发的《客运专线高性能混凝土用外加剂产品检验细则》,主要就是为强制使用聚羧酸系减水剂实施的一次重要举措。

已经修定完成的《混凝土外加剂》GB8076标准中,也对两种类型的聚羧酸系高性能减水剂的性能指标和试验方法做出了明确规定。

然而,我国聚羧酸系减水剂在实际工程应用中却也同时表现出越来越多、越来越复杂的技术问题,亟需通过大量的研究工作指导解决。

1. 应用聚羧酸系减水剂易遇到的问题由于聚羧酸系减水剂被认为是一种高性能减水剂,人们总是期望其在应用中比传统的萘系高效减水剂更安全、更方便、更高效、适应能力更强,但实际情况却总是事与愿违,工程中总是更多地碰到这样那样的问题,而且有些问题还是使用其它品种减水剂时所从未遇见的,具体如下:1) 混凝土拌合料异常干涩、无法卸料,更甭提泵送浇注了;2) 混凝土拌合料分层严重、泌水量惊人;3) 混凝土引气严重,由于凝结时间长而表面长时间冒泡;4) 所浇注的混凝土拆模后表面质量欠佳(气泡、露砂等);5) 细集料含泥量对减水剂作用效果影响明显;6) 对某些水泥来说,聚羧酸系减水剂表现为异常不适应等。

只有深入了解聚羧酸系减水剂的性能特点,才能避免其应用中的各种缺点,才能使其安全高效地为各种混凝土工程服务。

2. 聚羧酸系减水剂区别于传统减水剂的技术特点聚羧酸系减水剂区别于传统的木质素磺酸盐减水剂、萘系减水剂的技术特点包括以下几个方面。

2.1 减水效果对混凝土原材料和配合比的依赖性大减水率是一个十分严格的定义,仅是指按照《混凝土外加剂》GB8076-1997标准,采用基准水泥、一定的配合比,一定的搅拌工艺、控制混凝土坍落度为(8+1)cm时测得的数据。

但人们总是在很多不同场合借用这个词语来表征产品的减水效果,以致于经常产生误会。

聚羧酸系减水剂被证实在较低掺量情况下就具有较好的减水效果,其减水率比其它品种减水剂大得多。

但必须注意的是,与其它减水剂相比,聚羧酸系减水剂的减水效果受试验条件的影响更大。

首先,聚羧酸系减水剂的减水效果与混凝土中水泥用量的影响很大。

曾经采用相同的掺量对同一种减水剂进行试验,当基准混凝土水泥用量分别为330kg/m3、350kg/m3、380kg/m3和420kg/m3时,测得的“减水率”分别为18%、22%、28%和35%。

有些单位送检时指定采用《混凝土泵送剂》JC473-2001标准规定的混凝土配合比对聚羧酸系减水剂进行试验,并测定减水率,其结果当然比采用《混凝土外加剂》GB8076-1997标准理想。

混凝土中集料的颗粒级配以及砂率,对聚羧酸系减水剂的塑化效果影响也非常大。

与萘系等其它高效减水剂相比,聚羧酸系减水剂的塑化效果受细集料含泥量影响很大。

另外,聚羧酸系减水剂和其它减水剂一样,“减水率”还取决于搅拌工艺,如果采用手工拌合,测得的“减水率”往往比机械搅拌低2-4个百分点。

如果混凝土中掺加掺合料,减水率当然也取决于掺合料的品种和掺量。

对于大掺量掺合料混凝土,聚羧酸系减水剂的减水效果更加优于萘系减水剂。

2.2 减水效果对减水剂掺量的依赖性很大聚羧酸系减水剂的减水效果对其掺量的依赖性很大,一般情况下随着减水剂掺量增加,减水率增大。

但也经常出现例外,即到了一定掺量后甚至出现随掺量增加,减水效果反而“降低”的现象。

这并不是说掺量增加其减水作用反而下降了,而是因为此时混凝土出现严重的泌水现象,混凝土拌合料板结,流动性难以用坍落度法反映。

为保证本厂聚羧酸系减水剂产品的检测结果全部达标,送检时指定的产品掺量就不能过高。

所以说,产品质量检测报告上反映的只是一些基本的数据,而产品的应用效果要以工程实际的实验结果为准。

2.3 配制的凝土拌合物的性能对用水量十分敏感反映混凝土拌合物性能的指标通常有流动性、粘聚性和保水性。

使用聚羧酸系减水剂配制的混凝土并不总是完全满足使用要求,经常会出现这样那样的问题。

所以目前在实际试验时我们通常还用严重露石起堆、严重泌水离析起堆扒底等术语来形象地描述混凝土拌合物性能。

采用大多数聚羧酸系减水剂制备的混凝土拌合物,其性状对用水量十分敏感。

有时用水量只增加(1-3)kg/m3,混凝土拌合物便严重泌水,采用这种拌合物无法保证浇注的均匀性,而易导致结构物表面出现麻面、起砂、孔洞等难以接受的缺陷,结构体强度和耐久性也下降。

商品混凝土搅拌站由于对集料含水率检测控制不严,很容易在生产中造成加水量过多而导致混凝土拌合物泌水、离析。

2.4.配制的大流动性混凝土容易分层离析大部分情况下,采用聚羧酸系减水剂配制的大流动性混凝土,即使减水剂掺量、用水量控制都是最佳的,混凝土拌合物也不泌水,但却非常容易出现分层、离析现象,具体的表现是粗集料下沉,砂浆或净浆上浮。

采用这种混凝土拌合物进行浇注,即使不振动,分层、离析也明显存在。

究其原因,主要是掺加这种聚羧酸系减水剂的混凝土在流动性较大时,浆体的粘度急剧减小所致。

适当复配增稠组分只能在一定程度上解决此问题,而且复配增稠组分往往导致减水效果严重降低的反作用。

2.5.与其它品种减水剂的相溶性差,无叠加的作用效果搅拌站反映,过去制备混凝土时,可随意更换泵送剂品种,也不会出现混凝土拌合物性状与实验室结果相差很悬殊的现象,更不会出现混凝土拌合物性状的突变。

但自从本搅拌站开始根据用户需要制备掺聚羧酸系减水剂的混凝土后,就经常出现一些令人十分费解的问题:设备中的混凝土拌合物性能严重偏离预先的实验结果,有时加水量已经很大,混凝土仍然很干涩,有时混凝土拌合物的坍落度损失比掺加普通泵送剂的还快,有时混凝土拌合物根本无法卸料,而取样测得的混凝土试件强度则更是低得无法令人相信!我们都知道,传统的减水剂,如木质素磺酸盐减水剂、萘系高效减水剂、密胺系高效减水剂、脂肪族系高效减水剂以及氨基磺酸盐高效减水剂,可以任何比例复合掺加,以满足不同工程的特殊配制要求,或获得更好的经济性。

这些减水剂复配使用都能得到叠加的(大多数情况下优于单掺)使用效果,且这些减水剂的溶液都可以互溶(除了木质素磺酸盐减水剂与萘系减水剂互溶产生部分沉淀但并不影响使用效果外)。

但聚羧酸系减水剂与其它品种减水剂复合使用,却不易得到叠加的效果,且聚羧酸系减水剂溶液与其它品种减水剂溶液的互溶性本身就很差。

下面是笔者针对该问题进行试验的结果:1)从溶液的互溶性来看,实际使用中聚羧酸系减水剂与密胺系减水剂或脂肪族系减水剂溶液不能复配在一起掺加,而不考虑复合使用效果的情况下,聚羧酸系减水剂存在与木质素磺酸盐、萘系、氨基磺酸盐系减水剂复配使用的可能。

2)从复合掺加后的叠加效果来看,聚羧酸系减水剂与木质素磺酸盐减水剂和脂肪族系减水剂存在复合掺加使用的可能性,但由于聚羧酸系减水剂与脂肪族系减水剂不互溶,实际上聚羧酸系减水剂只能与木质素磺酸盐减水剂进行复配。

2.6 与常用改性组分的相容性较差目前对聚羧酸系减水剂科研方面的投入较少,大部分情况下,科研工作的目标只在于进一步提高其塑化减水效果方面,很难做到按照不同工程需要,通过分子结构设计合成出具有不同缓凝/促凝效果、不引气或不同引气性、不同粘度的聚羧酸系减水剂系列产品。

工程中水泥、掺合料、集料的多样性和不稳定性,外加剂生产供应者如何根据工程需要对聚羧酸系减水剂产品进行复配改性非常重要。

目前减水剂的复配改性技术措施,基本上都建立在对木质素磺酸盐系、萘系高效减水剂等传统减水剂改性措施的基础上的。

试验证明,过去的改性技术措施不一定适合于聚羧酸系减水剂。

如对萘系减水剂进行改性的缓凝成分中,柠檬酸钠就不适合聚羧酸系减水剂,它不仅起不到缓凝作用,反而有可能促凝,且柠檬酸钠溶液和聚羧酸系减水剂的互溶性也很差。

再者,许多品种的消泡剂、引气剂和增稠剂也不适合于聚羧酸系减水剂。

通过上面的试验及分析,我们不难看出,因为聚羧酸系减水剂分子结构的特殊性,就现阶段的科研深度和工程应用经验的积累来说,通过其它化学组分对聚羧酸系减水剂进行改性的手段不多,而且由于过去针对其它品种减水剂改性所建立起的理论和标准规范,对于聚羧酸系减水剂来说,可能需要更深层次的探索研究进行修正和补充。

2.7 技术深度和产品的性能稳定性值得关注我国混凝土减水剂合成企业真正算得上精细化工企业的不多,这一点限制了我国混凝土减水剂的精细化程度。

就生产控制来说,原材料来源和品质的不稳定一直是困扰聚羧酸系减水剂性能的一大因素。

众所周知,萘系高效减水剂的原材料之一---工业萘的几度供求矛盾紧张导致萘系高效减水剂产品价格和产品质量出现波动,对预拌混凝土企业的生产控制及混凝土工程质量的影响不小,但萘系高效减水剂的质量波动大多还仅表现在塑化效果和增强效果方面。

聚羧酸系减水剂产品从一开始的主要原材料从德国、韩国进口,到现在的部分采用国产原材料,其产品性能和质量已经出现很大波动,这不仅表现在塑化效果方面,还有引气性、气泡结构、缓凝效果、坍落度保持性和粘度等多方面。

3 安全高效应用聚羧酸系减水剂必须注意的问题充分了解聚羧酸系减水剂性能特点,可以帮助我们有的放失地应用聚羧酸系减水剂。

总的来说,我国聚羧酸系减水剂的研发、生产和应用尚处在初级阶段,今后必须在以下方面开展工作。

3.1 提高技术水平,稳定产品质量,加强技术储备由于聚羧酸系减水剂生产企业本身的技术力量有限,对于所生产聚羧酸系减水剂技术的深层次理解不够,很难适应原材料、工艺的各种变动,产品质量的稳定也就无从谈起。

相关文档
最新文档