导电高分子材料

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导电高分子材料

导电高分子材料概述

摘要导电高分子材料具有高电导率等与一般聚合物不同的特性。文章综述了导电高分子的分类,研究进展,制备方法以及在作为导电材料,电极材料,显示材料,电子器件,电磁屏蔽材料及催化材料方面的应用。

关键词:导电高分子,制备,应用 Abstract :Conductive polymeric materials have the properties

such as high conductivity that different from traditional polymeric materials.This paper reviews

the classification of conductive polymers, research

progress,Preparation methods and Conductive

polymeric materials applied as the conductive material, electrode materials, display materials,

electronic devices, electromagnetic shielding materials and the application of catalytic materials.

Keywords: Conductive polymeric materials, Preparation,application 传统高分子材料的体积电阻率一般介于1010,1020Ω•cm之问,一直作为电绝缘材料使用。自从1997年,美国化学家MacDiarmid、物理学家Herger和日本化学家Shirakawa[1]发现掺杂聚乙炔具有良好导电性后,世界各国科学家纷纷投入到导电聚合物的研究当中,各种有机导电聚合物相继出现,其应用范围也日益扩大,广泛应用于各种家用电器、航空航天、抗静电涂料、雷达吸波材料、电磁屏蔽材料和传感器等方面,极大地丰富和改善了人们的生活。

1.导电聚合物的分类

导电高分子材料按结构和制备方法不同可分为结构型导电高分子材料和复合型导电高分子材料两大类。根据结构特征和导电机理不同可分成三类:载流子为自由电子的电子导电聚合物、载流子为能在聚合物分子间迁移的正负离子的离子导电聚合物、以氧化还原反应为电子转移机理的氧化还原型导电聚合物。

1.1结构型导电高分子材料

结构型(又称作本征型)导电高分子[2]是指高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料由于其结构的特点,能够提供载流子而具有导电性,经掺杂后,电导率可达到金属的导电水平。从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。

1.2复合型导电高分子材料

复合型导电高分子材料[3]是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。

1.3电子导电聚合物

电子导电聚合物是导电聚合物中种类最多,研究最早的一类导电材料,在电子导电聚合物的导电过程中载流子是聚合物中的自由电子或空穴。高分子聚合物中的π键可以提供有限离域,当高分子聚合物中具有共轭结构时,π电子体系增大,电子的离域性增强,共轭体系越大,离域性也越大,电子的可移动范围也就越大。当共轭结果足够大时,化合物即可提供自由电子。电子导电性聚合物的共同特征为分子许离子在其中移动,同时对离子又有一定溶剂合作用,但不具有液体流动性和挥发性。

1.5氧化还原型导电聚合物

除了电子型导电聚合物和离子型导电聚合物比较常见外,还有一种称为氧化

[7]还原型导电聚合物。从结构上看,这类聚合物的侧链上常带有可以进行可逆氧

化还原反应的活性基团,有时聚合物骨架本身也具有可逆氧化还原能力。当一段聚合物的

两端接有测定电极时,在电极电势的作用下,聚合物内的电活性基团发生氧化还原反应,在反应过程中伴随着电子转移过程发生。如果在电极之间施加电压,促使电子转移的方向一致,聚合物中将有电流通过,即产生导电现象,其导电村料的导电机理[8]如图1所示:

氧化还原型聚合物的导电机理为:当电极电位达到聚合物中电活性基团的还原电位(或氧化电位)时,靠近电极的活性基团首先被还原(或氧化) ,从电极得到(或失去) 1个电子,生成的还原态(或氧化态)基团可以通过同样的还原反应(或氧化反应)将得到的电子依次传给相邻的基团,直至将电子传送到另一侧电极,完成电子的定向转移。

2.导电高分子材料的研究进展

2.1聚乙炔

聚乙炔是研究最早最系统。也是迄今为止实测电导率最高的电子聚合物。采用对聚合催化剂进行高温陈化的方法。聚合物力学性质和稳定性有明显改善,高倍拉伸后具有很高的导电性。有人用稀土及烷基铝作催化剂,通过改变溶剂或添加剂的种类及稀土烷基铝的比率获得了具有纤维状结构的聚乙炔薄膜,其电导率在

10,1000S,cm。还有人通过增重法及红外电子自旋共振法研究了不同催化体系得到的聚乙炔的空气稳定性,清楚了聚乙炔中的共轭双键易与空气中的氧气发生反应生成羰基化合物,导致聚乙炔的共轭结构被破坏,降低其电导率。为了改善聚乙炔的导电溶解等性能,人们研究了各种取代聚乙炔,发现乙炔有取代基时

聚合物的电导率降低,但却大大改善了它的溶解性,取代聚乙炔大多数都是可溶的,且取代聚乙炔,尤其是含氟炔烃的稳定性还比聚乙炔好。

2.2聚芳杂环化合物

(1)聚吡咯:聚吡咯也是发现早并经过系统研究的导电聚合物之一。由于聚吡咯容易合成且导电率高。科研人员对其进行了广泛而深入的研究,并且逐渐向工业实际应用方向发展。但其有难溶难熔的缺陷,因此难以加工成型。采用吡咯单体在聚甲基丙烯酸甲酯(PMMA)的乙酸乙酯溶液中,以三氯化铁作为氧化剂进行现场氧化聚合得到了复合聚吡咯2聚甲基丙烯酸甲酯。电导率高达3.05S,cm 而且该复合导电薄膜在空气中的稳定性极好。为了改善其溶解性,3位取代的聚毗咯衍生物引起了人们的广泛注意,这类聚吡咯衍生物有些是可溶的。目前已经分别合成了聚(3-烷基吡咯),聚(3-烷基噻吩吡咯)等。闰廷娟采用以丙烯酸甲酯,苯乙烯和丙烯酸为单体进行乳液聚合而合成新型P (BSA),以其为基体,交联后在低温下吸附吡咯蒸气同时进行氧化聚合。得到新型的聚吡咯导电复合薄膜,电导率可达220S,cm。在3位上引入带有双苯基聚吡咯。其可溶可熔,电导率为10-4~10-3S,cm。

(2)聚噻吩:相对于其它几种导电高分子,聚噻吩类衍生物大多数具有可溶解、高电导率和高稳定性等特性。TenKw anyu等合成了一系列烷基取代聚噻吩衍生物。掺杂前为深红色,掺杂后3-甲基噻吩和聚3-已基噻吩最高电导率达1,

5S,cm。用电解聚合法也可得到导电聚噻吩及其衍生物。在单体中引入取代基( 聚合物电导率可达1000S,cm以上的较高指标。在噻吩的3位上引入甲氧基,聚(3-甲氧基噻吩)的电导率为15S,cm,可溶于碳酸苯撑酯和二甲基亚砜中,并可浇注成膜。日本的小林等采用FeC l3化学氧化法使3-丙基磺酸钠噻吩聚合制得分子量10万、电导率为0.1S,cm的水溶性和自掺杂聚合物。另外,美国的Pat ilr

相关文档
最新文档