填料吸收塔的设计

合集下载

水吸收SO2过程填料吸收塔的设计

水吸收SO2过程填料吸收塔的设计

水吸收SO2过程填料吸收塔的设计水吸收SO2过程是一种常见的燃煤电厂烟气脱硫方法,其原理是利用水溶液与SO2发生反应生成硫酸,将SO2从烟气中去除。

水吸收SO2过程中的填料吸收塔设计对于脱硫效率和运行成本有很大的影响。

接下来,将从选型、装置结构和操作参数等方面进行详细的论述。

一、填料选型填料是填充在吸收塔内以增大吸收表面积的材料。

常见的填料有板式填料、环状填料和均质球状填料等。

在设计填料吸收塔时,应根据脱硫效率、压降和流动特性等因素选择合适的填料类型。

通常情况下,板式填料的压降小,但对液体分布要求较高;环状填料的压降适中,且容易清洗和维修;均质球状填料的压降较大,但吸收效率高,适合于高浓度SO2气体吸收。

二、填料吸收塔结构填料吸收塔的结构主要包括上部分和下部分。

上部分主要有进气管口、烟气分布装置和吸收剂分布装置等,用于将烟气和吸收剂均匀分布到填料上。

下部分则有塔底底板、收集液管口、流动层、内排套管和废液排出口等,用于收集和排除吸收后的液体。

在设计填料吸收塔时,需要考虑以下因素:1.塔底底板的设计:底板内设流动层,使流化床层变厚,有利于液体与气体的充分接触,提高脱硫效率。

2.收集液管口和废液排出口的位置:应设计在塔底的低点,以保证吸收后的液体能够顺利排出,减少液体滞留,防止结垢和堵塞。

3.塔体结构的牢固性:由于塔内液体的冲击和流动压力较大,塔体结构需要有足够的强度和刚度以承受这种压力,同时要考虑良好的密封性。

4.渗漏和冲击的处理:填料吸收塔内常常存在渗漏和冲击现象,应设计避免二次喷洒和渗漏的结构,同时防止冲击和振动对填料吸收塔的影响。

三、操作参数填料吸收塔的操作参数对于脱硫效率和运行成本也有重要影响,其中包括液气比、塔温和pH值等。

1.液气比:液气比是指吸收液和烟气之间的质量比。

液气比较小时,吸收剂的成本较低,但吸收效率较低,反之亦然。

因此,在设计填料吸收塔时,需要根据脱硫要求和成本考虑确定液气比。

填料吸收塔的设计

填料吸收塔的设计

化工原理课程设计任务书
一、设计题目:填料吸收塔的设计
二、设计内容(含技术指标)
1. 工艺条件与数据
煤气中含量2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时处理含苯煤气2000m³;冷却水进口温度<25℃,出口温度≤50℃。

2. 操作条件
吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充新鲜吸收剂;过程中热效应忽略不计。

3. 设计内容
① 吸收塔、解吸塔填料层的高度计算和设计;
② 塔径的计算;
③ 其他工艺尺寸的计算。

三、基本要求
1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。

设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。

应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。

设计说明书应附有带控制点的工艺流程图。

设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。

2. 图纸1套:包括工艺流程图(3号图纸)。

填料吸收塔的设计化工原理课程设计

填料吸收塔的设计化工原理课程设计

一、设计任务书1、设计题目:填料吸收塔的设计2、设计任务:试设计一填料吸收塔,用于脱除合成氨尾气中的氨气,要求塔顶排放气体中含氨低于200ppm,采用清水进行吸收3、工艺参数与操作条件(1)工艺参数表1—1(2)操作条件①常压吸收:P=②混合气体进塔温度:30℃③吸收水进塔温度:20℃。

4、设计项目:(1)流程的确定及其塔型选择;(2)吸收剂用量的确定;(3)填料的类型及规格的选定;(4)吸收塔的结构尺寸计算及其流体力学验算,包括:塔径、填料层高度及塔高的计算;喷淋密度的校核、压力降的计算等;(5)吸收塔附属装置选型:喷淋器、支承板、液体再分布器等;(6)附属设备选型:泵、风机附:1、NH3~H2O系统填料塔吸收系数经验公式:k G a=cG m WLnk L a=bWLP式中ka——气膜体积吸收系数,kmol/——液膜何种吸收系数,l/h GG——气相空塔质量流速,kg/——液相空塔流速,kg/WL2、(氨气—水)二成分气液平衡数据表1—3二、工艺流程示意图(带控制点)三、流程方案的确定及其填料选择的论证1、塔型的选择:塔设备是能够实现蒸馏的吸收两种分离操作的气液传质设备,广泛地应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。

在工业生产中,一般当处理量较大时采用板式塔,而当处理量小时多采用填料塔。

填料塔不仅结构简单,而且阻力小,便于用耐腐蚀材料制造,对于直径较小的塔,处理有腐蚀性的物料或要求压降较小的真空蒸馏系统,填料塔都具有明显的优越性。

根据本设计任务,是用水吸收法除去合成氨生产尾气的氨气,氨气溶于水生成了具有腐蚀性的氨水;本设计中选取直径为600mm,该值较小,且Φ800mm以下的填料塔对比板式塔,其造价便宜。

基于上述优点,因此本设计中选取填料塔。

2、填料塔的结构填料塔的主要构件为:填料、液体分布器、填料支承板、液体再分器、气体和液体进出口管等。

3、操作方式的选择对于单塔,气体和液体接触的吸收流程有逆流和并流两种方式。

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计(氨气填料吸收塔设计)1000字氨气填料吸收塔是一种常见的化工工艺设备,用于从氨气等气体中去除二氧化碳等有害成分。

在这篇课程设计中,我们将重点讨论氨气填料吸收塔的设计原理和实现方法。

一、设计原理氨气填料吸收塔的设计原理基于物理吸收法,它通过填充物(如泡沫塑料、陶瓷、金属等)将气相物质传递到液相解吸剂中,以达到去除气体中有害成分的目的。

其中,填充物的种类、形状和大小会影响到吸收效率和压力损失。

塔顶设置进口气流分布器,塔底设置液体分布器,使操作稳定,保证吸收效果。

二、实现方法1. 确定设计参数氨气填料吸收塔的设计需要涉及到多项因素,包括:(1)吸收剂的化学性质:吸收剂的化学性质会影响到塔内化学反应的速率和吸收效率。

因此,需要选择合适的吸收剂,并对其进行物性参数测定。

(2)气体流量:气体流量会影响到塔内的混合程度和扩散速率。

因此,需要确定气体流量范围和变化规律。

(3)操作温度和压力:操作温度和压力会直接影响到化学反应的速率和吸收效率。

因此,需要选择合适的操作温度和压力,并对其进行测定。

(4)塔体高度和直径:塔体高度和直径会影响到填充物的分布、气液流动情况和压降。

因此,需要按照实际需要确定塔的高度和直径。

(5)填充物种类和数量:填充物的种类和数量对吸收效率和压力损失有较大影响。

因此,需要选择合适的填充物,并确定填充层数和填充物粒径。

2. 填充物选型填充物的种类是影响氨气填料吸收塔吸收效率和压力损失的一个关键因素。

选用填充物时需要考虑以下方面:(1)物理性能:填充物的物理性能直接影响其在吸收塔内的分布、气液流动情况和压降。

因此,需要选择合适的物理性能(如比表面积、孔隙率、容重等)的填充物。

(2)化学特性:填充物的化学特性对气液反应速率和吸收效率有较大影响。

因此,需要选择符合需要的化学特性的填充物。

(3)成本和耐久性:填充物的成本和耐久性也是选型时需要考虑的因素,以确保经济可行和长期稳定运行。

水吸收氨过程填料吸收塔设计

水吸收氨过程填料吸收塔设计

一、設計任務書(一)設計題目試設計一座填料吸收塔,用於脫除混於空氣中的氨氣。

混合氣體的處理量為1000 m3/h,其中含氨氣為8%(體積分數),要求塔頂排放氣體中含氨低於0.02%(體積分數),採用清水進行吸收,吸收劑的用量為最小用量的1.5倍。

(20℃氨在水中的溶解度係數為H=0.725kmol/(m3.kPa)(二)操作條件1.操作壓力為常壓,操作溫度20℃.2.填料類型選用聚丙烯階梯環填料,填料規格自選。

3.工作日取每年300天,每天24小時連續進行。

(三)設計內容1.吸收塔的物料衡算;2.吸收塔的工藝尺寸計算;3.填料層壓降的計算;4.吸收塔接管尺寸計算;5.吸收塔設計條件圖;6.對設計過程的評述和有關問題的討論。

二、設計方案(一)流程圖及流程說明該填料塔中,氨氣和空氣混合後,經由填料塔的下側進入填料塔中,與從填料塔頂流下的清水逆流接觸,在填料的作用下進行吸收。

經吸收後的混合氣體由塔頂排除,吸收了氨氣的水由填料塔的下端流出。

(二)填料及吸收劑的選擇該過程處理量不大,所用的塔直徑不會太大,可選用25×12.5×1.4聚丙烯階梯環塔填料,其主要性能參數如下:比表面積at :22332/mm空隙率ε:0.90濕填料因數Φ:1172m-填料常數 A:0.204 K:1.75見下圖:根據所要處理的混合氣體,可採用水為吸收劑,其廉價易得,物理化學性能穩定,選擇性好,符合吸收過程對吸收劑的基本要求。

三、工藝計算(一)基礎物性數據1.液相物性數據3998.2(/)L kg m ρ= 6100410() 3.6(/)L Pa s kg m h μ-=⨯⋅= 272.6(d y n /c )940896(/)L m k g h σ== 931.7610(/)L D m s -=⨯2. 氣相物性數據 混合氣體平均密度:31.166(/)v kg m ρ=c σ=427680(2/kg h )空氣黏度:51.8110()0.065(/)v Pa s kg m h μ-=⨯⋅=273K ,101.3Kpa.氨氣在空氣中擴散係數:200.17(/)D ms =(二)物料衡算,確定塔頂、塔底的氣液流量和組成20℃,101.3Kpa 下氨氣在水中的溶解度係數 30.725/H kmol m kpa = 998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯進塔氣相摩爾比: 10.080.087010.08Y ==- 出塔氣相摩爾比:20.00020.00020010.0002Y ==- 對於純溶劑吸收過程,進塔液相組成:20X =混合氣體流量 :1100027341.59629322.4V ⨯==⨯ kmol/h 進塔惰性氣體流量: 41.596(10.08)38.268V =⨯-= kmol/h吸收過程屬於低濃度吸收,平衡關係為直線,最小液氣比可按下式計算:12min 120.08700.0002000.752(0.0870/0.754)0e Y Y L V x X --⎛⎫=== ⎪--⎝⎭ 11e Y x m =取操作液氣比為最小液氣比的1.5倍,可得吸收劑用量為:0.75238.268 1.543.166/L Kmol h =⨯⨯=根據全塔物料衡算式:()()()121212120.08700.0002000.07700.752 1.5V Y Y L X X V Y Y X LX L -=---=+==⨯液氣比 : 43.166180.6661000 1.166l v W W ⨯==⨯ (三)塔徑的計算1.塔徑的計算考慮到填料塔內塔的壓力降,塔的操作壓力為101.3KPa()()()()33330.08170.922928.04/101.31028.0410 1.166/8.314527320998.2/v L M Kg Kmol PM Kg m RT Kg m ρρ-=⨯+⨯=⨯⨯⨯∴===⨯+=液体密度可以近似取为採用貝恩----霍夫泛點關聯式:112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=- 3.017/f u m s = ()0.50.85f u u =-取泛點率為0.6. 即 0.60.6 3.017 1.810/f u u m s ==⨯=()4410000.4423.14 1.8103600s V D m u ⨯===π⨯⨯ 圓整後取 ()()0.4400D m mm ==2.泛點率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85範圍之間) 3.填料規格校核: 40016825D d ==> 4.液體噴淋密度校核:取最小潤濕速率為:)/(08.0)(3min h m m L W ⋅=23223/t a m m = 所以得32min min ()0.0822317.84/()W t U L a m m h =⋅=⨯=⋅263220.78543.16618998.2 6.17510/()0.7850.4hL U D m m h =⋅⨯⨯==⨯⋅⨯ min U U >故滿足最小噴淋密度的要求.(四)填料層高度計算1.傳質單元高度計算273K ,101.3kpa 下,氨氣在空氣中的擴散係數20.17(/)o D cm s =.由3/2000V p T D D p T ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,則 293K ,101.3kpa 下,氨氣在空氣中的擴散係數20.189(/)v D cm s =293K ,101.3kpa 下,氨氣在水中的擴散係數()921.7610/L D m s -=⨯ (查化工原理附錄)*110.7540.07700.0581Y mX ==⨯=*220Y mX ==脫吸因數為:0.7540.6680.752 1.5mV S L ===⨯ 氣相總傳質單元數為:()*12*221ln 11OG Y Y N S S S Y Y ⎡⎤-=-+⎢⎥--⎣⎦=()10.08700ln 10.6680.66810.6680.0002000-⎡⎤-+⎢⎥--⎣⎦ =14.992氣相總傳質單元高度採用修正的恩田關聯式計算:0.050.20.10.752221exp 1.45w c L t L L t L t L L L t L a U a U U a a a g σσμρσρ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭液體品質通量為:22243.166186186.21/()0.7850.7850.4L L W U Kg m h D ⨯===⋅⨯⨯ 氣體品質通量為:2221000 1.1669283.44/()0.7850.7850.4v v W U Kg m h D ⨯===⋅⨯⨯ 故20.750.10.052820.24276806186.216186.212231exp{ 1.45()()()940896223 3.6998.2 1.27106186.21()}998.29408962230.2476w t a a -⨯=--⨯⨯⨯⨯⨯⨯⨯⨯⨯=氣膜吸收係數:10.7310.74340.2379283.440.0652230.1891036000.2372230.0658.3142931.1660.189103600 0.1273V V t V G t V V V U a D k a D RT μμρ--⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭= 液膜吸收係數:211323121833290.00956186.21 3.6 3.6 1.27100.00950.2476223 3.6998.2998.2 1.761036000.3037(/)L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=查表得ψ=1.35 故1.1G G W K a K a ψ==0.1273⨯0.2476⨯223⨯ 1.11.35=9.778()3/Kmol m h kpa ⋅⋅ 0.4L L W K a K a ψ==0.3037⨯0.2476⨯223⨯0.41.35=18.907()3/kmol m h kpa f =fu u =0.733>0.5 以下公式為修正計算公式:1.419.50.5G G f u K a K a u ⎡⎤⎛⎫'⎢⎥=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ()()1.4319.50.2339.77821.864/Kmol m h kpa ⎡⎤=+⨯⨯⎣⎦=⋅⋅2.219.50.5L L f u K a K a u ⎡⎤⎛⎫⎢⎥'=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ()()2.2319.50.23318.90726.194/kmol m h kpa =+⨯⨯=。

填料吸收塔的设计

填料吸收塔的设计

填料吸收塔的设计
填料吸收塔是一种常见的化工设备,用于将气体或气固混合物中的污染物吸收或分离。

以下是填料吸收塔的设计步骤:
1. 确定塔的尺寸和容积:根据处理气体的流量和所需分离效率,确定塔的高度和直径,计算塔的容积。

2. 确定填料类型和填充比等:填料的类型和填充比将影响到气体与液体之间的接触面积和阻力,这些参数的选择会影响到吸收效率和能耗。

3. 确定喷淋液体流量和浓度:根据塔的尺寸和填料类型等参数,计算出需要喷淋的液体流量和浓度,以达到最佳吸收效果。

4. 确定气流速度和液流速度:通过计算确定气体和液体在塔内的流速,以确保在塔内形成适宜的气液接触以及液体流淌和分布的均匀性。

5. 确定塔的操作条件:包括操作温度、压力以及液体喷淋位置和方式等,这些操作条件将直接影响到填料吸收塔的运行效果和寿命。

6. 进行塔的模拟和试验:采用模拟计算或实验试验的方式,验证设计参数的合理性和吸收效果,以及寻找优化的方案。

7. 选择适当的材料和安装方式:填料吸收塔通常使用不锈钢、
玻璃钢等材料制作,根据具体情况选择合适的材料和制造方式,并根据塔的尺寸和位置等确定合适的安装方案。

填料吸收塔的设计

填料吸收塔的设计

填料吸收塔的设计一、填料吸收塔的设计原则:1.吸收效率:填料吸收塔的设计要保证充分的气液接触,提高气体吸收效率。

这可以通过增加填料表面积、增加气液接触时间和提高液体分布效果来实现。

2.填料选择:根据气体和液体的性质和吸收的要求,选择适合的填料材料和形状。

常见的填料材料有塑料和金属材料,常见的形状有球状、环状和片状等。

3.填料层数:填料层数的设置要兼顾气液相接触和液滴碰撞的效果。

填料层数过多会增加气体液体流阻,降低吸收效率,填料层数过少则会减少气液接触面积。

4.液体分布:设计合理的液体分布系统可以保证液体均匀分布在填料表面,避免干点和湿点的出现。

常见的液体分布系统有喷淋系统和分布管系统等。

5.塔底设计:填料吸收塔的塔底设计要考虑液体和气体的平衡、流动和分离。

常见的塔底结构有分流器和收集器等。

二、填料的选择:填料是填料吸收塔中起关键作用的部分,其选择要兼顾各种因素。

常见的填料材料有聚丙烯、聚氨酯、陶瓷和金属材料等。

在选择填料时要考虑以下几个方面:1.填料表面积:填料表面积越大,气液接触面积越大,吸收效果越好。

聚氨酯和陶瓷等材料的填料表面积较大,适合用于吸收性能要求较高的场合。

2.填料孔隙率:填料的孔隙率决定了气体和液体在填料中的通道。

孔隙率过高会导致液体层不稳定,孔隙率过低会增加气阻。

填料的孔隙率一般为40%~95%。

3.填料形状:填料的形状也会影响气液接触效果。

环状和球状填料的气液接触效果较好,片状填料则适用于在高液体负荷下运行的塔。

4.填料强度:填料的强度决定了填料在使用过程中的耐久性和机械性能。

填料吸收塔中较常用的填料有波纹填料、环形填料、骨架填料和多孔填料等。

三、液体的分布:液体的均匀分布对填料吸收塔的性能有着至关重要的影响。

设计合理的液体分布系统可以有效地保证液体在填料中的分布。

常见的液体分布系统有:1.喷淋系统:喷淋系统通过喷头喷洒液体来实现分散。

喷淋系统一般采用喷嘴式分布器,通过喷嘴的设计和安装位置来实现液体的均匀分布。

化工原理课程设计--填料吸收塔的设计

化工原理课程设计--填料吸收塔的设计

化工原理课程设计--填料吸收塔的设计《化工原理》课程设计填料吸收塔的设计学院南华大学船山学院专业制药工程班级 10级姓名龙浩学号 20109570111指导教师王延飞2012年11月25日1.水吸收氨气填料塔工艺设计方案简介任务及操作条件①混合气(空气、NH3 )处理量:10003/m h;②进塔混合气含NH3 7% (体积分数);温度:20℃;③进塔吸收剂(清水)的温度:20℃;④NH3回收率:96%;⑤操作压力为常压101.3k Pa。

1设计方案的确定用水吸收氨气属于等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。

因用水做座位吸收剂,且氨气不作为产品,股采用纯溶剂。

该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。

经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。

2填料的选择对于水吸收氨气的过程,操作温度计操作压力较低。

工业上通常是选用塑料散装填料。

在塑料散装中,塑料阶梯环填料的综合性能较好,见下图:根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。

设计选用填料塔,填料为散装聚丙烯DN50阶梯环填料。

国内阶梯环特性数据52. 工艺计算2.1基础物性数据 2.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

由手册查的,20℃水的有关物性数据如下: 密度为 ρ1 =998.2Kg /m 3粘度为 μL =1.005mPa ·S =0.001Pa ·S=3.6Kg /(m ·h ) 表面张力为 σL =72.6dyn /cm=940 896Kg /h 2氨气在水中的扩散系数:D L =1.80×10-9 m 2/s=1.80×10-9×3600 m 2/h=6.480 ×10-6m 2/h2.1.2气相物性的数据 混合气体平均摩尔质量为M VM =Σy i M i =0.101×17+0.899×28=26.889混合气体的平均密度为ρvm =RTPM VN=101.3×26.889/(8.314×293)=1.116Kg /m 3 混合气体的粘度可近似取为空气的粘度,查手册的20℃空气的粘度为μV =1.81×10—5Pa ·s=0.065Kg /(m ·h )查手册得氨气在20℃空气中扩散系数为D v = 0.189 cm 2/s=0.068 m 2/s2.1.3气液相平衡数据20C 下氨在水中的溶解度系数:)/(725.03kpa m kmol H ⋅=,常压下20℃时亨利系数:SLHM E ρ==998.2/(0.725×18.02)=76.40Kpa相平衡常数为755.01.10140.76===P E m溶解度系数为717.02.184.762.98=⨯==SLEM H ρ998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯ 2.1.4 物料衡算 进塔气相摩尔比为Y 1=11y 1y —=0.101/(1—0.101)=0.11235 出塔气相摩尔比为Y 2=Y 1(1—φ)=0.11235×(1—0.9996)=0.000045进塔惰性气相流量为V=1000/22.4×273/(273+20)×(1—0.101)=34.29Kmol /h该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即;(V L )min =2121m X Y Y Y —/— 对纯溶剂吸收过程,进塔液相组成为 X 2=0(VL)min =(0.11235—0.000045)/[0.11235/(0.754—0)]=0.753 取操作液气比为最小液气比1.8VL=1.8×0.753=1.355 L=1.355×34.29=46.516Kmol /hV (Y 1—Y 2)=L (X 1—X 2)X 1=34.29×(0.11235—0.000045) /46.516=0.08278 5填料塔的工艺尺寸的计算 1) 塔径的计算采用Eckert 通用关联图计算泛点气速 塔径气相质量流量为V ω=1000×1.103=1103Kg /h液相质量流量可近似按纯水的流量计算,即:L ω=46.516×18.02=838.218㎏/hEckert 通过关联图的横坐标为025.0)2.998116.1(1103218.838)(5.05.0=⨯=L V V L w w ρρ 21.02.02=ψΦL LV F F g u μρρ1170-=Φm F95.01116.111702.99881.921.021.02.02.0=⨯⨯⨯⨯⨯=ψΦ=L V F L F g u μρρ729.0665.014.33600/100044=⨯⨯==uV D Sπ圆整塔经,取D=0.8ms m u u F /665.095.07.07.0=⨯==泛点率校核:)%(69%1008.0785.03600/10002在允许范围内=⨯⨯=u填料规格校核:805.2138800>==d D112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛点率为0.8 取u =0.8u F =0.8×3.017m/s =2.41m/sD =u4πSV = [(4×1000/3600)/(3.14×2.41)] 0.5=0.38m 圆整后取 ()()0.4400D m mm ==2.泛点率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85范围之间) 3.填料规格校核:40016825D d ==> 4.液体喷淋密度校核:取最小润湿速率为:U min =(L W )min · a t =0.101×114.2=11.534m 3/m 2·h 查常用散装填料的特性参数表,得at=114.2m 2/m 3 U=46.516×18.02/998.2/(0.785×0.42)=6.717>U min经以上校核可知,填料塔直径选用D= 400mm 是合理的。

填料吸收塔设计说明书

填料吸收塔设计说明书

一、设计任务及操作条件① 混合气体的处理量:2400m 3/h② 混合气体SO 2含量(摩尔分率):0.05;温度:25℃ ③ 吸收剂清水温度:20℃ ④ SO 2回收率:95% ⑤ 操作压力为常压二、设计方案1. 填料的类型与选择对于水吸收SO 2的过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。

在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN50聚丙烯阶梯环填料。

阶梯环是对鲍尔环的改进。

与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。

由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。

锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。

阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。

2. 设计步骤① 吸收塔的物料衡算;② 填料塔的工艺尺寸计算,主要包括:塔径,填料层高度,填料层压降; ③ 设计液体分布器及附属设备的选型; ④ 绘制有关的操作图纸。

三、物料衡算1. 进塔混合气中各组分的量近似取塔平均操作压强为101.3kPa ,故:混合气量 = 2400(27327325+)×122.4= 98.15kmol/h混合气中SO 2量 = 98.15×0.05 = 4.91 kmol/h = 4.91×64.06 = 314.53kg/h 混合气中空气量V = 98.15×0.95 = 93.24kmol/h = 93.24×29 = 2703.96kg/h 2. 混合气进出塔物质的量的组成1y = 0.05 2y =4.91(10.95)93.24 4.91(10.95)⨯-+⨯- = 0.002633. 混合气进出塔摩尔比组成将混合气中的空气为惰性气体,则Y 1 = 4.9193.24= 0.053 Y 2 = 4.910.0593.24⨯ = 0.00264. 出塔混合气量出塔混合气量 = 93.24 + 4.91×0.05 = 93.49kmol/h= 2703.96 + 314.53×0.05 = 2719.69kg/h四、吸收剂水的用量查表得,常压下25℃时SO 2在水中的亨利系数为 E = 3.55×103 kPa 相平衡常数为 m = E /P =33.5510101.3⨯ = 35.0412min120.0530.0026()93.24()0.053035.04nL nG Y Y q q Y X m--==⨯-- = 3106.855kmol/hL = 1.5q nLmin = 1.5×3106.855 = 4660.28kmol/h = 4660.28×18 = 83885.04kg/h五、塔底吸收液组成X 11212()()nL nG q Y Y q X X -=-X 1 =93.24(0.0530.0026)4660.28⨯- = 1.008×10-3六、操作线方程224660.28()0.002693.24nL nL nG nG q q Y X Y X X q q =+-=+七、塔径的计算1. 采用Eckert 通用关联图法计算泛点气速u F 塔底混合气流量W V = 2703.96+314.53 = 3018.49kg/h 吸收液流量W L = 83885.04+4.91×0.95×64.06 = 84183.85kg/h进塔混合气密度V ρ= 4.2229×27327325+ = 1.186kg/m 3 ( 混合气浓度低,可近似视为空气的密度 )吸收液密度ρL = 998.2kg/m 3 吸收液黏度μL = 1.005mPa ·s选DG50mm 塑料阶梯环,查得其填料因子Φ=127m -1,比表面积A =114.2m 2/m 3u ——空塔气速,m /s ; Ф——湿填料因子,简称填料因子,1 /m ; ψ——水的密度和液体的密度之比; g ——重力加速度,m /s 2; ρV 、ρL ——分别为气体和液体的密度,kg /m 3; W V 、W L ——分别为气体和液体的质量流量,kg /s 。

填料吸收塔课程设计

填料吸收塔课程设计

填料吸收塔课程设计填料吸收塔(PackedBedAbsorptionTower)是一种通过向填料塔内注入流体,利用其中的填料来吸收溶液的设备。

由于填料塔内部有填料,可以大大降低流体压力,保证流体流动情况,使其达到理想的效果。

这与传统的搅拌式设备有很大不同,其中使用的填料可以在一定温度和压力条件下进行吸收,不仅可以大大提高吸收效率,而且可以简化过程,降低清洁检查成本。

填料吸收塔课程设计主要涉及填料吸收塔的基本原理,填料流体流动原理,填料吸收效能的研究,以及吸收塔的设计与调试。

首先,填料吸收塔基本原理要求学生掌握填料吸收塔的基本原理,包括填料塔的工作原理,填料塔及其结构,以及填料塔内部填料的性能参数。

学生根据填料吸收塔的结构和性能特点,能够运用正确的工作原理概念,研究填料吸收塔的工作原理,了解其工作数据及其影响条件。

其次,填料流体流动原理要求学生掌握填料流体流动的基本原理,要熟悉填料气液两相流的影响因素,包括填料表面物理性质、流体性质、填料形状等。

同时,学生要了解填料塔内外部条件对填料流体流动的影响,并能够综合考虑各种影响因素,正确分析吸收效率并提出改进措施,以提高填料吸收塔的工作效率。

第三,填料吸收效能的研究要求学生掌握吸收效能研究方法,了解吸收塔中各项指标影响吸收塔的工作效率,能够从流体物理学角度准确计算吸收过程中各种参数,如流体压力、吸收效率、物质转换速度等参数,根据不同操作条件,能够正确计算吸收塔内外部条件下吸收效能。

最后,填料吸收塔设计与调试要求学生掌握填料吸收塔的设计与调试能力,能够按照设计要求,结合工程实际,正确选择和设计吸收塔原料,并能够在工程建设中进行调试,实现合格的吸收塔运行状态。

填料吸收塔课程设计可以帮助学生掌握填料吸收塔的基本原理和设计原理,提高学生的工程设计能力,从而更好地应用到实际的工程设计中。

同时,课程设计还可以提高学生的实验技能,强化学生在实际工程操作中的熟练度,同时促进学生对填料吸收塔的理解,提高其设计诊断的能力。

填料吸收塔的设计

填料吸收塔的设计

C 4 C5 0.3 HL LW 32.4RL C L
RL:气膜填充系数,见表2-7
0.2 n 0.7 C4 ( ) LW
293 L C5 ( ) 0.53 ( ) 0.5 T L L L
L L
L 0.53 0.5 CL ( ) DL 10 L
(直到满足该条件为止)
4)校核填料规格
5)校核润湿率:Lw=U/
D 20 ~ 30 d 填料的直径 d 8(最起码)
要求: Lw 0.08m3. (m.h)-1 U—喷淋密度,
m3

(m2h)-1;
U
Lh π 2 D 4
—填料的比表面积, m2m-3;
Lh—以m3/h表示的吸收剂用量。
r—入塔气体温度下甲醇的冷凝潜热,kJkmol-1。
取Δx=0.003~0.005
亨利系数E 的计算
1550 lg E 5.478 t 230
其中,t 的单位℃,E 的单位是atm。
E m , y* mx P y* * Y 1 y *
CL t E m y Y x
七、附属设备的选择
1)连接管径的确定
(吸收塔气体和液体进出口接管)
d计
4V u宜
Vs—流体的体积流量m3s-1;
u宜—液体取1~3 ms-1,气体取10~30 ms-1 。
d计圆整为d标。
2)通风机的选择 取风压 HT=2pf
风量 风机 风压
3)离心泵的选择
注:以上校核步骤如果不能满足要求,则必须更换D标, 或者更换吸收剂的用量L。 最好是在开始计算塔径时,分组采用不同的吸收剂用 量L分别计算出塔径,然后选取最合适的一组数据。

填料吸收塔的课程设计

填料吸收塔的课程设计

课程设计报告题目填料吸收塔的设计课程名称化工原理课程设计专业班级学生姓名学号设计地点指导教师设计起止时间:2011 年8月 29日至 2011 年 9 月 9 日目录一、前言 (4)1.1设计方案简介 (4)1.2 吸收剂的选择 (4)1.3 填料的选择 (5)1.4 工艺流程说明 (6)二、平衡关系及物料衡算 (6)2.1 平衡关系的计算 (6)2.2 物料衡算 (7)三、填料塔工艺尺寸计算 (9)3.1 塔径的计算 (9)3.2 填料层高度的计算 (10)3.3 填料层压降的计算 (11)3.4 填料层喷林密度的核算 (11)四、填料塔内件的类型和计算 (12)4.1 支撑装置 (12)4.2 分布装置 (12)4.3 进出口管的计算 (13)4.4 附属空间 (13)五、附属设备的选型 (14)5.1 风机 (14)5.2 离心泵 (14)5.3 换热器 (15)六、附录 (16)6.1 设计结果一览表 (16)6.2 主要符号说明 (17)6.3 设计总结 (19)6.4 参考文献 (21)附图X-Y相图 (23)流程图 (24)设备图 (24)一、前言1.1 设计方案简介(1)填料塔简介:填料塔是提供气-液、液-液系统相接触的设备。

吸收塔设备一般可分为级式接触和微分接触两类。

一般级式接触采用气相分散,设计采用理论板数及板效率;而微分接触设备常采用液相分散,设计采用传质单元高度及传质单元数,填料塔的特性也正是体现在这几个方面。

①生产能力填料塔的生产能力大于同直径的筛板塔和浮阀塔。

②分离效率填料塔的分离效率可和相同高度的板式塔相比。

③操作弹性设计合理的填料塔,其操作弹性一般好于筛板塔,大致和浮阀塔相当。

④压降(阻力)除非在很高的液相流率下操作,填料塔中每一个理论板的压降通常小于板式塔。

⑤成本填料的制造成本较高,但填料塔比板式塔容易安装,因此可导致总体上较低的安装成本。

填料塔存在的两个主要缺点是容易堵塞设备及容易造成液体和气体分布的不良。

填料吸收塔设计范文

填料吸收塔设计范文

填料吸收塔设计范文在化工领域中,填料吸收塔是一种常用的设备,用于气体与液体之间的质量传输与反应,广泛应用于化工、环保、能源等行业。

填料吸收塔的设计在保证工艺效果的前提下,应尽可能降低能耗和成本,提高设备的稳定性和可靠性。

本文将通过一个填料吸收塔的设计范文,阐述填料吸收塔的设计原则和具体步骤。

一、填料吸收塔的设计原则1.安全性原则:填料吸收塔应符合工业安全规范,具备强大的抗压能力和良好的防腐性能。

2.高效性原则:填料吸收塔应具备高效的传质传热性能,满足工艺效果的要求。

3.节能性原则:填料吸收塔的设计应尽可能降低能耗,提高设备的能源利用效率。

4.经济性原则:填料吸收塔设计应根据具体的经济指标,选择合适的材料和工艺方案。

二、填料吸收塔的设计步骤1.确定工艺要求:根据具体的工艺需求,确定填料吸收塔处理的物料成分、流量及温度等参数。

2.选择填料:根据工艺要求,选择适合的填料材料。

填料的选择应考虑填料的比表面积、孔隙率、耐腐蚀性能等因素。

3.确定填料层高度:根据传质反应和传热要求,确定填料层在填料吸收塔中的高度。

填料层高度的确定应结合工艺要求和经验数据进行综合考虑。

4.计算填料吸收塔的尺寸:根据工艺要求和设计参数,计算填料吸收塔的直径和高度。

在计算过程中,需要考虑填料的容积和压降等因素。

5.确定塔板设计:根据工艺要求和填料高度,确定填料吸收塔的塔板类型和布置。

塔板的设计应考虑液体和气体相分离、气液流量分布和均匀分布等因素。

6.确定塔顶和底部结构:根据填料吸收塔的高度和压力,确定塔顶和底部的设计。

塔顶设计应包括气体入口、气体出口和废气排放等要素。

7.完成细节设计:根据填料吸收塔的各项设计参数,完成塔内部和外部的细节设计。

细节设计包括各种连接件、防腐处理、支撑结构等。

8.进行模拟和计算:根据填料吸收塔的设计参数,进行模拟和计算,验证设计的合理性和可行性。

9.编写设计报告:将填料吸收塔的设计过程和结果整理成设计报告,包括设计计算数据、图纸和说明等内容。

环境工程原理课程设计填料吸收塔

环境工程原理课程设计填料吸收塔

环境工程原理课程设计 - 填料吸收塔概述本文将详细介绍填料吸收塔的原理、设计和应用。

通过相应的分析和实验结果,提供一个全面、详细、完整且深入的探讨填料吸收塔的主题。

以下是本文的详细内容:一、填料吸收塔的概念与原理1.1 填料吸收塔的定义填料吸收塔是一种常见的气液分离设备,广泛应用于环境工程领域。

它通过将气体与液体接触,使气体中的有害物质被液体吸收,并实现气体的净化与净化。

1.2 填料吸收塔的工作原理填料吸收塔的工作原理是将气体和液体按照相逆流方式通过填料层,利用气液两相之间的质量传递来完成物质的吸收和分离。

在填料层的作用下,气体与液体之间发生物质的传递和吸收过程。

1.3 物质传递机制物质在填料吸收塔中的传递主要有质量传递和动量传递两种机制。

质量传递是指气体和液体之间物质的扩散,而动量传递是指气液两相之间的动量交换。

二、填料吸收塔的设计2.1 填料选择与性能要求填料是填料吸收塔中的关键部件,其性能直接影响到塔的吸收效率和运行效果。

选择合适的填料并确定其性能要求是设计填料吸收塔的重要步骤。

2.2 塔高与填料层高度的计算塔高是指填料吸收塔的总高度,而填料层高度是指填料层的高度。

两者的计算与塔的工艺性能和操作效果密切相关。

2.3 液体流量与气体流量的计算填料吸收塔的设计还需计算液体流量和气体流量。

液体流量的确定需要考虑填料的液膜面积,而气体流量的确定需要考虑填料的传质能力和物质传递效果。

2.4 填料吸收塔的压降计算填料吸收塔中的压降是指气体流过填料层时由于与填料的摩擦和阻力而产生的能量损失。

压降的计算对于塔的设计和操作参数的确定非常重要。

三、填料吸收塔的应用3.1 污水处理中的填料吸收塔填料吸收塔在污水处理中被广泛应用,主要用于去除废水中的臭味和有害气体。

通过填料吸收塔的设计和运行,可以实现污水的有效处理和净化。

3.2 烟气脱硫中的填料吸收塔填料吸收塔在烟气脱硫中也得到了广泛的应用。

通过填料吸收塔,可以将烟气中的二氧化硫等有害物质进行吸收和分离,实现烟气的净化和脱硫。

氨气填料吸收塔课程设计

氨气填料吸收塔课程设计

氨气填料吸收塔课程设计氨气填料吸收塔课程设计设计任务书1.设计题目本次设计任务为设计一座填料吸收塔,采用清水吸收混于空气中的氨气。

混合气体的处理量为2000m3/h,其中含氨为8%(体积分数),混合气体的进料温度为25℃。

要求排放气体中含氨低于0.05%(体积分数)。

2.操作条件1)操作压力:常压2)操作温度:20℃3)吸收剂用量为最小用量的1.8倍。

3.填料类型选择聚丙烯阶梯环填料。

4.设计内容1)确定设计方案并进行说明。

2)进行物料衡算。

3)计算吸收塔的工艺尺寸。

4)计算填料层压降。

5)简要设计液体分布器。

6)绘制液体分布器施工图。

7)计算吸收塔接管尺寸。

8)列出设计参数一览表。

9)绘制生产工艺流程图(A3号图纸)。

10)绘制吸收塔设计条件图(A3号图纸)。

11)对设计过程进行评述和有关问题的讨论。

目录前言1.水吸收氨气填料塔工艺设计方案简介1.1 任务及操作条件本设计任务为设计一座填料吸收塔,采用清水吸收混于空气中的氨气。

混合气体的处理量为2000m3/h,其中含氨为8%(体积分数),混合气体的进料温度为25℃。

要求排放气体中含氨低于0.05%(体积分数)。

2.工艺计算2.1 基础物性数据2.1.1 液相物性的数据2.1.2 气相物性的数据2.1.3 气液相平衡数据2.1.4 物料衡算2.2 填料塔的工艺尺寸的计算2.2.1 塔径的计算2.2.2 填料层高度计算2.2.3 填料层压降计算前言塔设备是炼油、石油化工、精细化工、食品、医药及环保等部门中使用量大应用面广的重要单元设备。

它广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中,一直是国内外学者普遍关注的重要课题。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

填料吸收塔的设计

填料吸收塔的设计

☆填料塔吸收装置的设计一、设计方案的选择
(一) 吸收剂的选择
(二) 吸收流程选择
(三)*吸收剂再生方法的选择
(四) 吸收设备及塔填料选择二、确定物性数据
设计计算的基础数据
三、吸收塔的工艺设计(一)物料衡算
注意:X
2的选取,X
2
< X
2
*(即吸收剂的入口浓度应低于其平衡浓度)
(二)塔径的计算
1.泛点气速的计算
2.塔径(D)的计算
注意:计算所得的D值最终应圆整到标准值(三) 填料层高度计算
1.传质单元高度的计算
2.传质单元数的计算
3.填料层高度
4.填料层的分段
注意:气相传质系数k
G 、k
G a
、k ya以及液相传质系数k
L
、k
L a
、k xa之间的相
互关系及换算
(四)塔附属高度
(五)液体初始分布器和再分布器
(六)其它附属塔内件
1.气体分布装置
2.除沫装置
3.填料支承及压紧装置
(七)吸收塔的流体力学参数计算
1.吸收塔的压力降Δp f=Δp1 +Δp2 +Δp3 +ΣΔp
(1)气体进出口压力降
进出:Δp1=(ρu2)/2出口:Δp2=(0.5ρu2)/2
(2)填料层的压力降Δp3
(3) 其它塔件的压力降ΣΔp
2.吸收塔的泛点率
f=u/u f(合理范围:50%~80%)
3.*气体动能因子
四*、再生塔的设计
(一)再生气提气用量
(二)气提塔的工艺设计(与吸收塔完全相同)五*、辅助设备设计、管路设计及泵的选择六、计算结果。

水吸收氨气过程填料吸收塔的设计

水吸收氨气过程填料吸收塔的设计

水吸收氨气过程填料吸收塔的设计一、水吸收氨气过程水吸收氨气是一种常见的空气污染治理方法,其主要原理是利用水溶液与氨气发生化学反应,将其转化为无害的物质。

具体过程如下:1. 水溶液与氨气接触:将水溶液喷淋到填料层中,使其与上升的废气充分接触。

2. 化学反应:在接触过程中,水溶液中的OH-离子与NH3分子发生反应,生成NH4+离子。

反应式如下:NH3 + H2O → NH4+ + OH-3. 吸收效果:通过不断喷淋和填料层的作用,废气中的NH3被逐渐吸收,并转化为无害物质。

二、填料吸收塔的设计填料吸收塔是实现水吸收氨气过程的主要设备之一。

其设计需要考虑以下几个方面:1. 填料选择:填料是实现废气和水溶液接触的关键因素之一。

常见的填料有环形塔环、球形塞、波纹板等。

选择合适的填料可以提高吸收效率和降低能耗。

2. 填料层数:填料层数的多少直接影响吸收效果,一般情况下填料层数越多,吸收效果越好。

但是填料层数过多会增加设备高度和造价,需要根据实际情况进行设计。

3. 喷淋方式:喷淋方式也是影响吸收效率的重要因素。

常见的喷淋方式有顶部喷淋、侧面喷淋、中心喷淋等。

不同的喷淋方式适用于不同的填料和气体流量。

4. 水溶液浓度:水溶液浓度对吸收效率也有很大影响。

一般情况下,水溶液浓度在5%~10%之间较为合适,超过10%会增加能耗和造价。

5. 设备尺寸:填料吸收塔的尺寸需要根据废气流量、水溶液流量和吸收效率等因素进行计算。

一般情况下,设备高度在5~15m之间,直径在1~3m之间。

三、总结水吸收氨气过程是一种有效的空气污染治理方法,在填料吸收塔设计中需要考虑填料选择、填料层数、喷淋方式、水溶液浓度和设备尺寸等因素。

通过合理的设计和操作,可以实现高效的氨气吸收和空气治理效果。

填料吸收塔设计说明书[001]

填料吸收塔设计说明书[001]

填料吸收塔设计说明书
填料吸收塔是一种常见的化工设备,主要用于气体或液体中的有
害成分去除。

它具有结构简单、操作方便、效果显著等特点,因此在
石化、化工、冶金等领域广泛应用。

填料吸收塔的设计应考虑以下几个方面:
一、填料选择:填料种类决定了吸收塔处理效果,常用的填料有
泡沫塑料、陶瓷球和金属网等。

填料在吸收过程中产生物质传质、区
相扩散和化学反应等,因此要选择化学稳定性好、强度高、表面积大
的填料,如陶瓷球。

二、进口浓度和出口浓度:进口浓度与出口浓度是设计吸收塔的
关键参数,必须根据具体污染物种类和浓度制定。

在填料吸收塔中,
通常会加入吸收液,如碱性溶液用于吸收酸性废气,酸性溶液用于吸
收碱性废气,还有活性炭用于吸附某些气体。

三、塔底液位:塔底的液位不能过高,否则会涌出吸收液,导致
设备故障。

一般来说,液位的高度应控制在填料堆高的三分之一左右。

四、进出口管道布置:为保证吸收效果,进出口管道布置在填料
中间位置以上,以便气体与吸收液充分接触。

同时,进出口管道也需
要考虑布局的合理性和操作的便利性。

五、排放口位置:为了避免废气被污染,排放口应设置在高处,
或者加装透气管进行抽风处理。

最后,建议在进行填料吸收塔设计时,应先进行实验室试验,确定废气特性、填料选择、吸收液选择等参数,再根据实际工艺和设备参数定制具体的设计方案。

总之,填料吸收塔的设计对于化工企业的环境保护和生产安全至关重要,因此在设计时应仔细考虑各个因素,确保设备的高效运转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

填料吸收塔的设计水吸收氯化氢课程设计教 学 院专业班级学生姓名学生学号指导教师时 间目 录第一节 前言1.1 填料塔的主体结构与特点1.2 填料塔的设计任务及步骤1.3 填料塔设计条件及操作条件第二节 填料塔主体设计方案的确定2.1 装置流程的确定2.2 吸收剂的选择2.3填料的类型与选择2.3.1 填料种类的选择2.3.2 填料规格的选择2.3.3 填料材质的选择2.4 基础物性数据2.4.1 液相物性数据2.4.2 气相物性数据2.4.3 气液相平衡数据2.4.4 物料横算2.4.5 吸收剂的用量第三节 填料塔工艺尺寸的计算3.1 塔径的计算3.2 填料层高度的计算及分段3.2.1 传质单元数的计算3.2.3 填料层的分段第四节 填料塔内件的类型及设计4.1 塔内件类型4.2 塔内件的设计4.2.1 液体分布器设计的基本要求:4.2.2 支撑装置的确定注:计算结果及小结1填料塔设计结果一览表2 填料塔设计数据一览3 参考文献4 致谢及其他附件一:塔设备设计图摘要 本设计本设计采用填料塔,塔高1.78m,塔径1.4m,采用聚丙烯鲍尔环填料,具有通量大、阻力小、传质效率高等优点,可以达到较好的通过能力和分离效果。

一般说来,完整的吸收过程应包括吸收和解吸两部分。

在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。

填料塔作为主要设备之一,越来越受到青睐。

填料吸收塔,以水为溶剂,经济合理,净化度高,污染小。

关键词填料塔水氯化氢吸收概述 吸收剂的选择;各种形式的传质速率方程、传质系数和传质推动力的对应关系;各种传质系数之间的关系;填料塔的图解;填料塔的塔径计算。

第一节 前言在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。

塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。

所以塔设备的研究一直是国内外学者普遍关注的重要课题。

在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

过程的优缺点:分离技术就是指在没有化学反应的情况下分离出混合物中特定组分的操作。

这种操作包括蒸馏,吸收,解吸,萃取,结晶,吸附,过滤,蒸发,干燥,离子交换和膜分离等。

利用分离技术可为社会提供大量的能源,化工产品和环保设备,对国民经济起着重要的作用。

为了使填料塔的设计获得满足分离要求的最佳设计参数(如理论板数、热负荷等)和最优操作工况(如进料位置、回流比等),准确地计算出全塔各处的组分浓度分布(尤其是腐蚀性组分)、温度分布、汽液流率分布等,常采用高效填料塔成套分离技术。

而且,20世纪80年代以来,以高效填料及塔内件为主要技术代表的新型填料塔成套分离工程技术在国内受到普遍重视。

由于其具有高效、低阻、大通量等优点,广泛应用于化工、石化、炼油及其它工业部门的各类物系分离。

利用混合气体中各组分在同一种液体(溶剂)中溶解度差异而实现组分分离的过程称为气体吸收气体吸收是一种重要的分离操作,它在化工生产中主要用来达到以下几种目的。

(1)分离混合气体以获得一定的组分。

(2)除去有害组分以净化气体。

(3)制备某种气体的溶液。

一个完整的吸收分离过程,包括吸收和解吸两个部分。

典型过程有单塔和多塔、逆流和并流、加压和减压等。

.1 填料塔的主体结构与特点塔设备按其结构形式基本上可分为两类;板式塔和填料塔。

以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。

近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。

因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。

如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。

随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。

.2 填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。

设计步骤:(1)根据设计任务和工艺要求,确定设计方案;(2)针对物系及分离要求,选择适宜填料;(3)确定塔径、填料层高度等工艺尺寸(考虑喷淋密度);(4)计算塔高、及填料层的压降;(5)塔内件设计。

.3 填料塔设计条件及操作条件1. 气体混合物成分:空气和氯化氢2. 空气中氯化氢的含量: 5%(体积含量即为摩尔含量)3. 混合气体流量2500m3/h4. 操作温度293K5. 混合气体压力1031KPa6. 吸收率95 %7. 采用水为吸收剂8. 填料类型:采用鲍尔环填料第二节 精馏塔主体设计方案的确定.1 装置流程的确定本次设计采用逆流操作:气相自塔低进入由塔顶排出,液相自塔顶进入由塔底排出,即逆流操作。

逆流操作的特点是:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。

工业生产中多采用逆流操作。

2.2 吸收剂的选择因为用水做吸收剂,故采用纯溶剂。

2-1 工业常用吸收剂溶质溶剂溶质溶剂氨水、硫酸丙酮蒸汽水氯化氢水二氧化碳水、碱液二氧化硫水硫化氢碱液、有机溶剂苯蒸汽煤油、洗油一氧化碳铜氨液2.3填料的类型与选择填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。

2.3.1 填料种类的选择本次采用散装填料。

散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

鲍尔环是目前应用较广的填料之一,本次选用鲍尔环。

2.3.2 填料规格的选择工业塔常用的散装填料主要有Dn16\Dn25\Dn38\ Dn76等几种规格。

同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多。

而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低。

因此,对塔径与填料尺寸的比值要有一规定。

常用填料的塔径与填料公称直径比值D/d的推荐值列于。

表3-1填料种类D/d的推荐值拉西环D/d20~30鞍环D/d15鲍尔环D/d10~15阶梯环D/d>8环矩鞍D/d>82.3.3 填料材质的选择工业上,填料的材质分为陶瓷、金属和塑料三大类聚丙烯填料在低温(低于0度)时具有冷脆性,在低于0度的条件下使用要慎重,可选耐低温性能良好的聚氯乙烯填料。

综合以上:选择塑料鲍尔环散装填料 Dn502.4 基础物性数据2.4.1 液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

由手册查得 20 ℃水的有关物性数据如下:1.2.3. 表面张力为:4.2.4.2 气相物性数据1. 混合气体的平均摩尔质量为(2-1)2. 混合气体的平均密度由 (2-2)2.4.3 气液相平衡数据由手册查得,常压下,20时,HCL在水中的亨利系数为 E=4225.6kpa在水中的饱和蒸汽压为42256kPa相平衡常数:2.4.4 物料横算1. 进塔气相摩尔比为(2-5) 2. 出他气相摩尔比为(2-6)3.常压进塔惰性气体流量:加压进塔惰性气体的流量:因为该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算。

即:(2-8)因为是纯溶剂吸收过程,进塔液相组成所以选择操作液气比为 (2-9)4.吸收剂的用量5. 进塔混合气中个组分的用量取塔平均操压强为1013kPa,故:混合气量=2500(273/273+20)1/22.4=103.989混合气中HCL量混合气中空气量塔气混合气流量吸收液流量进塔混合气密度第三节 填料塔工艺尺寸的计算填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段3.1 塔径的计算1. 经比较,选DN50mm聚丙烯阶梯环。

查《化工原理》教材附录可得,其填料因子=120关联图的横坐标值=由图查得纵坐标值为0.09采用Eckert通用关联图法(图)计算泛点气速即0.2=0.09求得液泛气速=0.752m/s操作气速取u=0.6=0.6×0.752 =0.4512 m/s塔径== 1.4m取塔径为1.4m(=1400mm)3.1.1 填料层高度计算(1)传质单元数N OG用对数平均推动力法求传质单元数(3-7)=-m=0.0526-4.0985×0.00857=0.017476==0.0026==0.00780 (3-8)N OG== 6.41所以:z=×N OG=1.713.2.2 填料层的分段根据所算填料层的高度和传质单元层高度,可将填料层分为7段第4节 填料塔内件的类型及设计4.1 塔内件类型填料塔的内件主要有填料支撑装置、填料压紧装置、液体分布装置、液体收集再分布装置等。

合理的选择和设计塔内件,对保证填料塔的正常操作及优良的传质性能十分重要。

4.2 塔内件的设计4.2.1 液体分布器设计的基本要求:(1)液体分布均匀(2)操作弹性大(3)自由截面积大4.2.2 支撑装置的分布填料支承结构用于支承塔内填料及其所持有的气体和液体的重量之装置。

对填料的基本要求是:有足够的强度以支承填料的重量;提供足够的自由截面以使气液两相流体顺利通过,防止在此产生液泛;有利于液体的再分布;耐腐蚀,易制造,易装卸等。

常用填料支承板有栅板式和气体喷射式。

注:(1)本设计任务液相负荷不大,可选用排管式液体分布器;且填料层不高,可不设液体再分布器。

(2)塔径及液体负荷不大,可采用较简单的栅板型支承板及压板。

其它塔附件及气液出口装置计算与选择此处从略。

注:1填料塔设计结果一览表塔径 1.4m填料层高度 1.78m填料规格50mm鲍尔环压降1031 Pa惰性气体流量2500kmol/h2 填料塔设计数据一览3 参考文献[1] 夏清.化工原理(下)[M]. 天津:天津大学出版社, 2005.[2] 贾绍义,柴诚敬. 化工原理课程设计[M]. 天津:天津大学出版社, 2002.[3] 华南理工大学化工原理教研室著.化工过程及设备设计[M].广州: 华南理工大学出版社, 1986.[4] 周军.张秋利 化工AutoCAD制图应用基础 。

北京. 化学工业出版社。

4致谢及其他通过本次课程设计,使我对从填料塔设计方案到填料塔设计的基本过程的设计方法、步骤、思路、有一定的了解与认识。

在课程设计过程中,使我加深了对课本知识的认识,也巩固了所学到的知识。

此次课程设计按照设计任务书、指导书、技术条件的要求进行。

同学之间相互讨论,同组成员齐心协力通过一周的努力才完成了本次课程设计,在老师的精心指导下我们客服了种种困难,更加巩固了我们的基础知识。

整体设计基本满足使用要求,但是在设计指导过程中也发现一些问题,发现自己基础知识不牢固,需加强学习,扩大知识面的广度。

相关文档
最新文档