第10章 电路的优化设计方法
结构机构可靠性及可靠性灵敏度分析——10章_展望)

第十章结构机构可靠性和可靠性灵敏度分析的展望可靠性是一个古老而又面临着新挑战的问题,它涉及 (1) 系统行为的描述和模拟,(2)系统行为的定量化,(3) 不确定性的描述、定量化和传递。
本书只是着重介绍了结构机构可靠性和可靠性灵敏度分析的一些经典方法和现在发展的新方法,研究在输入变量与系统行为之间关系确定,并且输入变量随机不确定性已知的条件下,不确定性的传递问题。
本书所介绍的这些方法只是可靠性工程涉及众多问题中的一个基本问题。
在结束本书的理论方法探讨之前,联系本书所研究的内容,对结构机构可靠性未来所需要研究的问题进行简单的展望。
1、输入变量不确定性的描述和定量化[1-14]一般输入变量的随机不确定性采用概率密度函数来描述,依据经典的概率统计理论,获取概率密度函数需要大量的样本数据,尤其是要准确获取密度函数的尾部时,则需要更大量的样本数据,而且往往影响系统行为失效概率的部分就是输入变量概率密度函数的尾部。
然而值得指出的是:由于经费和时间的限制,工程问题中的大样本数据往往是不可得的。
这使得可靠性研究人员投入了大量的精力和时间来研究小样本情况下母体概率密度函数的估计问题。
尽管挖掘小样本中关于母体信息的思路以及在同类产品中获取更多信息的方法是可取的,并且在今后相当长一段时间内基于这种思路的研究将在可靠性领域持续开展,但值得注意的是这种信息的挖掘和获取毕竟是有限的,因为小样本中本身所包含的信息量只是完整信息的一部分。
以有限的信息去推断完整的信息将承受一定的风险,了解并控制推断过程中的风险水平是保证所作推断有意义的前提。
另外,建立小样本情况下,输入变量不确定性的合适的描述模型也是解决信息不足问题的一个补充手段,如现在已在可靠性领域广泛研究的凸集描述模型和模糊描述模型等,还有各种描述的混合模型。
作为不足以获得概率密度函数情况下的必要补充,研究与样本信息量匹配的不确定性描述模型是输入变量不确定性描述和定量化方面的一项重要研究内容,并且在此基础上的各种不确定性描述模型的相容性也是今后可靠性领域的重要研究内容。
现代设计方法---优化设计

E=2×105MPa。现要求在满足使用要求的条件下,试设计一个用
料最省的方案。
优化目标
用料最省
V 1 d 2L
4
d
F M
L
强度条件
max
FL 0.1d 3
w
M
0.2d 3
条件 刚度条件
f
FL3 3EJ
64FL3
3Ed 4
f
边界条件 L Lmin 8c14m
例3 设某车间生产A和B两种产品,每种产品各有两道工序,分 别由两台机器完成这两道工序,其工时列于表中。若每台机器每 周至多工作40小时。产品A的单价为200元,产品B的单价为500 元。问每周A、B产品应各生产多少件,可使总产值为最高。 (这是生产规划的最优化问题)
F —弹簧在负荷P作用下所产生的变形量
n —弹簧的有效圈数
d —弹簧材料的直径
G —弹簧材料的切变模量
3
• 根据上式,如己知或先预定 D2、n、d、G 各参数,通过多次试算、
修改,就有可能得到压簧刚度等于或接近于 的设P计参数。
• 刚度公式也可以写成一般的多元函数表达式,即
• 式中 代表性y能指f 标(xi ) , 是i 设 1计,2参,量,,N分别代 表 、y 、 、 ,所以P xi 。
0 x L
x b
图1-2
这一优化设计问题是具有两个设计变 量(即x和α)的非线性规划问题。
13
例2:有一圆形等截面的销轴,一端固定,一端作用着集中载荷
F=1000N和扭矩M=100N·m。由于结构需要,轴的长度L不得小于
8cm,已知销轴材料的许用弯曲应力[σW]=120MPa,许用扭转切 应力[τ]=80MPa,允许挠度[f]=0.01cm,密度ρ=7.8t/m3,弹性模量
【Adams应用教程】第10章ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及ADAMS/View 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。
其中DOE是通过ADAMS/Insight来完成,设计研究和优化分析在ADAMS/View中完成。
通过本章学习,可以初步了解ADAMS参数化建模和优化的功能。
10.1 ADAMS参数化建模简介ADAMS提供了强大的参数化建模功能。
在建立模型时,根据分析需要,确定相关的关键变量,并将这些关键变量设置为可以改变的设计变量。
在分析时,只需要改变这些设计变量值的大小,虚拟样机模型自动得到更新。
如果,需要仿真根据事先确定好的参数进行,可以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真,以便于观察不同参数值下样机性能的变化。
进行参数化建模时,确定好影响样机性能的关键输入值后,ADAMS/View提供了4种参数化的方法:(1)参数化点坐标在建模过程中,点坐标用于几何形体、约束点位置和驱动的位置。
点坐标参数化时,修改点坐标值,与参数化点相关联的对象都得以自动修改。
(2)使用设计变量通过使用设计变量,可以方便的修改模型中的已被设置为设计变量的对象。
例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。
当设计变量的参数值发生改变时,与设计变量相关联的对象的属性也得到更新。
(3)参数化运动方式通过参数化运动方式,可以方便的指定模型的运动方式和轨迹。
(4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。
当以上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。
参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动,而且可以达到对模型优化的目的。
参数化机制是ADAMS中重要的机制。
人教版新高考物理一轮总复习--电路的基本概念和规律

的长度,S 是垂直电流方向的横截面积,ρ 是材料的电阻率。
Δ
Δ
2.对线性元件 R= = Δ ;对非线性元件 R= ≠ Δ ,即非线性元件的电阻不等
于 U-I 图像某点切线的斜率。
3.某一导体的形状改变后,讨论其电阻变化应抓住以下三点。
(1)导体的电阻率不变,因其由导体材料本身决定。
不一定小。
(3)导体的电阻、电阻率均与温度有关。
2.公式 R= 与 R= 的比较
比较项
l
R= S
意义
电阻的决定式
理解
U
R=
I
电阻的定义式
提供了一种测量电阻的方法(伏
说明导体的电阻由 ρ、l、S 决定,
安法),不能认为 R 与 U 成正比,
即与 l 成正比,与 S 成反比
与 I 成反比
只适用于粗细均匀的金属导体或
2
B.
D.
解析:金属棒的电阻
R=ρ ,金属棒中的电流
故棒两端电压 U=IR=ρnevl,电场强度大小
I=neSv,
E= =ρnev,选项
C 正确。
2.如图所示,M和N是形状相同的玻璃容器,厚度相同,上、下表面为正方
形,但M和N的尺寸不同,M、N的上表面边长关系为a1>a2。现将相同的电
4.本章中物理实验较多,实验难度较大,学习时要注意熟练掌握相关的实验
原理,加强对基本仪器使用方法的掌握,重视实验原理与方法的迁移,重视
科学探究素养的提升。
内
容
索
引
01
第一环节
必备知识落实
02
第二环节
第十章-结构优化例子-机械

( D , h ) y ——为起作用约束
D * 6 .43 cm
h* 76 cm
m*=8.47kg
五. 讨论
若将许用应力
(虚线—强度曲线) * * T T 解析法得到: x1 [ D , h ] [3 .84 cm ,76 cm ]
y由420提高到703Mpa,可行域变化
——等值线与强度曲 线的交点,但不是最 优解 (不满足稳定约 束条件) 实际最优点 x1* [ D * , h * ]T
[ 4.75cm,513cm ] (两约束交点处) * m1 5.45 kg
(过x1点的等值线)
T
最优点的三种情况
1. 最优点的等值线在可行域内中心点 ——约束不起作用(无约束问题) 2.最优点在可行域边界与等值线切点处 ——一个起作用约束 3.多个约束交点处 ——多个起作用约束
x2 1
x3 1
x2 x3 6
x2 x3 4
最终得到最优方案: x 4.1286
* 2 * x3 2.3325
f * 0.0156
二. 薄板包装箱的优化设计
设计一个体积为5m3的薄板包装箱,如图所示,其中 一边的长度不小于 4m,要求使薄板材料消耗最少,试确 定包装箱的尺寸参数,即确定包装箱的长、宽和高。
曲柄摇杆机构的优化数学模型
x x2
minT
x3 R 2
f ( x) f ( x2 , x3 ) ( i ji ) 2
i 0
s
i 0,1, 2......s
s.t.
x x 2x2 x3 cos135 36 0
2 2 2 3
2 2 x2 x3 2x2 x3 cos 45 16 0
工程设计中的优化方法

箱形梁优化设计的数学模型
min f (X), X∈R4 s.t. gj(X)≤0, j=1, 2, ···, 6 属约束非线性规划问题。选用可行方向法求解。
优化结果:取出三种跨度的优化结果见表5-1。
所用数据为:F1=120kN, F2=12kN,[σ]=140MPa
表5-1 箱形梁设计结果比铰
跨度 l(cm)
优化目标函数就是求目标函数的极小值或极大
值,即
min f (X) 或 max f (X)。
• 用效果函数(如性能指标、利润等)作目标函数,则是求极大值; • 用费用函数(如能源、材料、经费等)作目标函数,则求极小值。
单目标和多目标优化问题
• 单目标优化问题:只包含一个优化目标的问题 • 多目标优化问题:存在两个或两个以上优化目
常规设计(mm)
x1
x2
x3
x4
1050 760 340 6 10 1350 880 390 6 10 1650 1010 440 6 10
优化设计(mm)
x1
x2
x3
x4
790 310 5
8
870 380 6
6
1020 370 6
8
减轻自 重
(%)
19.8 18.8 13.7
3. 优化设计的计算方法
• 可行域 域内设计点(设计 方案)满足所有约束条件。
gu(X)=0
可行域
可行域内的设计点称为可行点。 不可行域
• 不可行域 域内的设计点
设计空间
不满足或不全满足约束条件。不可行域内的设计点
称为不可行点,一般是工程实际不能接受的方案。
约束优化设计中,最优点一般是约束区域的边界点, 即设计点位于某个约束面上: gu(X)=0 (1≤u≤p)
电子信息行业电子电路设计与仿真方案

电子信息行业电子电路设计与仿真方案第一章电子电路设计基础 (2)1.1 电子电路设计概述 (2)1.2 电子电路设计流程 (2)1.2.1 需求分析 (2)1.2.2 电路方案设计 (3)1.2.3 电路原理图绘制 (3)1.2.4 电路仿真与优化 (3)1.2.5 电路板设计 (3)1.2.6 生产与调试 (3)1.3 电子电路设计原则 (3)1.3.1 功能优先原则 (3)1.3.2 优化设计原则 (3)1.3.3 可靠性原则 (3)1.3.4 可生产性原则 (4)1.3.5 简洁性原则 (4)第二章电路仿真技术 (4)2.1 电路仿真概述 (4)2.2 电路仿真软件介绍 (4)2.3 电路仿真方法与步骤 (5)第三章模拟电路设计与仿真 (5)3.1 模拟电路基本元件 (5)3.2 模拟电路设计要点 (6)3.3 模拟电路仿真案例分析 (6)第四章数字电路设计与仿真 (6)4.1 数字电路基本元件 (7)4.2 数字电路设计方法 (7)4.3 数字电路仿真案例分析 (7)第五章混合电路设计与仿真 (8)5.1 混合电路特点 (8)5.2 混合电路设计策略 (8)5.3 混合电路仿真案例分析 (9)第六章信号处理电路设计与仿真 (10)6.1 信号处理电路概述 (10)6.2 信号处理电路设计方法 (10)6.3 信号处理电路仿真案例分析 (10)第七章电源电路设计与仿真 (11)7.1 电源电路基本原理 (11)7.2 电源电路设计要点 (11)7.3 电源电路仿真案例分析 (12)第八章高频电路设计与仿真 (12)8.1 高频电路基本概念 (12)8.2 高频电路设计原则 (13)8.3 高频电路仿真案例分析 (13)第九章电子电路测试与优化 (14)9.1 电子电路测试方法 (14)9.1.1 功能测试 (14)9.1.2 功能测试 (14)9.1.3 故障诊断 (14)9.2 电子电路功能优化 (14)9.2.1 电路拓扑优化 (15)9.2.2 元件参数优化 (15)9.2.3 布局优化 (15)9.2.4 电路仿真与优化 (15)9.3 电子电路测试与优化案例分析 (15)9.3.1 案例背景 (15)9.3.2 测试与诊断 (15)9.3.3 优化方案 (15)9.3.4 优化结果 (15)第十章项目管理与团队协作 (16)10.1 项目管理概述 (16)10.2 项目管理流程与方法 (16)10.3 团队协作与沟通技巧 (17)第一章电子电路设计基础1.1 电子电路设计概述电子电路设计是指利用电子元件,如电阻、电容、电感、二极管、晶体管等,按照预定的功能要求,设计出满足特定功能指标的电路系统。
《密码学》教学大纲

《密码学》教学大纲一、课程概述《密码学》是计算机科学、信息安全、数学等领域的一门综合性学科,涵盖了密码编码学、密码分析学、密钥管理等方面的知识。
本课程旨在让学生全面了解密码学的基本原理、方法和技术,掌握密码学在信息安全中的应用,并提高学生的密码学实践能力和创新思维。
二、课程目标1、理解密码学的基本概念、原理和数学基础知识,掌握密码编码学和密码分析学的基本方法。
2、掌握对称密码、非对称密码、哈希函数等常见密码体制的特点和实现原理,了解数字签名、消息认证码等应用密码学技术。
3、熟悉密码学在网络安全、数据保护等领域的应用,了解密码学的发展趋势和前沿技术。
4、培养学生的创新思维和实践能力,让学生能够根据实际需求设计和实现简单的密码学方案。
三、课程内容第一章密码学概述1、密码学的定义和历史发展2、密码学的应用领域和重要性3、密码学的分类和基本概念第二章密码编码学基础1、对称密码体制和非对称密码体制的特点和原理2、哈希函数和数字签名的概念和应用3、加密算法的设计原则和评估指标第三章对称密码体制1、数据加密标准(DES)的原理和应用2、国际数据加密算法(IDEA)的原理和应用3、分组密码和流密码的特点和实现方法第四章非对称密码体制1、RSA算法的原理和应用2、ElGamal算法和Diffie-Hellman密钥交换的原理和应用3、椭圆曲线密码学的原理和应用第五章哈希函数和数字签名1、SHA-1、SHA-256等常见哈希函数的原理和应用2、RSA数字签名算法的原理和应用3、其他数字签名方案的原理和应用,如DSA、ECDSA等第六章应用密码学技术1、数字证书和PKI系统的原理和应用2、消息认证码(MACs)和完整性校验算法的原理和应用3、零知识证明和身份基加密方案的概念和应用第七章密码分析学基础1、密码分析学的定义和重要性2、密码分析的基本方法和技巧,如统计分析、频率分析、差分分析等3、对称密码分析和非对称密码分析的特点和难点第八章密码管理基础1、密钥管理的概念和原则,如密钥生成、分发、存储、使用和销毁等2、密钥管理技术在企业和个人中的应用,如公钥基础设施(PKI)、加密磁盘等3、密码政策和安全意识教育的重要性。
数字系统——精选推荐

第10章数字系统内容提要●数字系统的基本概念●基本子系统●数据通路●由顶向下的设计方法●小型控制器的设计●嵌入式系统简介●物联网简介1、数字系统的基本概念●所谓数字系统●是指交互式的以离散形式表示的具有存储、传输、处理信息能力的逻辑子系统的集合物。
●一台计算机,就是一个最完整的数字系统。
冯诺依曼体系结构·系统体系结构指令寄存器存储器程序指令寄存器控制程序存储器指令0地址控制器指令0指令1指令2控制器指令1指令2指令数据通道指令3指令4数据存储器输入输出中央处理器数据数据0数据1数据通道输入输出CPU数据0数据1数据2地址数据数据2·哈佛体系结构冯诺依曼体系结构计算机分类●超级计算机:星云(No.2)、天河(No.7),top500●大型计算机巨型机说:“我认为全球大概只需要五台计算机就够了”;PC 机说:“每个家庭的桌面上都应该有一台电脑”;●工作站●微计算机Pocket PC 说:“太大了,应该每人口袋里放一台”;IoT 说:“每粒沙子都应该是一台计算机”。
●亚微计算机(嵌入式计算机)处理器分类Unit CPU)•中央处理器(Centerprocessor Unit, CPU)微处理器(p,)•(Microprocessor Unit, MPU)•微控制器(Microcontroller Unit, MCU)•嵌入式DSP (Embedded Digital Signal Processor, EDSP)片系统•片上系统(System On Chip)处理器工作过程展示:SWF处理器工作过程展示2、基本子系统●是指构成数字系统时必不可少的逻辑功能部件。
●这些逻辑功能部件有:算术逻辑运算单元●ALU●寄存器●RAM●数据总线●控制器2、基本子系统基本子系统算术逻辑运算单元U●ALU●是数字系统中对数据进行加工处理的功能部件。
行加工处理的功能部件●没有ALU,就不能成为复杂的数字系统复杂的数字系统。
基尔霍夫定律优秀课程教案

第一章:基尔霍夫定律简介1.1 基尔霍夫定律的发现及意义1.2 基尔霍夫定律的应用范围1.3 基尔霍夫定律与电路分析的关系第二章:基尔霍夫电流定律(KCL)2.1 基尔霍夫电流定律的表述2.2 基尔霍夫电流定律的证明2.3 基尔霍夫电流定律在电路分析中的应用实例第三章:基尔霍夫电压定律(KVL)3.1 基尔霍夫电压定律的表述3.2 基尔霍夫电压定律的证明3.3 基尔霍夫电压定律在电路分析中的应用实例第四章:基尔霍夫定律在复杂电路中的应用4.1 基尔霍夫定律在多个节点电路中的应用4.2 基尔霍夫定律在多个回路电路中的应用4.3 基尔霍夫定律在含有多个电源的电路中的应用第五章:基尔霍夫定律在实际工程中的应用案例分析5.1 基尔霍夫定律在电子电路中的应用案例5.2 基尔霍夫定律在电力电路中的应用案例5.3 基尔霍夫定律在其他领域中的应用案例第六章:基尔霍夫定律的数学表达及符号约定6.2 电流和电压的参考方向6.3 基尔霍夫定律的符号约定第七章:基尔霍夫定律的解析解法7.1 基尔霍夫定律的直接解法7.2 基尔霍夫定律的间接解法7.3 基尔霍夫定律解法的优势和局限性第八章:基尔霍夫定律的数值解法8.1 基尔霍夫定律的数值解法原理8.2 基尔霍夫定律的常见数值解法算法8.3 基尔霍夫定律数值解法的应用实例第九章:基尔霍夫定律与现代电路分析技术9.1 基尔霍夫定律与SPICE模拟器的结合9.2 基尔霍夫定律在电路仿真中的应用9.3 基尔霍夫定律在电路优化设计中的应用第十章:基尔霍夫定律在工程实践中的应用案例分析10.1 基尔霍夫定律在通信电路中的应用案例10.2 基尔霍夫定律在控制系统中的应用案例10.3 基尔霍夫定律在其他工程领域的应用案例第十一章:基尔霍夫定律的实验验证11.1 基尔霍夫定律的实验设置11.2 基尔霍夫定律的实验过程11.3 实验结果与理论分析的对比第十二章:基尔霍夫定律的局限性及拓展12.1 基尔霍夫定律的局限性12.2 基尔霍夫定律的拓展理论12.3 拓展理论在电路分析中的应用第十三章:基尔霍夫定律与其他电路分析方法的结合13.1 基尔霍夫定律与节点电压法的关系13.2 基尔霍夫定律与回路电流法的关系13.3 基尔霍夫定律与其他电路分析方法的比较第十四章:基尔霍夫定律在新技术中的应用14.1 基尔霍夫定律在可再生能源领域的应用14.2 基尔霍夫定律在物联网电路中的应用14.3 基尔霍夫定律在新型传感器电路中的应用第十五章:基尔霍夫定律的综合应用与挑战15.1 基尔霍夫定律在现代电路设计中的综合应用15.2 基尔霍夫定律在面临挑战时的应对策略15.3 基尔霍夫定律在未来电路技术发展中的展望重点和难点解析本文主要介绍了基尔霍夫定律的基本概念、数学表达、解法方法、实验验证以及在现代电路技术和工程实践中的应用。
数字通信原理与技术(第四版)第10章伪随机序列及应用

扩频技术
通过将信号扩展到更宽的频带,降 低信号的功率谱密度,从而减小信 号被截获或干扰的风险。
编码技术
采用差分编码、卷积编码等编码技 术,提高信号的纠错能力和抗干扰 能力。
保密性能优化
加密技术
利用伪随机序列对明文进行加密,使非法用户无 法获取通信内容,保证通信的安全性。
跳频技术
通过快速跳变频率,使得敌方难以跟踪和截获信 号,提高通信的保密性。
扩频通信
在扩频通信中,伪随机序列用于扩频和解扩频过程,实现 信号的频谱扩展和还原,从而提高信号的抗干扰能力和隐 蔽性。
02 伪随机序列的生成方法
线性反馈移位寄存器
线性反馈移位寄存器是一种常用的伪随机序列 生成器,其基本原理是利用线性反馈函数对寄 存器的状态进行运算,产生新的状态序列。
线性反馈移位寄存器有多种类型,如扭结型、 斐波那契型等,它们生成的伪随机序列具有不 同的特性和应用场景。
相关性
相关性定义
伪随机序列的相关性是指序列中不同位置的元素之间的相互关系。
自相关和互相关
自相关表示序列与其自身相关的情况,互相关表示两个不同序列 之间的相关情况。
相关函数
相关函数用于描述伪随机序列的相关性,其值越接近于0表示相 关性越弱,越接近于1表示相关性越强。
均匀分布性
均匀分布性定义
伪随机序列的每个元素出 现的机会应该是相等的, 即具有均匀分布性。
特性
伪随机序列具有良好的随机性、 周期性、可重复性和可预测性, 通常用于模拟噪声环境、加密通 信、扩频通信等领域。
伪随机序列的应用领域
模拟噪声环境
在无线通信、雷达和声呐等系统中,伪随机序列常被用作 噪声源,模拟自然界的噪声环境,以提高系统的抗干扰性 能。
九年级物理优化设计答案全册

4.(1)该表是一只电压表(2)该表有一个负接线柱和两个正接线柱
(3)该表有0~3V和0~15V两个量程(4)该表此时的示数可能为2V,
也可能是10V 5.0~15V 5V 0.5V 9V 0~3V 1V 0.1V 1.8V
智能演练:1~7:BDBDD DC 8.(1)3×103 3×10-3
(2)1.5×10-2 1.5×10-5 (3)104 107 9.接线时开关要断开,应选
2.B 3.B 4.排气 做功 吸气 压缩 丙、丁、乙、甲 内 机械
机械 内 5.喷油嘴
智能演练:
1~5:DADBD 6.内 机械 环保 7.增大 升高 8.化学 内 做功
9.做功 惯性
10. 酒精燃烧
坚固汽缸
高温高压水蒸气
活塞运动做功
玻璃管
燃料燃烧
木塞冲出
高温高压燃气
2021/5/27
4
《优化设计》14.2 热机的效率 快乐预习:
优化设计 13.1 分子热运动
快乐预习 一、分子 原子 二、1.相互作用 进入对方 2.固体 液体 气体
3.不停地做无规则运动 三、1. 无规则运动 2.温度 温度 四、1.引力和斥力 2.(1)斥力 (2)引力 (3)十分微弱 忽略 轻松尝试 1.D 2. D 3.C 4. 分子无规则运动 分子的无规则运动快慢 与温度有关,温度越低,分子的无规则运动越慢 5.甲 一切物质的分子都在不停地做无规则运动 6. D 7. 斥力 智能演练 1~5:DAC AD 6. 引 斥 引 斥 7. 扩散 剧烈 8. 不属于 减 少汽车尾气排放(答案只要合理即可) 9. 气球里的气体分子可以通过气球分子间的空隙跑出去,所 以过一两天气球就瘪了。这个事实能说明分子是很小的,并 且分子间有间隙。 12002.1B/5/27A瓶颜色由物色变为红棕色 永不停息地做无规则运动 1
初中同步测控优化设计物理八年级下册配人教版 第10章 第1节 浮力

第1节浮力知能演练提升一、能力提升1.下列关于浮力的说法正确的是()A.只有浸在液体里的物体才受到浮力,在空气中的物体不受浮力B.乒乓球和玻璃球,浸在水中,乒乓球受到浮力,玻璃球不受浮力C.物体浸在液体中,由于受到浮力,物体的重力要变小D.铁球浸没在水中缓慢下沉时,弹簧测力计示数不变,说明铁球所受浮力不变2.在浅海中潜入海底观光是人们旅游休闲的方式之一。
人从水下2 m继续下潜的过程中受到海水的浮力和压强变化的情况是()A.浮力逐渐变小B.浮力逐渐变大C.压强逐渐变小D.压强逐渐变大3.有一铜块挂在弹簧测力计上,将铜块浸入水中并保持静止时,弹簧测力计的示数表示()A.铜块的体积B.铜块的重力C.铜块受到的浮力D.铜块的重力和浮力之差4.两手分别拿着一小木块和一大石块,把它们都浸没到水中,同时松开手,小木块上浮,大石块下沉,则它们受到的浮力()A.因为木块上浮,所以木块受到的浮力较大B.因为石块下沉,所以石块受到的浮力较小C.因为木块体积较小,所以木块受到的浮力较大D.因为石块体积较大,所以石块受到的浮力较大5.小聪利用如图所示的器材对浮力大小与哪些因素有关进行了以下探究:①选择器材a、c、d、e探究浮力的大小是否与物体浸在液体中的体积有关。
②选择器材a、d、e、f探究浮力的大小是否与液体的密度有关。
③选择器材a、b、d、e探究浮力的大小是否与物体的密度有关。
小聪在上述过程中采用的研究方法主要是()A.比值法B.等效法C.控制变量法D.估算法6.用一弹簧测力计挂着一实心圆柱体,圆柱体的底面刚好与水面接触(圆柱体未浸入水中),如图甲所示,然后将其逐渐浸入水中,图乙所示是弹簧测力计示数随圆柱体逐渐浸入水中深度的变化情况,则圆柱体受到的最大浮力是。
7.如图所示,一个棱长为10 cm的正方体悬浮在水中,上表面受到水的压力F1为5 N,下表面受到水的压力F2为13 N。
则正方体受到的浮力为 N,正方体上表面到水面=1×103 kg/m3)的距离为 cm。
电子电路CAD技术》课件 [自动保存的

1.2 电子电路CAD软件ORCAD
ORCAD软件是由ORCAD公司于20世纪80年代末推出 的EDA软件,早期的ORCAD软件是工作于DOS环境下的 ORCAD4.0,集成了电路原理图绘制、印制电路板设计、 数字电路仿真、可编程逻辑器件设计等功能,后来与 Cadence 公 司 合 并 后 , ORCAD 系 列 软 件 可 工 作 于 Windows95与Windows NT环境下,集成了电路原理图 绘制、印刷电路板设计、模拟与数字电路混合仿真等 功能。它的电路模拟的元器件模型库已达到16000个, 包含了几乎所有的通用型电路元器件模块,其软件系 统结构如图1-1所示。它包括了电子设计的四项核心 设计任务:
第5章 逻辑模拟和数模混合模拟 第6章 电路优化设计
第1章 绪论
1.1 CAD技术和电子EDA
CAD(Computer Aided Design)技术是指以计算机硬件
和软件为基本工作平台,继承和借鉴前人在电路和系统、 图论、拓扑逻辑优化和人工智能理论等多学科的最新科 技成果而研制成的通用支撑软件和应用软件包,帮助设 计人开发新的电子系统与电路、集成电路(IC)、印制 电路板(PCB)、现场可编程门阵列(FPGA)、复杂可编 程逻辑器件(CPLD)等产品,实现在计算机上调用元器 件库、绘制电路图、编制激励信号文件、确定踊踪点、 调用参数库以及模拟程序等手段去设计电路。
电子电路CAD技术
主讲教师:余 淼
光电工程学院光电信息专业
本课程是为 “测控技术与仪器”、“光电信息工程”、“电子科学与技术” 及相关专业的本科生开设的一门专业选修课程。本课程的目的和任务是使学 生通过本课程的学习,了解电子电路CAD的基本概念,掌握一些基本的电子电 路CAD软件的使用方法,为后续学习以及从事电子电路设计工作打好基础。
集成电路设计基础_华中科技大学中国大学mooc课后章节答案期末考试题库2023年

集成电路设计基础_华中科技大学中国大学mooc课后章节答案期末考试题库2023年1.画小信号等效电路时,恒定电流源视为。
答案:开路2.模拟集成电路设计中可使用小信号分析方法的是。
答案:增益3.模拟集成电路设计中可使用大信号分析方法的是()。
答案:输出摆幅4.题1-1-1 中国高端芯片联盟正式成立时间是:。
答案:2016年7月5.题1-1-2 如下不是集成电路产业特性的是:。
答案:低风险6.题1-1-3 摩尔定律是指集成电路上可容纳的晶体管数目,约每隔:个月便会增加一倍,性能也将提升一倍。
答案:187.MOS管的小信号模型中,体现沟长调制效应的参数是()。
答案:8.工作在饱和区的MOS管,可以被看作是一个。
答案:电压控制电流源9.下图中的MOS管工作在区(假定Vth=0.7V)。
【图片】答案:饱和区10.一个MOS管的本征增益表述错误的是。
答案:与MOS管电流无关11.工作在区的MOS管,其跨导是恒定值。
答案:饱和12.MOS管中相对最大的寄生电容是。
答案:栅极氧化层电容13.MOS管的小信号输出电阻【图片】是由MOS管的效应产生的。
答案:沟长调制14.题1-1-4 摩尔定律之后,集成电路发展有三条主线,以下不是集成电路发展主线的是:。
答案:SoC15.题1-1-5 单个芯片上集成约50万个器件,按照规模划分,该芯片为:。
答案:VLSI16.题1-1-6 年发明了世界上第一个点接触型晶体管。
答案:194717.题1-1-7 年发明了世界上第一块集成电路。
答案:195818.题1-1-8 FinFET等多种新结构器件的发明人是:。
答案:胡正明19.题1-1-9 集成电路代工产业的缔造者:。
答案:张忠谋20.题1-1-10 世界第一块集成电路发明者:。
答案:基尔比21.MOS管一旦出现现象,此时的MOS管将进入饱和区。
答案:夹断22.MOS管从不导通到导通过程中,最先出现的是。
答案:耗尽23.在CMOS模拟集成电路设计中,我们一般让MOS管工作在区。
ocl放大器课程设计

ocl放大器课程设计一、课程目标知识目标:1. 学生能理解OCL(输出级放大器)电路的基本原理,掌握其组成部分及工作流程。
2. 学生能掌握OCL放大器的特点、类型及在实际应用中的优势。
3. 学生能了解OCL放大器中功率放大器与电压放大器的区别,并明白其重要性。
技能目标:1. 学生能够运用所学知识,正确绘制OCL放大器的电路图,并分析电路参数。
2. 学生能够通过实验操作,搭建简单的OCL放大器电路,观察并解释实验现象。
3. 学生能够解决实际应用中OCL放大器可能出现的问题,并提出改进措施。
情感态度价值观目标:1. 培养学生对电子电路的兴趣,激发他们探索电子世界的热情。
2. 培养学生的团队合作意识,使他们学会在小组合作中分享知识、交流技巧。
3. 培养学生的创新精神,鼓励他们勇于尝试,不断优化电路设计。
课程性质:本课程为电子技术课程的一部分,主要针对OCL放大器的原理和应用进行讲解和实践。
学生特点:学生处于高中年级,已经具备一定的电子电路基础,对电子技术有一定的了解,但尚需进一步深化知识体系。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,提高他们的实际操作能力。
同时,关注学生的情感态度价值观培养,为他们的全面发展奠定基础。
通过本课程的学习,使学生能够达到上述具体的学习成果。
二、教学内容本课程教学内容主要包括以下三个方面:1. OCL放大器基本原理- 功率放大器与电压放大器的区别- OCL放大器的工作原理及特点- OCL放大器的类型及应用场景教学内容关联教材章节:第三章第二节“功率放大器”2. OCL放大器电路分析与设计- 电路图的绘制与分析- 电路参数的计算与调整- OCL放大器电路的优化设计教学内容关联教材章节:第三章第三节“输出级放大器的设计与优化”3. 实践操作与问题解决- 搭建简单的OCL放大器电路- 观察实验现象,分析问题原因- 提出解决方案,优化电路性能教学内容关联教材章节:第三章实验部分“输出级放大器实验”教学进度安排:1. 基本原理部分:2课时2. 电路分析与设计部分:3课时3. 实践操作与问题解决部分:2课时三、教学方法为了提高教学效果,激发学生的学习兴趣和主动性,本课程将采用以下多样化的教学方法:1. 讲授法:教师通过生动的语言和形象的比喻,讲解OCL放大器的基本原理、电路分析和设计方法,使学生系统地掌握相关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p*存在的充要条件是: F p
p
2F p 0 p 2 p p*
2F p 极值点一定是驻点,但 0 0 驻点不一定是极值点。 p 2 p p* p p*
相对极大点
拐点
单一极小点
计算机辅助电路设计与分析
局部极小点
RED APPLE STUDIO
全局极小点
电路节点电位Vi 感兴趣的支路电流Ij 电源功耗
~ W V V i i 目标函数 F ( P) Vi ~ Vi i 1
n
2 ~ m W I I j j Ij ~ Ij i 1
l Wk I ShU Sh 2 k 1
F P* P F P*
P HP 0
H在向量P的全部区域内正定
P*为极小点的充分和必要 条件是: 1.梯度F P 0; 2.二阶偏导数矩阵 H是正定的。
计算机辅助电路设计与分析 RED APPLE STUDIO
8
10.3 单变量函数优化
数值最优化法的步骤:(关键求Sk ,λk )
2 F P 2 F P p1p2 p1pn 2 F P 2 F P 2 p2 p2 pn 2 F P 2 F P 2 pn p2 pn
T
1 T P HP 2
计算机辅助电路设计与分析
RED APPLE STUDIO
5
例子(2):电路时域特性优化设计的目标函数
时域采样点数 实际瞬态响应特性V(P,t) 理想时域特性
~ 目标函数 F P, t W ti V P, ti V ti
i 1
m
2
例子(3):电路静态工作点优化设计的目标函数
A. 自动设计电路的拓扑结构; B. 自动确定电路的元器件参数。
10.1 电路优化设计概述
利用CAD技术进行电路优化设计的过程:
给定电路拓扑结构和元件参数初值 图10.1.1 电路优化设计框图 建立优化目标函数 对电路性能进行分析 用优化算法求目标函数的最小值 满足误差要求否? 输出优化结果
计算机辅助电路设计与分析 RED APPLE STUDIO
不等式约束和等式约束条件
计算机辅助电路设计与分析
RED APPLE STUDIO
3
10.2 目标函数
目标函数
由电路特性的误差函数组成,是电路实际特性与设计要求特 性之间误差的量度,是评价电路设计好坏的定量指标。优化 设计就是求目标函数的极小值。 1. 目标函数的表达式 不可能给出目标函数的统一表示形式,只能针对具体不同的 电路设计问题,给出不同的描述方式。
7
在最优化方法中,如果是极大值问题,一般将其转化为极小值问题来求解。
(2)多元函数极值
将多元函数F(P)展成台劳级数,并略去高阶导数项,得
海森矩阵
P p1 p2 p3 pn
T
F P F P p1
F P F P p2 pn
T
频响特性越复杂频点数应越多
频率采样点数 频率的加权函数 误差函数的指数, 1 k
m 1 k
k ~ 目标函数 F P, W i T P, i T P, i i 1
频率,通常是离散的频 率采样值
防止溢出
应特性 电路的频率响应特性 设计要求的理想频率响
3 2 0.618(1 2 ) 4 1 0.618(2 1 )
'4 3
'3 4
' ' '4 1 0.618('2 1 )
比较f ('3 )和f ('4 )
n 直到[1 , n 2 ]满足 n | n 2 1 | 为止。
电源功耗最小
6
2
多目标优化
节点电位和支路电流相对误差最 小
RED APPLE STUDIO
计算机辅助电路设计与分析
2. 目标函数的极值
最优化方法的目标是寻找目标函数的极小值。
(1)一元函数极值
F p 0 p p p* p均有 F(p*)F(p) 一元函数F(p),极小点p=p*,对所有的
[F ( P )] S 0 k [F (P )] S 0
[F ( Pk )]T S k || F ( Pk ) || || S k || cos
RED APPLE STUDIO F ( P)下降最快 计算机辅助电路设计与分析 选 1800 方向(梯度负方向)作 为 S k的方向,可使
计算机辅助电路设计与分析 RED APPLE STUDIO
13
2. 黄金分割法(属试探法):又称0.618法
f(λ3)<=f(λ4)
' 1 1, '2 4
' '3 '2 0.618(1 '
' 1 3,'2 2
15
最速下降法的优化过程 如下: (1 )给定允许误差 ( 0) , 令迭代次数为k,首次迭代 k 0,并选取迭代初值 P 0。 (2)计算梯度向量 F ( P k )。若 || F ( P k ) || , 则P k 为最优 解,迭代结束;否则转 (3)。 (3)计算搜索方向 Sk : F ( P k ) S || F ( P k ) ||
f(λ2), f(λ3),则可通过这三点(λ1, f(λ1)), (λ2, f(λ2)), (λ3, f(λ3))作 一条抛物线,并用此抛物线φ(λ)(二次曲线)来逼近函数f(λ)。 设这个多项式为
a0 a1 a22
a1 2a2
*
d a1 2a2* 0 d *
比较f ('3 )和f ('4 )
n 直到[1 , n 2 ]满足 n | n 2 1 | 为止。
为预先给定的误差要求
为预先给定的误差要求
*
(n) 1 (2n )
n 极小值误差为 RED APPLE STUDIO(0.618) / 2
2 计算机辅助电路设计与分析
a
a1
2 a2 a2 3a3a1
a0 , a1 , a2 , a3
迭代
*
的真
正最优解
a f a a0 f a 3 2 b f b a3 b a a2 b a a1 b a a0 f b a1 ' a ' a f ' a 2 3 a 2a2 b a a1 f ' b ' b f ' b 3 b a
2 2 1 2 2 2 2 2 3
1 a0 a11 a f 1 2 a0 a12 a f 2 a1 , a2 a a a f 3 0 1 3 3 STUDIO RED APPLE 计算机辅助电路设计与分析
(1)从初始猜测点P0开始;
(2)寻找一合适方向Sk(k=0,1, · · · ),Sk为第k+1次迭代搜索方向; (3)沿Sk方向向前进一步的步长设为λk,求合适的步长λk;
(4)由Pk+1=Pk+ λkSk 得到新的点Pk+1,它应当比原来的点Pk更接 近最优点;
(5)检验Pk+1是否最优,若最优则停止迭代;否则k=k+1,转(2) 步骤继续迭代。
计算机辅助电路设计与分析
RED APPLE STUDIO
9
10.3 单变量函数优化
单变量函数最优化问题:
对一维搜索来说,因为Sk是+1或-1,P0也可以确定,故 f(Pk+ λSk) →φ(λ),也就是说可用后者来逼近前者 一维搜索的方法有两类:函数逼近法,试探法
1. 插值法(属函数逼近法)
计算机辅助电路设计与分析
RED APPLE STUDIO
4
例子(1)电路频响特性优化设计的目标函数
实际响应特性
理想特性
W(ωi)是个正 实数,在不同 的采样点可选 取不同的数值, 用以权衡各采 样点对性能的 要求。
k大则误差 函数中数值 大的分量权 重自动加大 通常k =2
P — 待优化的电路元器件参 数向量, P p1 , p2 , , pn , 表明有 n个元件参量
ΔP k P k 1 P k
目标函数应不断减小
泰勒展开
F ( Pk 1 ) F ( Pk Pk ) F ( Pk )
k T k
k T k
[F ( Pk )]T Pk 0
k k P P Sk k || P || k
k F ( P ) Sk || F ( P k ) ||
*
(n) 1 (2n )
2
14
10.4 多变量函数优化
多变量函数优化的方法:梯度法(最速下降法、牛顿法、共轭
梯度法以及变尺度法等)、单纯形法。
下降最快)方向来寻优 1 最速下降法原理 以目标函数的负梯度(
F ( Pk Pk ) F ( Pk ) [F ( Pk )]T Pk
计算机辅助电路设计与分析 RED APPLE STUDIO
12
(2)三次插值方法 a3 a 3 a2 a 2 a1 a a0有极小值
' 0 * ' ' 0