定西市中考数学试卷
定西中考数学试题及答案
定西中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -5B. 0C. 2D. -3答案:C2. 一个数的相反数是-7,这个数是多少?A. 7B. -7C. 0D. 14答案:A3. 计算下列哪个表达式的结果是负数?A. 3 - 2B. 4 + (-2)C. 5 × (-1)D. 6 ÷ 2答案:C4. 如果一个角的补角是120°,那么这个角是多少度?A. 60°B. 120°C. 180°D. 240°答案:A5. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的周长是多少?A. 16厘米B. 21厘米C. 26厘米D. 31厘米答案:B6. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A7. 一个圆的半径是3厘米,那么它的面积是多少?A. 9π平方厘米B. 18π平方厘米C. 27π平方厘米D. 36π平方厘米答案:C8. 一个长方体的长、宽、高分别是4厘米、3厘米和2厘米,那么它的体积是多少?A. 24立方厘米B. 48立方厘米C. 72立方厘米D. 96立方厘米答案:A9. 一个数的平方是36,这个数是多少?A. 6B. -6C. 6或-6D. 0答案:C10. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 17B. 14C. 11D. 8答案:A二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可以是______。
答案:±512. 如果一个直角三角形的两条直角边分别是3和4,那么它的斜边长是______。
答案:513. 一个圆的直径是10厘米,那么它的周长是______。
答案:31.4厘米14. 一个等腰直角三角形的一条直角边长是7厘米,那么它的面积是______。
答案:24.5平方厘米15. 一个数列的前三项分别是2,5,8,那么它的第四项是______。
定西市中考数学试卷
定西市中考数学试卷一、选择题:本大题共10小题.每小题3分.共30定西市中考数学试卷1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数.正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4.不符合题意;B、x4﹣x不能再计算.不符合题意;C、x+x2不能再计算.不符合题意;D、x2•x=x3.符合题意;故选:D.【点评】本题主要考查整式的运算.解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°.则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角.解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0.b≠0).下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得.3a=2b.A、由原式可得:3a=2b.正确;B、由原式可得2a=3b.错误;C、由原式可得:3a=2b.正确;D、由原式可得:3a=2b.正确;故选:B.【点评】本题考查了比例的性质.主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0.则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0.∴x2﹣4=0.解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件.正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中.在相同条件下各投掷10次.他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.1 11.1 10.9 10.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛.则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看.成绩好的同学有甲、乙.从方差看甲、乙两人中.甲方差小.即甲发挥稳定.故选:A.【点评】本题考查了平均数和方差.熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根.则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4D.k<4【分析】根据判别式的意义得△=42﹣4k≥0.然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0.解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时.方程有两个不相等的实数根;当△=0时.方程有两个相等的实数根;当△<0时.方程无实数根.8.(3分)如图.点E是正方形ABCD的边DC上一点.把△ADE绕点A顺时针旋转90°到△ABF 的位置.若四边形AECF的面积为25.DE=2.则AE的长为()A.5 B. C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积.进而可求出正方形的边长.再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置.∴四边形AECF的面积等于正方形ABCD的面积等于25.∴AD=DC=5.∵DE=2.∴Rt△ADE中.AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质.正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图.⊙A过点O(0.0).C(.0).D(0.1).点B是x轴下方⊙A上的一点.连接BO.BD.则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC.利用三角函数得出∠DCO=30°.进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC.∵C(.0).D(0.1).∴∠DOC=90°.OD=1.OC=.∴∠DCO=30°.∴∠OBD=30°.故选:B.【点评】此题考查圆周角定理.关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a.b.c是常数.a≠0)图象的一部分.与x轴的交点A 在点(2.0)和(3.0)之间.对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时.y>0.其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系.由抛物线与y轴的交点判断c与0的关系.然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时.y=a﹣b+c;然后由图象确定当x取何值时.y>0.【解答】解:①∵对称轴在y轴右侧.∴a、b异号.∴ab<0.故正确;②∵对称轴x=﹣=1.∴2a+b=0;故正确;③∵2a+b=0.∴b=﹣2a.∵当x=﹣1时.y=a﹣b+c<0.∴a﹣(﹣2a)+c=3a+c<0.故错误;④根据图示知.当m=1时.有最大值;当m≠1时.有am2+bm+c≤a+b+c.所以a+b≥m(am+b)(m为实数).故正确.⑤如图.当﹣1<x<3时.y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系.关键是熟练掌握①二次项系数a决定抛物线的开口方向.当a>0时.抛物线向上开口;当a<0时.抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0).对称轴在y轴左;当a与b异号时(即ab<0).对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0.c).二、填空题:本大题共8小题.每小题4分.共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0.故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值.解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义.∴x﹣3>0.∴x>3.∴x的取值范围是x>3.故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件.如果所给式子中含有分母.则除了保证被开方数为非负数外.还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°.则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°.如果已知多边形的边数.就可以得到一个关于边数的方程.解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式.得(n﹣2)•180=1080.解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角.熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理.求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示.其中俯视图为正六边形.则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱.然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱.其底面边长为3.高为6.所以其侧面积为3×6×6=108.故答案为:108.【点评】本题考查了由三视图判断几何体的知识.解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸.难度不大.15.(4分)已知a.b.c是△ABC的三边长.a.b满足|a﹣7|+(b﹣1)2=0.c为奇数.则c=7.【分析】根据非负数的性质列式求出a、b的值.再根据三角形的任意两边之和大于第三边.两边之差小于第三边求出c的取值范围.再根据c是奇数求出c的值.【解答】解:∵a.b满足|a﹣7|+(b﹣1)2=0.∴a﹣7=0.b﹣1=0.解得a=7.b=1.∵7﹣1=6.7+1=8.∴6<c<8.又∵c为奇数.∴c=7.故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方.解题的关键是明确题意.明确配方法和三角形三边的关系.16.(4分)如图.一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n.﹣4).则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n.﹣4)代入y=﹣x﹣2.求出n的值.再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n.﹣4).∴﹣4=﹣n﹣2.解得n=2.∴P(2.﹣4).又∵y=﹣x﹣2与x轴的交点是(﹣2.0).∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式.体现了数形结合的思想方法.准确确定出n 的值.是解答本题的关键.17.(4分)如图.分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧.三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a.则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°.AB=BC=CA=a.再利用弧长公式求出的长=的长=的长==.那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形.∴∠A=∠B=∠C=60°.AB=BC=CA=a.∴的长=的长=的长==.∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l.圆心角度数为n.圆的半径为R).也考查了等边三角形的性质.18.(4分)如图.是一个运算程序的示意图.若开始输入x的值为625.则第2018次输出的结果为1.【分析】依次求出每次输出的结果.根据结果得出规律.即可得出答案.【解答】解:当x=625时.x=125.当x=125时.x=25.当x=25时.x=5.当x=5时.x=1.当x=1时.x+4=5.当x=5时.x=1.当x=1时.x+4=5.当x=5时.x=1.…(2018﹣3)÷2=1007.5.即输出的结果是1.故答案为:1【点评】本题考查了求代数式的值.能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题.共38分.解答应写出必要的文字说明.证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法.再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图.在△ABC中.∠ABC=90°.(1)作∠ACB的平分线交AB边于点O.再以点O为圆心.OB的长为半径作⊙O;(要求:不写做法.保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系.直接写出结果.【分析】(1)首先利用角平分线的作法得出CO.进而以点O为圆心.OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点.∵CO平分∠ACB.∴OB=OD.即d=r.∴⊙O与直线AC相切.【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系.正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著.在数学上有其独到的成就.不仅最早提到了分数问题.也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题.原文如下:今有共买鸡.人出九.盈十一;人出六.不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡.如果每人出9文钱.就会多11文钱;如果每人出6文钱.又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人.鸡的价格为y文钱.根据“如果每人出9文钱.就会多11文钱;如果每人出6文钱.又会缺16文钱”.即可得出关于x、y的二元一次方程组.解之即可得出结论.【解答】解:设合伙买鸡者有x人.鸡的价格为y文钱.根据题意得:.解得:.答:合伙买鸡者有9人.鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用.找准等量关系.正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高.中国高铁正迅速崛起.高铁大大缩短了时空距离.改变了人们的出行方式.如图.A.B两地被大山阻隔.由A地到B地需要绕行C地.若打通穿山隧道.建成A.B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°.∠CBA=45°.AC=640公里.求隧道打通后与打通前相比.从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7.≈1.4)【分析】过点C作CD⊥AB于点D.利用锐角三角函数的定义求出CD及AD的长.进而可得出结论.【解答】解:过点C作CD⊥AB于点D.在Rt△ADC和Rt△BCD中.∵∠CAB=30°.∠CBA=45°.AC=640.∴CD=320.AD=320.∴BD=CD=320.不吃20.∴AC+BC=640+320≈1088.∴AB=AD+BD=320+320≈864.∴1088﹣864=224(公里).答:隧道打通后与打通前相比.从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题.解题的关键是学会添加常用辅助线.构造直角三角形解决问题.需要熟记锐角三角函数的定义.23.(10分)如图.在正方形方格中.阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上.那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A.B.C.D.E.F)中任取2个涂黑.得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果.从中找到新图案是轴对称图形的结果数.利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份.其中阴影部分面积占其中的3份.∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA (B.A)(C.A)(D.A)(E.A)(F.A)B (A.B)(C.B)(D.B)(E.B)(F.B)C (A.C)(B.C)(D.C)(E.C)(F.C)D (A.D)(B.D)(C.D)(E.D)(F.D)E (A.E)(B.E)(C.E)(D.E)(F.E)F (A.F)(B.F)(C.F)(D.F)(E.F)由表可知.共有30种等可能结果.其中是轴对称图形的有10种.故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题.共50分。
中考真题数学试卷定西
中考真题数学试卷定西定西中考真题数学试卷(正文)一、选择题(共15小题,每小题4分,共60分)1. 已知直线l过点A(2,-1),斜率为k,则直线l的方程是____。
(答案略)2. 若a+b=3,a-b=xy,则xy=____。
(答案略)3. 下列等式中,正确的是____。
A. 6πm³ = 9πm²B. 5cm + 2m = 2.5m + 5cmC. 0.2km/h = 720m/minD. 25dm² = 0.3m²(答案略)4. 已知一边长等于a的正方形面积为S,如果将该边长扩大到原来的3倍,则扩大后的正方形的面积是原先的____倍。
(答案略)5. 在△ABC中,∠ABC=90°,∠ACB=30°,那么∠BAC的大小是____。
(答案略)6. 将运算“Δ:a→b=|a|×|b|×sinθ”所表示的几何含义描述正确的是____。
(答案略)----------二、填空题(共8小题,每小题4分,共32分)1. 因式分解:4x²+8xy+4y²=____。
(答案略)2. 把5040 ÷ 3 再继续除以3,最后得到____。
(答案略)3. 甲和乙两个水杯共重56g,乙和丙两个水杯共重32g,甲和丙两个水杯共重40g。
求甲、乙、丙各自的重量。
(答案略)4. 五角形ABCDE,如图所示,其中∠A=90°,BC=AB,DE=DC,则∠E的大小是____。
(答案略)----------三、解答题(共5小题,每小题12分,共60分)1. 《小王的植树计划》(根据提示完成故事)(答案略)2. 如图,△ABC中,∠A=50°,AD为△ABC的高,垂足为D,求AD与BC的比值。
(答案略)3. 从皮夹里取出3张红牌和4张白牌,按一定顺序排好,使得最后一张牌是红牌的可能性是多少?(答案略)4. 某瓶药液中原有2L溶液,游离细菌数为2×10^7 个。
2020年甘肃省定西市中考数学试卷及答案解析
2020年定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下列实数是无理数的是( )A.-2B.162.若70α=︒,则α的补角的度数是( ) A.130°B.110°C.30°D.20°3.若一个正方形的面积是12,则它的边长是( )A. B.3 C. D.4 4.下列几何体中,其俯视图与主视图完全相同的是( )A. B. C. D.5.下列各式中计算结果为6x 的是( ) A.24x x +B.82x x -C.24x x ⋅D.122x x ÷6.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A.1.24米B.1.38米C.1.42米D.1.62米7.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( ) A.-1或2B.-1C.2D.08.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离.若AE 间的距离调节到60cm ,菱形的边长20cm AB =,则DAB ∠的度数是( )A.90°B.100°C.120°D.150°9.如图,A 是O 上一点,BC 是直径,2AC =,4AB =,点D 在O 上且平分BC ,则DC 的长为( )A.C.10.如图①,正方形ABCD 中,AC ,BD 相交于点O ,E 是OD 的中点.动点P 从点E 出发,沿着E O B A →→→的路径以每秒1个单位长度的速度运动到点A ,在此过程中线段AP 的长度y 随着运动时间x 的函数关系如图②所示,则AB 的长为( )A.B.4C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.如果盈利100元记作+100元,那么亏损50元记作_________元. 12.分解因式:2a a +=_________.13.暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如图,请你为广告牌填上原价.14.要使分式21x x +-有意义,x 需满足的条件是_________. 15.在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有_________个.16.如图,在平面直角坐标系中,OAB ∆的顶点A ,B 的坐标分别为,(4,0).把OAB ∆沿x 轴向右平移得到CDE ∆,如果点D 的坐标为,则点E 的坐标为_________.17.若一个扇形的圆心角为60°,面积为2cm 6π,则这个扇形的弧长为_________cm (结果保留π).18.已知5y x =+,当x 分别取1,2,3,…,2020时,所对应y 值的总和是_________.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.计算:0(2tan 60(π+--︒20.解不等式组:3512(21)34x x x x -<+⎧⎨-≥-⎩,并把它的解集在数轴上表示出来.21.如图,在ABC ∆中,D 是BC 边上一点,且BD BA =.(1)尺规作图(保留作图痕迹,不写作法): ①作ABC ∠的角平分线交AD 于点E ; ②作线段DC 的垂直平分线交DC 于点F .(2)连接EF ,直接写出线段EF 和AC 的数量关系及位置关系.22.图①是甘肃省博物馆的镇馆之宝——铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈,sin 420.67︒≈,cos420.74︒≈,tan 420.90︒≈)23.2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A 级旅游景区,分别为A :嘉峪关文物景区;B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E :张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E :张掖七彩丹霞景区,他们再从A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择A ,D 两个景区的概率(要求画树状图或列表求概率)四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.下图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了_________天;(2)这七年的全年空气质量优良天数的中位数是_________天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上,试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:y=;(1)当x=_________时, 1.5x y,并画出函数图象;(2)根据表中数值描点(,)(3)观察画出的图象,写出这个函数的一条性质:____________________________________. 26.如图,O 是ABC ∆的外接圆,其切线AE 与直径BD 的延长线相交于点E ,且AE AB =.(1)求ACB ∠的度数; (2)若2DE =,求O 的半径.27.如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=︒.把ADN ∆绕点A 顺时针旋转90°得到ABE ∆.(1)求证:AEM ANM ∆∆≌.(2)若3BM =,2DN =,求正方形ABCD 的边长.28.如图,在平面直角坐标系中,抛物线22y ax bx =+-交x 轴于A ,B 两点,交y 轴于点C ,且28OA OC OB ==.点P 是第三象限内抛物线上的一动点.(1)求此抛物线的表达式; (2)若//PC AB ,求点P 的坐标;(3)连接AC ,求PAC ∆面积的最大值及此时点P 的坐标.2020年定西市中考 数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.二、填空题:本大题共8小题,每小题3分,共24分.11.-50 12.(1)a a +13.200 14.1x ≠ 15,1716.(7,0)17.3π18.2032三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(解法合理、答案正确均可得分)19.解:原式431=-=20.解:35 1 2(21)3 4 x x x x -<+⎧⎨-≥-⎩①②解①得3x <, 解②得2x ≥-;所以不等式组的解集为23x -≤<. 在数轴上表示为:21.解:(1)①作出ABC ∠的角平分线; ②作出线段DC 的垂直平分线.(2)数量关系:12EF AC =; 位置关系://EF AC .22.解:延长DF 交AB 于点G ,设BG 的长为x . 在Rt BFG ∆中, ∵tan BG FG β=,∴tan 42xFG =︒. 在Rt BDG ∆中, ∵tan BG DG α=,∴tan 31xDG =︒. ∵5DG FG DF CE -===,∴5tan 31tan 42x x -=︒︒.∴50.60.9x x -=,解得9x =. ∴9 1.510.5AB BG GA =+=+=答:“马踏飞燕”雕塑最高点离地面的高度大约是10.5米.23.解:(1)选择E :张掖七彩丹霞景区的概率为15; (2)画树状图得:或列表得:共有12种等可能结果,选择A ,D 两个景区有2种结果, 所以选择A ,D 两个景区的概率为21126=. 四、解答题(二):本大题共5小题,共40分,解答应写出必要的文字说明,证明过程或演算步骤.(解法合理、答案正确均可得分)24.(1)26 (2)254; (3)2703132502542332132962614x ++++++=≈(天); (4)36680%292.8293⨯=≈(天). 25.解:(1)3; (2)(3)性质写出一条即可.如:函数值y 随x 的增大而减小. 26.解:(1)如图,连接OA . ∵AE 是O 的切线,∴90OAE ∠=︒.又∵OB OA =, ∴12∠=∠.∵AB AE =,∴1E ∠=∠, ∴212AOE E ∠=∠=∠.又∵在Rt AOE ∆中,90AOE E ∠+∠=︒, ∴390E ∠=︒.∴30E ∠=︒. ∴120AOB ∠=︒.∴1602ACB AOB ∠=∠=︒. (2)设O 的半径为r ,在Rt OAE ∆中,∵30E ∠=︒,∴2OE OA =. ∴2OD DE OA +=.∴22r r +=, ∴2r =. ∴O 的半径是2.27.证明:(1)如图,由旋转知ADN ABE ∆∆≌,∴AN AE =,12∠=∠. ∵90BAD ∠=︒,45MAN ∠=︒, ∴1345∠+∠=︒, ∴2345∠+∠=︒.∴45EAM NAM ∠=∠=︒.在AEM ∆和ANM ∆中,AE ANEAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,∴AEM ANM ∆∆≌.解:(2)由(1)知ME MN =,即BM BE MN +=, ∵BE DN =,∴BM DN MN +=. 又∵3BM =,2DN =,∴5MN =.设正方形的边长为a ,则3MC a =-,2NC a =- 在Rt MNC ∆中,∵222MC NC MN +=, ∴222(3)(2)5a a -+-=. 解得16a =,21a =-(舍去)故正方形的边长为6.28.解:(1)由22y ax bx =+-可得点(0,2)C -,即2OC =.∵28OA OC OB ==,∴(4,0)A -,1,02B ⎛⎫ ⎪⎝⎭. 把A ,B 两点坐标代入22y ax bx =+-,解得1a =,72b =, ∴抛物线的表达式为2722y x x =+-. (2)∵//PC AB ,(0,2)C -,∴点P 的纵坐标为-2, ∴27222x x -=+-. 解得172x =-,20x =(舍). ∴7,22P ⎛⎫-- ⎪⎝⎭(3)设直线AC 的表达式为2y kx =-(0k ≠),把(4,0)A -代入可得12k =-, ∴直线AC 的表达式为122y x =--. 过点P 作x 轴的垂线,垂足为D ,交线段AC 于点E ;过点C 作CM PE ⊥,M 为垂足. 设点27,22P m m m ⎛⎫+- ⎪⎝⎭(40m -<<),则点1,22E m m ⎛⎫-- ⎪⎝⎭, ∴227122422PE PD ED m m m m m ⎛⎫⎛⎫=-=-+--+=-- ⎪ ⎪⎝⎭⎝⎭. ∴111222PAC APE PEC S S S PE AD PE MC PE AO ∆∆∆=+=⋅+⋅=⋅ ()222144282(2)82m m m m m =⨯--⨯=--=-++ ∴当2m =-时,8PAC S ∆=最大.22772(2)(2)2522m m +-=-+⨯--=- 故点(2,5)P --.【拓展资料】(一)小学整数知识。
2022年甘肃省定西市中考数学试题及答案解析
2022年甘肃省定西市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−2的相反数是( )A. −12B. 2 C. −2 D. 122.若∠A=40°,则∠A的余角的大小是( )A. 50°B. 60°C. 140°D. 160°3.不等式3x−2>4的解集是( )A. x>−2B. x<−2C. x>2D. x<24.用配方法解方程x2−2x=2时,配方后正确的是( )A. (x+1)2=3B. (x+1)2=6C. (x−1)2=3D. (x−1)2=65.若△ABC∽△DEF,BC=6,EF=4,则ACDF=( )A. 49B. 94C. 23D. 326.2022年4月16日,神州十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神州十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是( )A. 完成航天医学领域实验项数最多B. 完成空间应用领域实验有5项C. 完成人因工程技术实验项数比空间应用领域实验项数多D. 完成人因工程技术实验项数占空间科学实验总项数的24.3%7.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为( )A. 2mmB. 2√2mmC. 2√3mmD. 4mm8.《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为( )A. (17+19)x=1 B. (17−19)x=1 C. (9−7)x=1 D. (9+7)x=19.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(AB⏜),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路(AB⏜)的长度为( )A. 20πmB. 30πmC. 40πmD. 50πm10.如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为( )A. √3B. 2√3C. 3√3D. 4√3二、填空题(本大题共8小题,共24.0分)11.计算:3a3⋅a2=______.12.因式分解m3−4m=______.13.若一次函数y=kx−2的函数值y随着自变量x值的增大而增大,则k=______(写出一个满足条件的值).14.如图,菱形ABCD中,对角线AC与BD相交于点O,若AB=2√5cm,AC=4cm,则BD的长为______cm.15.如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=______°.16.如图,在四边形ABCD中,AB//DC,AD//BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是______.17.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度ℎ(单位:m)与飞行时间t(单位:s)之间具有函数关系:ℎ=−5t2+20t,则当小球飞行高度达到最高时,飞行时间t=______s.18.如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为______cm.三、解答题(本大题共10小题,共66.0分)19.计算:√2×√3−√24.20.化简:(x+3)2x+2÷x2+3xx+2−3x.21.中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,∠ABC为直角,以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与DE⏜交于点F;再以点E为圆心,仍以BD长为半径画弧与DE⏜交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.22.灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF//EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.23.第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京−张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A.云顶滑雪公园、B.国家跳台滑雪中心、C.国家越野滑雪中心、D.国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.24.受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了30名学生周累计居家锻炼时间(单位:ℎ)的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】7865910467511128764636891010136783510【数据整理】将收集的30个数据按A,B,C,D,E五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A.3≤t<5,B.5≤t<7,C.7≤t<9,D.9≤t< 11,E.11≤t≤13,其中t表示锻炼时间);【数据分析】请根据以上信息解答下列问题:(1)填空:m=______;(2)补全频数分布直方图;(3)如果学校将管理目标确定为每周不少于7ℎ,该校有600名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.(k≠0)在第一象限图象上的点,过点B的直线y= 25.如图,B,C是反比例函数y=kxx−1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD=3.(1)求此反比例函数的表达式;(2)求△BCE的面积.26.如图,△ABC内接于⊙O,AB,CD是⊙O的直径,E是DB延长线上一点,且∠DEC=∠ABC.(1)求证:CE是⊙O的切线;(2)若DE=4√5,AC=2BC,求线段CE的长.27.已知正方形ABCD,E为对角线AC上一点.【建立模型】(1)如图1,连接BE,DE.求证:BE=DE;【模型应用】(2)如图2,F是DE延长线上一点,FB⊥BE,EF交AB于点G.①判断△FBG的形状并说明理由;②若G为AB的中点,且AB=4,求AF的长.【模型迁移】(3)如图3,F是DE延长线上一点,FB⊥BE,EF交AB于点G,BE=BF.求证:GE=(√2−1)DE.(x+3)(x−a)与x轴交于A,B(4,0)两28.如图1,在平面直角坐标系中,抛物线y=14点,点C在y轴上,且OC=OB,D,E分别是线段AC,AB上的动点(点D,E不与点A,B,C重合).(1)求此抛物线的表达式;(2)连接DE并延长交抛物线于点P,当DE⊥x轴,且AE=1时,求DP的长;(3)连接BD.①如图2,将△BCD沿x轴翻折得到△BFG,当点G在抛物线上时,求点G的坐标;②如图3,连接CE,当CD=AE时,求BD+CE的最小值.答案解析1.【答案】B【解析】【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此解答即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.【解答】解:根据相反数的含义,可得−2的相反数是:−(−2)=2.故选:B.2.【答案】A【解析】解:∵∠A=40°,∴∠A的余角为:90°−40°=50°,故选:A.根据互余两角之和为90°计算即可.本题考查的是余角的定义,如果两个角的和等于90°,就说这两个角互为余角.3.【答案】C【解析】解:3x−2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故选:C.按照解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1即可得出答案.本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1是解题的关键.4.【答案】C【解析】解:x2−2x=2,x2−2x+1=2+1,即(x−1)2=3.故选:C.方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.本题考查了解一元二次方程−配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5.【答案】D【解析】解:∵△ABC∽△DEF,∴BCEF =ACDF,∵BC=6,EF=4,∴ACDF =64=32,故选:D.根据△ABC∽△DEF,可以得到BCEF =ACDF,然后根据BC=6,EF=4,即可得到ACDF的值.本题考查相似三角形的性质,解答本题的关键是明确题意,利用相似三角形的性质解答.6.【答案】B【解析】解:A.由扇形统计图可得,完成航天医学领域实验项数最多,所以A选项说法正确,故A选项不符合题意;B.由扇形统计图可得,完成空间应用领域实验占完成总实验数的5.4%,不能算出完成空间应用领域的实验次数,所以B选项说法错误,故B选项符合题意;C.完成人因工程技术实验占完成总实验数的24.3%,完成空间应用领域实验占完成总实验数的5.4%,所以完成人因工程技术实验项数比空间应用领域实验项数多说法正确,故C选项不符合题意;D.完成人因工程技术实验项数占空间科学实验总项数的24.3%,所以D选项说法正确,故D选项不符合题意.故选:B.应用扇形统计图用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.进行判定即可得出答案.本题主要考查了扇形统计图,熟练掌握扇形统计图的应用是解决本题的关键.7.【答案】D【解析】解:连接AD ,CF ,AD 、CF 交于点O ,如右图所示,∵六边形ABCDEF 是正六边形,AD 的长约为8mm ,∴∠AOF =60°,OA =OD =OF ,OA 和OD 约为4mm ,∴AF 约为4mm ,故选:D .根据正六边形的性质和题目中的数据,可以求得正六边形ABCDEF 的边长.本题考查多边形的对角线,解答本题的关键是明确正六边形的特点.8.【答案】A【解析】解:设经过x 天相遇, 根据题意得:17x +19x =1,∴(17+19)x =1,故选:A .设总路程为1,野鸭每天飞17,大雁每天飞19,当相遇的时候,根据野鸭的路程+大雁的路程=总路程即可得出答案.本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.9.【答案】C【解析】解:∵半径OA =90m ,圆心角∠AOB =80°,∴这段弯路(AB⏜)的长度为:80π×90180=40π(m), 故选:C .根据题目中的数据和弧长公式,可以计算出这段弯路(AB⏜)的长度. 本题考查圆心角、弧、弦的关系,解答本题的关键是明确弧长计算公式l =nπr 180.10.【答案】B【解析】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3√3,∴△ABD的面积=√3a2=3√3,4解得:a=2√3,故选:B.根据图1和图2判定三角形ABD为等边三角形,它的面积为3√3解答即可.本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.11.【答案】3a5【解析】解:原式=3a3+2=3a5.故答案为:3a5.根据同底数幂的乘法法则化简即可本题考查了同底数幂的乘法,掌握a m⋅a n=a m+n是解题的关键.12.【答案】m(m+2)(m−2)【解析】解:原式=m(m2−4)=m(m+2)(m−2),故答案为:m(m+2)(m−2)原式提取m,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【答案】2(答案不唯一)【解析】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.本题考查了一次函数的性质,掌握一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小是解题的关键.14.【答案】8【解析】解:∵四边形ABCD是菱形,AC=4cm,∴AC⊥BD,BO=DO,AO=CO=2cm,∵AB=2√5cm,∵BO=√AB2−AO2=4cm,∴DO=BO=4cm,∴BD=8cm,故答案为:8.由菱形的性质可得AC⊥BD,BO=DO,由勾股定理可求BO,即可求解.本题考查了菱形的性质,勾股定理,掌握菱形的性质是解题的关键.15.【答案】70【解析】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°−∠ABC=180°−110°=70°,故答案为:70.根据圆内接四边形的对角互补即可得到结论.本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.16.【答案】∠A=90°(答案不唯一)【解析】解:需添加的一个条件是∠A=90°,理由如下:∵AB//DC,AD//BC,∴四边形ABCD是平行四边形,又∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.17.【答案】2【解析】解:∵ℎ=−5t2+20t=−5(t−2)2+20,且−5<0,∴当t=2时,ℎ取最大值20,故答案为:2.把一般式化为顶点式,即可得到答案.本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.18.【答案】√13【解析】解:∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB//CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB−AE=6−2=4(cm),∵G是EF的中点,∴EG=BG=12EF,∴∠BEG=∠ABD,∴∠BEG=∠BDC,∴△EBF∽△DCB,∴EBDC =BFCB,∴46=BF9,∴BF=6,∴EF=√BE2+BF2=√42+62=2√13(cm),∴BG=12EF=√13(cm),故答案为:√13.根据矩形的性质可得AB=CD=6cm,∠ABC=∠C=90°,AB//CD,从而可得∠ABD=∠BDC,然后利用直角三角形斜边上的中线可得EG=BG,从而可得∠BEG=∠ABD,进而可得∠BEG=∠BDC,再证明△EBF∽△DCB,利用相似三角形的性质可求出BF的长,最后在Rt△BEF中,利用勾股定理求出EF的长,即可解答.本题考查了相似三角形的判定与性质,勾股定理,矩形的性质,直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线,以及相似三角形的判定与性质是解题的关键.19.【答案】解:原式=√6−2√6=−√6.【解析】根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.本题考查了二次根式的混合运算,掌握√a⋅√b=√ab(a≥0,b≥0)是解题的关键.20.【答案】解:原式=(x+3)2x+2⋅x+2x(x+3)−3x=x+3x −3x=x+3−3x=1.【解析】将除法转化为乘法,因式分解,约分,根据分式的加减法法则化简即可得出答案.本题考查了分式的混合运算,考查学生运算能力,掌握运算的结果要化成最简分式或整式是解题的关键.21.【答案】解:(1)如图,射线BG,BF即为所求.(2)∠DBG=∠GBF=∠FBE.理由:连接DF,EG,则BD=BF=DF,BE=BG=EG,即△BDF和△BEG均为等边三角形,∴∠DBF=∠EBG=60°,∵∠ABC=90°,∴∠DBG=∠GBF=∠FBE=30°.【解析】(1)按题干直接画图即可.(2)连接DF,EG,可得△BDF和△BEG均为等边三角形,则∠DBF=∠EBG=60°,进而可得∠DBG=∠GBF=∠FBE=30°.本题考查尺规作图,根据题意正确作出图形是解题的关键.22.【答案】解:设BF=x m,由题意得:DE=FG=1.5m,在Rt△CBF中,∠CBF=35°,∴CF=BF⋅tan35°≈0.7x(m),∵AB=8.8m,∴AF=AB+BF=(8.8+x)m,在Rt△ACF中,∠CAF=26.6°,∴tan26.6°=CFAF =0.7x8.8+x≈0.5,∴x=22,经检验:x=22是原方程的根,∴CG=CF+FG=0.7x+1.5=16.9(m),∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.【解析】设BF=x m,根据题意可得:DE=FG=1.5m,然后在Rt△CBF中,利用锐角三角函数的定义求出CF的长,再在Rt△ACF中,利用锐角三角函数的定义列出关于x 的方程,进行计算即可解答.本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.23.【答案】解:(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是14;(2)画树状图如下:共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,∴小明和小颖被分配到同一场馆做志愿者的概率为416=14.【解析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,再由概率公式求解即可.此题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】6【解析】解:(1)由数据可知,6出现的次数最多,∴m=6.故答案为:6.(2)补全频数分布直方图如下:(3)600×8+6+330=340(名).答:估计有340名学生能完成目标.目标合理.理由:过半的学生都能完成目标.(1)由众数的定义可得出答案.(2)结合收集的数据,求出C组的人数,即可补全频数分布直方图.(3)用总人数乘以样本中每周不少于7ℎ的人数占比,即可得出答案;过半的学生都能完成目标,即目标合理.本题考查频数分布直方图、用样本估计总体,从收集的数据中获取必要的信息是解决问题的关键.25.【答案】解:(1)当y =0时,即x −1=0,∴x =1,即直线y =x −1与x 轴交于点A 的坐标为(1,0),∴OA =1=AD ,又∵CD =3,∴点C 的坐标为(2,3),而点C(2,3)在反比例函数y =k x 的图象上,∴k =2×3=6,∴反比例函数的图象为y =6x ;(2)方程组{y =x −1y =6x 的正数解为{x =3y =2, ∴点B 的坐标为(3,2),当x =2时,y =2−1=1,∴点E 的坐标为(2,1),即DE =1,∴EC =3−1=2,∴S △BCE =12×2×(3−2)=1,答:△BCE 的面积为1.【解析】(1)根据直线y =x −1求出点A 坐标,进而确定OA ,AD 的值,再确定点C 的坐标,代入反比例函数的关系式即可;(2)求出点E 坐标,进而求出EC ,再求出一次函数与反比例函数在第一象限的交点B 的坐标,由三角形的面积的计算方法进行计算即可.本题考查反比例函数、一次函数交点坐标以及待定系数法求函数关系式,将一次函数、反比例函数的关系式联立方程组是求出交点坐标的基本方法,将点的坐标转化为线段的长是正确解答的关键.26.【答案】(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠A +∠ABC =90°,∵BC =BC ,∴∠A =∠D ,又∵∠DEC=∠ABC,∴∠D+∠DEC=90°,∴∠DCE=90°,∴CD⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)解:由(1)知,CD⊥CE,在Rt△ABC和Rt△DEC中,∵∠A=∠D,AC=2BC,∴tanA=tanD,即BCAC =CECD=12,∴CD=2CE,在Rt△CDE中,CD2+CE2=DE2,DE=4√5,∴(2CE)2+CE2=(4√5)2,解得CE=4,即线段CE的长为4.【解析】(1)根据直径所对的圆周角是90°,得出∠A+∠ABC=90°,根据圆周角定理得出∠A=∠D,推出∠DCE=90°即可得出结论;(2)根据tanA=tanD得出BCAC =CECD=12,再根据勾股定理得出CE即可.本题主要考查圆的综合题,熟练掌握圆周角定理,切线的判定,勾股定理等知识是解题的关键.27.【答案】(1)证明:∵AC是正方形ABCD的对角线,∴AB=AD,∠BAE=∠DAE=45°,∵AE=AE,∴△ABE≌△ADE(SAS),∴BE=DE;(2)解:①△FBG为等腰三角形,理由:∵四边形ABCD是正方形,∴∠GAD=90°,∴∠AGD+∠ADG=90°,由(1)知,△ABE≌△ADE,∴∠ADG=∠EBG,∴∠AGD+∠EBG=90°,∵PB⊥BE,∴∠FBG+∠EBG=90°,∴∠AGD=∠FBG,∵∠AGD=∠FGB,∴∠FBG=∠FGB,∴FG=FB,∴△FBG是等腰三角形;②如图,过点F作FH⊥AB于H,∵四边形ABCD为正方形,点G为AB的中点,AB=4,∴AG=BG=2,AD=4,由①知,FG=FB,∴GH=BH=1,∴AH=AG+GH=3,在Rt△FHG与Rt△DAG中,∵∠FGH=∠DGA,∴tan∠FGH=tan∠DGA,∴FHGH =ADAG=2,∴FH=2GH=2,在Rt△AHF中,AF=√AH2+FH2=√13;(3)∵FB⊥BE,∴∠FBG=90°,在Rt△EBF中,BE=BF,∴EF=√2BE,由(1)知,BE=DE,由(2)知,FG=BF,∴GE=EF−FG=√2BE−BF=√2DE−DE=(√2−1)DE.【解析】(1)(1)先判断出AB=AD,∠BAE=∠DAE=45°,进而判断出△ABE≌△ADE,即可得出结论;(2)①先判断出∠AGD=∠FBG,进而判断出∠FBG=∠FGB,即可得出结论;②过点F作FH⊥AB于H,先求出AG=BG=2,AD=4,进而求出AH=3,进而求出FH=2,最后用勾股定理即可求出答案;(3)先判断出EF=√2BE,由(1)知,BE=DE,由(2)知,FG=BF,即可判断出结论.此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,作出辅助线构造出直角三角形是解(2)的关键.28.【答案】解:(1)∵抛物线y=14(x+3)(x−a)与x轴交于A,B(4,0)两点,∴14(4+3)(4−a)=0,解得a=4,∴y=14(x+3)(x−4)=14x2−14x−3,即抛物线的表达式为y=14x2−14x−3;(2)在y=14(x+3)(x−4)中,令y=0,得x=−3或4,∴A(−3,0),OA=3,∵OC=OB=4,∴C(0,4),∵AE=1,∴DE=AE⋅tan∠CAO=AE⋅OCOA =1×43=43,OE=OA−AE=3−1=2,∴E(−2,0),∵DE⊥x轴,∴x P=x D=x E=−2,∴y P=14(−2+3)(−2−4)=−32,∴PE=32,∴DP=DE+PE=43+32=176;(3)①如下图,连接DG交AB于点M,∵△BCD与BFG关于x轴对称,∴DG⊥AB,DM=GM,设OM=a(a>0),则AM=OA−OM=3−a,MG=MD=AM⋅tan∠CAO=43(3−a),∴G(−a,43(a−3)),∵点G(−a,43(a−3))在抛物线y=14(x+3)(x−4)上,∴14(−a+3)(−a−4)=43(a−3),解得a=43或3(舍去),∴G(−43,−209);②如下图,在AB的下方作∠EAQ=∠DCB,且AQ=BC,连接EQ,CQ,∵AE=CD,∴△AEQ≌△CDB(SAS),∴EQ=BD,∴当C、E、Q三点共线时,BD+CE=EQ+CE最小,最小为CQ,过点C作CH⊥AQ,垂足为H,∵OC⊥OB,OC=OB=4,∴∠CBA=45°,BC=4√2,∵∠CAH=180°−∠CAB−∠EAQ=180°−∠CAB−∠DCB=∠CBA=45°,AC =√OA 2+OC 2=√32+42=5,AH =CH =√22AC =5√22, HQ =AH +AQ =AH +BC =5√22+4√2=13√22, ∴CQ =√CH 2+HQ 2=(5√22)(13√22)=√97,即BD +CE 的最小值为√97.【解析】(1)用待定系数法求解析式即可;(2)根据函数解析式求出OA 的长度,根据三角函数求出DE 的长度,根据P 点的坐标得出PE 的长度,根据DP =DE +PE 得出结论即可;(3)①连接DG 交AB 于点M ,设OM =a(a >0),则AM =OA −OM =3−a ,得出G(−a,43(a −3)),根据G 点在抛物线上得出a 的值,即可得出G 点的坐标; ②在AB 的下方作∠EAQ =∠DCB ,且AQ =BC ,连接EQ ,CQ ,构造△AEQ≌△CDB ,得出当C 、E 、Q 三点共线时,BD +CE =EQ +CE 最小,最小为CQ ,求出CQ 的值即可. 本题主要考查二次函数的综合题,熟练掌握二次函数的图象和性质,全等三角形的判定和性质,三角函数,勾股定理等知识是解题的关键.。
甘肃省定西市中考数学试卷
甘肃省定西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)下列平面图形,既是中心对称图形,又是轴对称图形的是()A . 等腰三角形B . 正五边形C . 平行四边形D . 矩形2. (2分)(2016·天津) 2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A . 0.612×107B . 6.12×106C . 61.2×105D . 612×1043. (2分) (2019七下·白城期中) 下列运算中正确是()A . ± =5B . ﹣=±5C . =2D . =24. (2分)(2017·襄阳) 如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A .B .C .D .5. (2分) (2016九下·黑龙江开学考) 下列运算正确的是()A . 2x2•x3=2x5B . (x﹣2)2=x2﹣4C . x2+x3=x5D . (x3)4=x76. (2分)如图,AB∥CD,∠A=50°,则∠1的大小是()A . 50°B . 120°C . 130°D . 150°7. (2分) (2019八上·牡丹期中) 已知P1(﹣2,y1),P2(1,y2)是函数y=﹣2x+1图象上的两个点,则y1与y2的大小关系是()A . y1>y2B . y1<y2C . y1=y2D . 无法确定8. (2分)在以下长度的四根木棒中,能与4cm和 9cm长的木棒钉成一个三角形的是()A . 4cmB . 5cmC . 9cmD . 13cm9. (2分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A . 560(1+x)2=315B . 560(1﹣x)2=315C . 560(1﹣2x)2=315D . 560(1﹣x2)=31510. (2分)小明的父母出去散步.从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后用15分钟返回家,则表示父亲、母亲离家距离与时间的关系是()A . ④②B . ①②C . ①③D . ④③二、填空题: (共8题;共10分)11. (1分)(2017·南安模拟) 因式分解:m2+6m+9=________.12. (1分) (2020八下·鼓楼期末) 比较大小:4- ________ .(填“>”、“<”或“=”)13. (1分) (2018七上·鼎城期中) 定义为二阶行列式,规定它的运算法则为,那么当时,二阶行列式的值为________.14. (1分)如图,AB=BC=CD,∠BAD=80°,∠AED=________.15. (2分)不解方程,判断下列方程实数根的情况:①方程有________个实数根;②方程有________个实数根.16. (1分) (2019七下·覃塘期末) 如图,把长方形ABCD沿EF按图那样折叠后,点A,B分别落在G,H点处,若∠1=50°,则∠AEF的度数是 ________17. (1分) (2019八上·确山期中) 如图,已知中,,点是线段上的一动点,过点作交于点,并使得,则长度的取值范围是________.18. (2分) (2017七上·柯桥期中) 如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,那么第二次“移位”后他所处的顶点的编号为________. 第181次“移位”后,则他所处顶点的编号是________.三、解答题(一): (共5题;共26分)19. (5分)(2019·梧州模拟) (﹣2)2+ ﹣4sin45°.20. (5分)(2019·朝阳模拟) 解不等式组并写出它的所有整数解.21. (5分)(2020·台州模拟) 高淳固城湖大桥采用H型塔型斜拉桥结构(如甲图),图乙是从图甲抽象出的平面图.测得拉索AB与水平桥面的夹角是45°,拉索CD与水平桥面的夹角是65°,两拉索顶端的距离AC为2米,两拉索底端距离BD为10米,请求出立柱AH的长(结果精确到0.1米).(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)22. (6分)(2012·扬州) 一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,﹣2,3,﹣4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有________种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23. (5分)(2017·白银) 如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).四、解答题(二): (共5题;共50分)24. (13分)东营市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了________本书籍,扇形统计图中的m=________,∠α的度数是________(2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.25. (9分) (2019九上·越城月考) 在平面直角坐标系中,规定:抛物线的伴随直线为.例如:抛物线的伴随直线为,即y=2x﹣1.(1)在上面规定下,抛物线的顶点坐标为________,伴随直线为________,抛物线与其伴随直线的交点坐标为________和________;(2)如图,顶点在第一象限的抛物线与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m 的值.26. (10分)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点.(1)求菱形ABCD的面积.(2)求PM+PN的最小值.27. (11分) (2019八下·东阳期末) 如图,在平面直角坐标系中,四边形为正方形,已知点、,点B、C在第二象限内.(1)点B的坐标________;(2)将正方形以每秒2个单位的速度沿轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点、正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.28. (7分)(2018·铜仁模拟) 如图,O是平面直角坐标系的原点.在四边形OABC中,AB∥OC,BC⊥x轴于C,A(1,1),B(3,1),动点P从O点出发,沿x轴正方向以2个单位/秒的速度运动.设P点运动的时间为t秒(0<t<2).(1)求经过O、A、B三点的抛物线的解析式;(2)过P作PD⊥OA于D,以点P为圆心,PD为半径作⊙P,⊙P在点P的右侧与x轴交于点Q.①则P点的坐标为________,Q点的坐标为________;(用含t的代数式表示)参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(一): (共5题;共26分)19-1、20-1、21-1、22-1、22-2、23-1、四、解答题(二): (共5题;共50分)24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、。
甘肃省定西市中考数学试卷
甘肃省定西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·海南) 2018的相反数是()A . ﹣2018B . 2018C . ﹣D .2. (2分)下列计算正确的是().A .B .C .D .3. (2分)(2020·长春模拟) 据统计,第15中国(长春)国际汽车博览会成交额约为6 058 000 000,6 058 000 000这个数用科学记数法表示为()A . 60.58×1010B . 6.058×1010C . 6.058×109D . 6.058×1084. (2分) (2017八下·万盛期末) 2016年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A . 众数是6B . 中位数是6C . 平均数是6D . 方差是45. (2分)代数式有意义时,字母a的取值范围是()A . a<1B . a≤1C . a>0且a≠1D . a≥0且a≠16. (2分)(2017·新乡模拟) 如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A .B .C .D .7. (2分) (2017八下·三门期末) 一次函数y=x+1不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)已知四边形ABCD,下列说法正确的是()A . 当AD=BC,AB∥DC时,四边形ABCD是平行四边形B . 当AD=BC,AB=DC时,四边形ABCD是平行四边形C . 当AC=BD,AC平分BD时,四边形ABCD是矩形D . 当AC=BD,AC⊥BD时,四边形ABCD是正方形9. (2分) (2019九上·崇阳期末) 如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A . 15°B . 25°C . 30°D . 75°10. (2分)已知抛物线y=ax2+bx+c与x轴有两个不同的交点,则关于x的一元二次方程ax2+bx+c=0根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 由b2﹣4ac的值确定二、填空题 (共6题;共6分)11. (1分)(2019·松北模拟) 因式分解:x2y﹣4y3=________.12. (1分) (2019七下·番禺期末) 如图,已知∠1+∠2=180°,∠3=108°,则∠4=________°.13. (1分)(2012·大连) 已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=________cm.14. (1分) (2020·马龙模拟) 不等式组的解集为________.15. (1分) (2020八下·咸安期末) 将直线向下平移6个单位,所得直线的解析式是________.16. (1分) (2017七上·杭州期中) 观察下列单项式:,,,… ,…请观察它们的构成规律,写出第n个式子________.三、解答题 (共4题;共35分)17. (10分) (2019九上·九龙坡开学考) 计算:(1)(1﹣π)0﹣(﹣1)2018﹣(2)18. (5分)(2020·姜堰模拟) 先化简:,再从-3<x<3中取一个适合的整数x的值代入求值.19. (5分) (2016八上·灌阳期中) 如图,AB=DE,AC=DF,BE=CF.求证:AB∥DE.20. (15分) (2019八下·盐都期中) 如图,反比例函数的图像与一次函数的图像相交于点、 .(1)求出反比例函数和一次函数的关系式;(2)观察图像,直接写出使得成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求的面积.四、实践应用题 (共4题;共45分)21. (15分)(2017·柘城模拟) 为了解2016年初中毕业生毕业后的去向,某县教育局对部分初三学生进行了抽样调查,就初三学生的四种去向(A,读普通高中;B,读职业高中; C,直接进入社会就业; D,其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请根据图中信息解答下列问题:(1)该县共调查了多少名初中毕业生?(2)通过计算,将两幅统计图中不完整的部分补充完整;(3)若该县2016年初三毕业生共有4500人,请估计该县今年的初三毕业生中准备读普通高中的学生人数.22. (15分)(2016·鸡西模拟) 学校计划选购甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书单价比乙种图书贵4元,用3000元购进甲种图书的数量与用2400元购进乙种图书的数量相同.(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共100本,请求出所需经费W(单位:元)与购买甲种图书m(单位:本)之间的函数关系式;(3)在(2)的条件下,要使投入的经费不超过1820元,且使购买的甲种图书的数量不少于乙种图书数量,则共有几种购买方案?23. (10分)如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上.(1)求D点距水平面EN的高度?(保留根号)(2)求条幅AB的长度?(结果精确到1米)(参考数据:≈1.73,≈1.41)24. (5分)如图,传说诸葛亮孔明率精兵与司马仲达对阵,孔明一挥羽扇,军阵瞬时由上图变为下图,其中只移动了其中3骑而已,请问如何移动?五、推理论证题 (共1题;共10分)25. (10分)如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)与反比例函数y= (k≠0且x>0)交于A、B两点,与x轴、y轴分别交于C、D两点,连接OA、OB.若OA=2 ,sin∠AOC= ,点B的坐标为(m,﹣8)(1)求反比例函数和一次函数的解析式;(2)连接OB,若点P是y轴上一点,且△BOP是以OB为腰的等腰三角形,请直接写出点P的坐标.六、拓展探索题 (共1题;共15分)26. (15分)(2017·常州模拟) 如图,在平面直角坐标系中,直线y= x﹣1与抛物线y=﹣ x2+bx+c 交于A,B两点,点A在x轴上,点B的横坐标为﹣8,点P是直线AB上方的抛物线上的一动点(不与点A,B重合).(1)求该抛物线的函数关系式;(2)连接PA、PB,在点P运动过程中,是否存在某一位置,使△PAB恰好是一个以点P为直角顶点的等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;(3)过P作PD∥y轴交直线AB于点D,以PD为直径作⊙E,求⊙E在直线AB上截得的线段的最大长度.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共4题;共35分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、四、实践应用题 (共4题;共45分) 21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、五、推理论证题 (共1题;共10分)25-1、25-2、六、拓展探索题 (共1题;共15分) 26-1、26-2、26-3、。
定西中考数学试题及答案
定西中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列哪个数是无理数?A. -3B. 0.3C. πD. √4答案:C2. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B3. 已知函数f(x) = 2x - 3,当x > 1时,f(x)的值域是什么?A. (-∞, -1)B. (-1, +∞)C. (1, +∞)D. [1, +∞)答案:B4. 一个长方体的长、宽、高分别是a、b、c,其体积V可以表示为:A. V = a + b + cB. V = ab + bc + acC. V = abcD. V = √(a^2 + b^2 + c^2)答案:C5. 已知圆的半径为r,圆的面积S可以表示为:A. S = πrB. S = πr^2C. S = 2πrD. S = r^2答案:B6. 一个数的相反数是它本身,这个数是什么?A. 1B. 0C. -1D. 2答案:B7. 若a、b互为倒数,则ab的值为:A. 0B. 1C. -1D. 2答案:B8. 一个数的绝对值是它本身,这个数是什么?A. 正数B. 负数C. 非负数D. 非正数答案:C9. 一个二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 + b^2D. a^2 - b^2答案:A10. 一个数的平方根是它本身,这个数可以是:A. 1B. -1C. 0D. 2答案:C二、填空题(本大题共5小题,每小题4分,共20分。
请将答案填写在答题卡上。
)11. 如果一个数的平方等于9,那么这个数是_________。
答案:±312. 一个等腰三角形的底边长为6厘米,两腰相等,若腰长为5厘米,则其周长为_________厘米。
甘肃省定西市中考数学试卷
甘肃省定西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·顺义模拟) 有理数a,b在数轴上的位置如图所示,以下说法正确是()A . a+b=0B . a﹣b>0C . ab>0D . |b|<|a|2. (2分)把410000用科学计数法表示为a×10n的形式,则n =()A . 6B . 5C . -6D . -53. (2分) (2019八上·长安月考) 化简+-的结果为()A . 0B . 2C . -2D . 24. (2分) (2019九上·江汉月考) 平面直角坐标系中,将点A(1,2)绕点P(-1,1)顺时针旋转90°到点 A' 处,则该点的坐标为()A . (-2,3)B . (0,-1)C . (1,0)D . (-3,0)5. (2分) (2020七下·固阳月考) 如图,已知∠1=∠2,∠3=30°,则∠B的度数是()A .B .C .D .6. (2分)(2020·孝感) 某公司有10名员工,每人年收入数据如下表:年收入/万元46810人数/人3421则他们年收入数据的众数与中位数分别为()A . 4,6B . 6,6C . 4,5D . 6,57. (2分)(2018·益阳模拟) 下列判断错误的是()A . 两组对边分别平行的四边形是平行四边形B . 四个内角都相等的四边形是矩形C . 四条边都相等的四边形是菱形D . 两条对角线垂直且平分的四边形是正方形8. (2分)(2017·孝感) 一个几何体的三视图如图所示,则这个几何体可能是()A .B .C .D .9. (2分)(2020·温岭模拟) 甲、乙两人在直线跑道上同时出发同方向匀速步行至同一终点,先到终点的人原地休息,出发时甲在乙前方6米处,在步行过程中,甲、乙两人的距离y(米)与甲的步行时间t(秒)之间的关系如图所示,则当t=b时,下列描述正确的是()A . 乙比甲多步行了30米B . 乙步行了30米C . 甲在乙的前方30米处D . 乙到达终点10. (2分)如图,△ABC中,∠BAC=45°,∠ABC=60°,AB=4,D是边BC上的一个动点,以AD为直径画⊙O分别交AB、AC于点E、F,则弦EF长度的最小值为()A .B .C . 2D . 2二、填空题 (共8题;共8分)11. (1分) (2020九下·长春模拟) 分解因式: ________.12. (1分) (2019九上·台州期中) 如图,已知O的半径为13,弦AB长为24,则点O到AB的距离是________.13. (1分) (2017七下·城北期中) 若将三个数,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是________.14. (1分) (2019九上·江油开学考) 在Rt△ABC中,已知其中两边分别为6和8,则其面积为________.15. (1分) (2019九上·丹东月考) 如图,某小区有一块长为18m,宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人形通道,若设人形道的宽度为xm,则可以列出关于x的方程是________16. (1分)(2015·宁波) 如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C 处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是________ m(结果保留根号)17. (1分)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab= ________.18. (1分)(2013·宿迁) 在平面直角坐标系xOy中,一次函数与反比例函数的图象交点的横坐标为x0 .若k<x0<k+1,则整数k的值是________.三、解答题 (共8题;共86分)19. (10分)(2013·福州)(1)计算:;(2)化简:(a+3)2+a(4﹣a)20. (10分) (2019九上·龙岗期中) 如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD 折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.21. (10分) (2019八上·杭州期末) 在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)直接写出y甲, y乙与x之间的函数关系式(不写过程);(2)①求出点M的坐标,并解释该点坐标所表示的实际意义;②根据图象判断,x取何值时,y乙>y甲.22. (6分)(2017·海珠模拟) 中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:(1)本次抽样调查的样本容量是________,表示“D级(不喜欢)”的扇形的圆心角为________°;(2)若该校九年级有200名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;(3)若从本次调查中的A级(非常喜欢)的5名学生中,选出2名去参加广州市中学生诗词大会比赛,已知A级学生中男生有3名,请用“列表”或“画树状图”的方法求出所选出的2名学生中至少有1名女生的概率.23. (10分)有专家指出:人为型空气污染(如汽车尾气排放等)是雾霾天气的重要成因.某校为倡议“每人少开一天车,共建绿色家园”,想了解学生上学的交通方式.九年级(8)班的5名同学联合设计了一份调查问卷.对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是________人,扇形统计图中“骑自行车”所在扇形的圆心角度数是________度,请补全条形统计图;(2)已知这5名学生中有2名女同学,要从这5名学生中任选两名同学汇报调查结果.请用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.24. (10分)(2017·呼兰模拟) 如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣3a与x 轴交于A、B两点,与y轴交于点C,BO=CO.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一动点,连接AP,交y轴于点D,连接CP,设P点横坐标为t,△CDP的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点P作PE⊥x轴于点E,连接PB,过点A作AF⊥PB于点F,交线段PE于点G,若点H在x轴负半轴上,PH=2GE,点M(0,m)在y轴正半轴上,连接PM、PH,∠HPM=2∠BHP,PH=2PM,求m的值.25. (15分)(2019·永康模拟) 定义:若抛物线的顶点和与x轴的两个交点所组成的三角形为等边三角形时.则称此抛物线为正抛物线.概念理解:(1)如图,在△ABC中,∠BAC=90°,点D是BC的中点.试证明:以点A为顶点,且与x轴交于D、C两点的抛物线是正抛物线;问题探究:(2)已知一条抛物线经过x轴的两点E、F(E在F的左边),E(1,0)且EF=2若此条抛物线为正抛物线,求这条抛物线的解析式;(3)将抛物线y1=﹣x2+2 x+9向下平移9个单位后得新的抛物线y2.抛物线y2的顶点为P,与x轴的两个交点分别为M、N(M在N左侧),把△PMN沿x轴正半轴无滑动翻滚,当边PN与x轴重合时记为第1次翻滚,当边PM与x轴重合时记为第2次翻滚,依此类推…,请求出当第2019次翻滚后抛物线y2的顶点P的对应点坐标.26. (15分) (2019九上·番禺期末) 如图,一块材料的形状是锐角三角形ABC ,边BC=120mm ,高AD=80mm ,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=x mm , EF=y mm .(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共86分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
甘肃省定西市中考数学试卷及答案
甘肃省定西市中考数学试卷及答案(本试卷满分为150分,考题时间为120分钟)A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.图中几何体的主视图是2.下列运算中,计算结果正确的是A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2C .(2x 3)2=4x 9D .x 3+x 3=x3.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是4.多项式2a 2-4ab +2b 2分解因式的结果正确的是A .2(a 2-2ab +b 2)B .2a (a -2b )+2b 2C .2(a -b ) 2D .(2a -2b ) 25.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°6.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 A .12 B .13 C .14 D .1 7.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D .y =(x -1)2+2 8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8B .5C .2 2D .39.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 A .13 B .12 C .34D .1 10.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为a b 1C . B . A .D .正面A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.计算8-12=_ ▲ . 12.若x +y =3,xy =1,则x 2+y 2=_ ▲ .13.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .15.如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等.则x =_ ▲ .16.计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ .17.抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_▲ .(1)(2)EB D CE18.如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ ▲ .三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程.19.本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分)Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值.Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.(2)经过点A 且平行于l 2的直线的解析式20.已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.21.本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)Ⅰ.爱养花的李先生为选择一个合适的时间去参观西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、BAED F中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题: (1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt △OBA 和Rt △BCD 中,∠OBA =∠BCD =90°,点A 和点C 都在双曲线y =4x(k >0)上,求点D 的坐标.B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.) 22.(8分)如图,在平面直角坐标系中,O 为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为 (1,1).(1)若将正方形ABCD 绕点A 顺时针方向旋转,点B 到达点B 1,点C 到达点C 1,点D 到达点D 1,求点B 1、C 1、D 1的坐标.(2)若线段AC 1的长度..与点D 1的横坐标...的差.恰好是一元二次方程x 2+ax +1=0的一个根,求a 的值.第220题A BC D Ox y ABCD Oxyy =4x23.(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24.(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?甲乙型号 ABCDE单价(元/台)6000400025005000200025.(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC的外接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =92,BQ =32.(1)求⊙O 的半径;(2)若DE =35,求四边形ACEB 的周长.26.(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式.(2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.A B C QED OA B CDE GF O (1)AD E GF (2)数学试题参照答案及评分标准A卷(满分100分)一、选择题(满分40分)评分标准:答对一题得4分,不答或答错均得0分1.D 2.B 3.B 4.C 5.D 6.A 7.D 8.A 9.B10.C二、填空题(满分32分)评分标准:在每小题后的横线上填上最终结果,答对一题得4分,不答或答错和不是最终结果均得0分.11.7 13.5.2 14.(322)(2)570x x x--= 15.112.25或16.2 17.31x-<< 18.三、解答题(满分28分)19.Ⅰ.原式=2(1)(1)1x x xx--++·21xx-.=11x+·(1)(1)x xx+-=1xx-当2x=-时,原式=32(或当x==22)Ⅱ.解:(1)设直线1l与2l的交点为M,则由32y xy x=-+⎧⎨=⎩解得1,2.x y =⎧⎨=⎩∴(12)M ,.(2)设经过点A 且平行于2l 的直线的解析式为2.y x b =+ ∵直线1l 与x 轴的交点(30)A , ∴60b +=, ∴ 6.b =-则:所求直线的解析式为2 6.y x =-20.解:结论:四边形ABCD 是平行四边形. 证明:∵DF ∥BE . ∴∠AFD =∠CEB .又∵AF CE DF BE ==,, ∴△AFD ≌△CEB (SAS ). ∴AD CB =,∠DAF =∠BCE . ∴AD ∥CB .∴四边形ABCD 是平行四边形.说明:其它证法可参照上面的评分标准评分.21.Ⅰ.①15,34;10,16;22万; ②34(74%-6%)≈23(万人)③答案不唯一,只要符合题意均可得分. Ⅱ.解:点A 在双曲线4y x=上,且在△OBA 中,AB OB =,∠90OBA =°则4OB AB =. ∴2AB OB ==过点C 作CE ⊥x 轴于E CF ,⊥y 轴于F .设BE x =. 由在BCD △中90BC CD BCD ==,∠°.则CE x =. 又点C 在双曲线4y x=上 (2) 4.x x ∴+=解得10x x =>,,1.21)x OD ∴=∴=+=∴点D .B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.解:(1)由已知111(21)(40)(32)B C D -,,,,, (2)由勾股定理得:AC =则3)是方程210x ax ++=的一根,设另一根为0x ,则0x 3)=1.03x ==3)3)]a ∴=-+=-另解:23)3)10a a ++==,23.解:连接FG 并延长交AB 于M AC ,于N , BCE △和四边形ABCD 分别是正三角形和正方形..4530MN AB MN CD BAC ABE ∴⊥⊥=︒=︒,∠,∠∴设MF x =,则 1.x +=122.BCE ABF x S S S S ∴==∴--△△阴影正方形=112==另解:14BCDF S S S =-阴影正方形四边形1111()(12)4222264=---⨯-=24.解:(1)树状图如下:共有6种选购方案:(,)A D 、(B ,D )、(C ,D )、(A ,E )、(B ,E )、(C ,E ).1(.3P A 型号被选中)=(2) 设购买A 型号x 台,由(1)知当选用方案(,)A D 时:由已知9200060005000(36)100000x x +-≤≤得8880x --≤≤,不符合题意.当选用方案()A E ,时,由已知:9200060002000(36)100000x x +-≤≤ 得57.x ≤≤答:购买A 型号电脑可以是5台,6台或7台. 25.(1)连接OB BQ ,切O 于B ..OB BQ ∴⊥在Rt OBQ △中,92OQ BQ ==,32OB ∴==. 即O 的半径是32.(2)延长BO 交AC 于F .AB BC =则.AB BC BF AC =∴⊥,又AE 是O 的直径,90ACE ABE ∴==︒∠∠.BF CE ∴∥(另解:DBF OBA OAB DCE =∠=∠=∠∠) ..33521.3325BOD CED BO ODCE DEDE BO CE OD ∴∴=⨯∴===-△∽△∴在Rt ACE △中,3,1AE CE ==,则AC =又O 是AE 的中点,1122OF CF ∴==,则 2.BF = ∴在Rt ABF △中,12AF AC ==AB ∴=在Rt ABE △,BE =(如用ABQ BEQ △∽△及解Rt ABE △得AB BE ,,计算正确也得分) 故:四边形ACEB的周长是:1+26.解:(1)DEF △是边长为2OABC 中,2460OC BC COA AB x ===︒⊥,,∠,轴5,OA AB ∴==依题意:①当201t <≤时 ②222122)(2)422t S t t <<=--=--+时,③当25t S =≤≤时(2)由已知点(00)(1(5O C B ,,,设过点O 、C 、B 的抛物线的解析式为2.y ax bx =+则255a b a b =+=+,, 解得5a b ⎧=-⎪⎪⎨⎪=⎪⎩∴该抛物线的解析式为:255y x x =-+. ∴若存在点G ,使得DCA OABC S S =△梯形;此时,设点G 的坐标为2().55x x x -+,射线DF 与抛物线的交点在x 轴上方.2115()(54)22x ∴⨯⨯=⨯+化简得2690x x -+=,解得 3.x =则此时点(3G GH x ⊥,作轴于H ,则9cot 605DH GH =︒== ∴此时9192)55t =+=(秒 故:存在时刻195t =(秒)时,OAG △与梯形OABC 的面积相等.。
甘肃省定西市中考数学试卷含答案解析(Word版).doc
2018年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=7.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD 的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,不吃20,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共50分。
2022年甘肃省定西市中考数学试卷
2022年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每题3分,共30分,每题只有一个正确选项.1.〔3分〕下面四个应用图标中,属于中心对称图形的是〔〕A.B.C.D.2.〔3分〕据报道,2022年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为〔〕A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.〔3分〕4的平方根是〔〕A.16 B.2 C.±2 D.4.〔3分〕某种零件模型可以看成如下列图的几何体〔空心圆柱〕,该几何体的俯视图是〔〕A.B.C. D.5.〔3分〕以下计算正确的选项是〔〕A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.〔﹣x〕2﹣x2=06.〔3分〕将一把直尺与一块三角板如图放置,假设∠1=45°,那么∠2为〔〕7.〔3分〕在平面直角坐标系中,一次函数y=kx+b的图象如下列图,观察图象可得〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.〔3分〕a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为〔〕A.2a+2b﹣2c B.2a+2b C.2c D.09.〔3分〕如图,某小区方案在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.假设设道路的宽为xm,那么下面所列方程正确的选项是〔〕A.〔32﹣2x〕〔20﹣x〕=570 B.32x+2×20x=32×20﹣570C.〔32﹣x〕〔20﹣x〕=32×20﹣570 D.32x+2×20x﹣2x2=57010.〔3分〕如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD〔或边CD〕交于点Q,PQ的长度y〔cm〕与点P的运动时间x〔秒〕的函数图象如图②所示.当点P运动2.5秒时,PQ的长是〔〕A.B.C.D.二、填空题:本大题共8小题,每题3分,共24分.11.〔3分〕分解因式:x2﹣2x+1=.12.〔3分〕估计与0.5的大小关系是:0.5.〔填“>〞、“=〞、“<〞〕13.〔3分〕如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2022+2022n+c2022的值为.14.〔3分〕如图,△ABC内接于⊙O,假设∠OAB=32°,那么∠C=°.15.〔3分〕假设关于x的一元二次方程〔k﹣1〕x2+4x+1=0有实数根,那么k的取值范围是.16.〔3分〕如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.〔3分〕如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC 的长为半径画弧,交AB边于点D,那么弧CD的长等于.〔结果保存π〕18.〔3分〕以下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2022个图形的周长为.三、解答题〔一〕:本大题共5小题,共26分.解容许写出必要的文字说明、证明过程或演算步骤.19.〔4分〕计算:﹣3tan30°+〔π﹣4〕0﹣〔〕﹣1.20.〔4分〕解不等式组,并写出该不等式组的最大整数解.21.〔6分〕如图,△ABC,请用圆规和直尺作出△ABC的一条中位线EF〔不写作法,保存作图痕迹〕.22.〔6分〕美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.假设AB=132米,求观景亭D到南滨河路AC的距离约为多少米〔结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14〕23.〔6分〕在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如下列图的两个转盘做游戏〔每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字〕.游戏规那么如下:两人分别同时转动甲、乙转盘,转盘停止后,假设指针所指区域内两数和小于12,那么李燕获胜;假设指针所指区域内两数和等于12,那么为平局;假设指针所指区域内两数和大于12,那么刘凯获胜〔假设指针停在等分线上,重转一次,直到指针指向某一份内为止〕.〔1〕请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;〔2〕分别求出李燕和刘凯获胜的概率.四、解答题〔二〕:本大题共5小题,共40分.解容许写出必要的文字说明、证明过程或演算步骤.24.〔7分〕中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写〞大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x〔分〕频数〔人〕频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根据所给信息,解答以下问题:〔1〕m=,n=;〔2〕补全频数分布直方图;〔3〕这200名学生成绩的中位数会落在分数段;〔4〕假设成绩在90分以上〔包括90分〕为“优〞等,请你估计该校参加本次比赛的3000名学生中成绩是“优〞等的约有多少人25.〔7分〕一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P〔,8〕,Q〔4,m〕两点,与x轴交于A点.〔1〕分别求出这两个函数的表达式;〔2〕写出点P关于原点的对称点P'的坐标;〔3〕求∠P'AO的正弦值.26.〔8分〕如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.〔1〕求证:四边形BEDF是平行四边形;〔2〕当四边形BEDF是菱形时,求EF的长.27.〔8分〕如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.〔1〕假设点A〔0,6〕,N〔0,2〕,∠ABN=30°,求点B的坐标;〔2〕假设D为线段NB的中点,求证:直线CD是⊙M的切线.28.〔10分〕如图,二次函数y=ax2+bx+4的图象与x轴交于点B〔﹣2,0〕,点C 〔8,0〕,与y轴交于点A.〔1〕求二次函数y=ax2+bx+4的表达式;〔2〕连接AC,AB,假设点N在线段BC上运动〔不与点B,C重合〕,过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;〔3〕连接OM,在〔2〕的结论下,求OM与AC的数量关系.2022年甘肃省定西市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每题3分,共30分,每题只有一个正确选项.1.〔3分〕〔2022•白银〕下面四个应用图标中,属于中心对称图形的是〔〕A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,应选:B.【点评】此题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两局部折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两局部重合.2.〔3分〕〔2022•白银〕据报道,2022年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为〔〕A.39.3×104B.3.93×105C.3.93×106D.0.393×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.应选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.〔3分〕〔2022•白银〕4的平方根是〔〕A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,那么x就是a的平方根,由此即可解决问题.【解答】解:∵〔±2〕2=4,∴4的平方根是±2,应选C.【点评】此题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.〔3分〕〔2022•白银〕某种零件模型可以看成如下列图的几何体〔空心圆柱〕,该几何体的俯视图是〔〕A.B.C. D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.应选D.【点评】此题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.〔3分〕〔2022•白银〕以下计算正确的选项是〔〕A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.〔﹣x〕2﹣x2=0【分析】根据整式的运算法那么即可求出答案.【解答】解:〔A〕原式=2x2,故A不正确;〔B〕原式=x6,故B不正确;〔C〕原式=x5,故C不正确;〔D〕原式=x2﹣x2=0,故D正确;应选〔D〕【点评】此题考查整式的运算法那么,解题的关键是熟练运用整式的运算法那么,此题属于根底题型.6.〔3分〕〔2022•白银〕将一把直尺与一块三角板如图放置,假设∠1=45°,那么∠2为〔〕【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.∵直尺的两边互相平行,应选C.【点评】此题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.〔3分〕〔2022•白银〕在平面直角坐标系中,一次函数y=kx+b的图象如下列图,观察图象可得〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.应选A.【点评】此题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b〔k≠0〕中,当k>0,b>0时图象在一、二、三象限.8.〔3分〕〔2022•白银〕a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为〔〕A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+〔c﹣a﹣b〕=a+b﹣c+c﹣a﹣b=0.应选D.【点评】此题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.〔3分〕〔2022•白银〕如图,某小区方案在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.假设设道路的宽为xm,那么下面所列方程正确的选项是〔〕A.〔32﹣2x〕〔20﹣x〕=570 B.32x+2×20x=32×20﹣570C.〔32﹣x〕〔20﹣x〕=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:〔32﹣2x〕〔20﹣x〕=570,应选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目表达了数形结合的思想,需利用平移把不规那么的图形变为规那么图形,进而即可列出方程.10.〔3分〕〔2022•白银〕如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ ∥BD,PQ与边AD〔或边CD〕交于点Q,PQ的长度y〔cm〕与点P的运动时间x〔秒〕的函数图象如图②所示.当点P运动2.5秒时,PQ的长是〔〕A.B.C.D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,应选:B.【点评】此题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每题3分,共24分.11.〔3分〕〔2022•白银〕分解因式:x2﹣2x+1=〔x﹣1〕2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=〔x﹣1〕2.【点评】此题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.〔3分〕〔2022•白银〕估计与0.5的大小关系是:>0.5.〔填“>〞、“=〞、“<〞〕【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.〔3分〕〔2022•白银〕如果m是最大的负整数,n是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m2022+2022n+c2022的值为0.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=〔﹣1〕2022+2022×0+12022=0,故答案为:0【点评】此题考查代数式求值,解题的关键根据题意求出m、n、c的值,此题属于根底题型.14.〔3分〕〔2022•白银〕如图,△ABC内接于⊙O,假设∠OAB=32°,那么∠C= 58°.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】此题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.〔3分〕〔2022•白银〕假设关于x的一元二次方程〔k﹣1〕x2+4x+1=0有实数根,那么k的取值范围是k≤5且k≠1.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4〔k﹣1〕≥0,解之即可.【解答】解:∵一元二次方程〔k﹣1〕x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4〔k﹣1〕≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】此题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.〔3分〕〔2022•白银〕如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】此题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,此题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.〔3分〕〔2022•白银〕如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A 为圆心、AC的长为半径画弧,交AB边于点D,那么弧CD的长等于.〔结果保存π〕【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】此题主要考查了弧长公式的运用,解题时注意弧长公式为:l=〔弧长为l,圆心角度数为n,圆的半径为R〕.18.〔3分〕〔2022•白银〕以下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8,第2022个图形的周长为6053.【分析】根据图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2022个图形的周长为2+3×2022=6053,故答案为:8,6053.【点评】此题主要考查图形的变化类,根据图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题〔一〕:本大题共5小题,共26分.解容许写出必要的文字说明、证明过程或演算步骤.19.〔4分〕〔2022•白银〕计算:﹣3tan30°+〔π﹣4〕0﹣〔〕﹣1.【分析】此题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法那么计算.【解答】解:﹣3tan30°+〔π﹣4〕0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.〔4分〕〔2022•白银〕解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,那么不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】此题考查的是解一元一次不等式组,正确求出每一个不等式解集是根底,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到〞的原那么是解答此题的关键.21.〔6分〕〔2022•白银〕如图,△ABC,请用圆规和直尺作出△ABC的一条中位线EF〔不写作法,保存作图痕迹〕.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如下列图,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】此题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握根本作图,属于中考常考题型.22.〔6分〕〔2022•白银〕美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.假设AB=132米,求观景亭D到南滨河路AC的距离约为多少米〔结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14〕【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248〔米〕.∴观景亭D到南滨河路AC的距离约为248米.【点评】此题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.〔6分〕〔2022•白银〕在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如下列图的两个转盘做游戏〔每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字〕.游戏规那么如下:两人分别同时转动甲、乙转盘,转盘停止后,假设指针所指区域内两数和小于12,那么李燕获胜;假设指针所指区域内两数和等于12,那么为平局;假设指针所指区域内两数和大于12,那么刘凯获胜〔假设指针停在等分线上,重转一次,直到指针指向某一份内为止〕.〔1〕请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;〔2〕分别求出李燕和刘凯获胜的概率.【分析】〔1〕根据题意列出表格,得出游戏中两数和的所有可能的结果数;〔2〕根据〔1〕得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:〔1〕根据题意列表如下:甲乙678939101112410111213511121314可见,两数和共有12种等可能结果;〔2〕由〔1〕可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否那么游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题〔二〕:本大题共5小题,共40分.解容许写出必要的文字说明、证明过程或演算步骤.24.〔7分〕〔2022•白银〕中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写〞大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x〔分〕频数〔人〕频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根据所给信息,解答以下问题:〔1〕m=70,n=0.2;〔2〕补全频数分布直方图;〔3〕这200名学生成绩的中位数会落在80≤x<90分数段;〔4〕假设成绩在90分以上〔包括90分〕为“优〞等,请你估计该校参加本次比赛的3000名学生中成绩是“优〞等的约有多少人【分析】〔1〕根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;〔2〕根据〔1〕的计算结果即可补全频数分布直方图;〔3〕根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据〔或中间两数据的平均数〕即为中位数;〔4〕利用总数3000乘以“优〞等学生的所占的频率即可.【解答】解:〔1〕本次调查的总人数为10÷0.05=200,那么m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;〔2〕频数分布直方图如下列图,〔3〕200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;〔4〕该校参加本次比赛的3000名学生中成绩“优〞等的约有:3000×0.25=750〔人〕.【点评】此题考查读频数〔率〕分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.〔7分〕〔2022•白银〕一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P〔,8〕,Q〔4,m〕两点,与x轴交于A点.〔1〕分别求出这两个函数的表达式;〔2〕写出点P关于原点的对称点P'的坐标;〔3〕求∠P'AO的正弦值.【分析】〔1〕根据P〔,8〕,可得反比例函数解析式,根据P〔,8〕,Q〔4,1〕两点可得一次函数解析式;〔2〕根据中心对称的性质,可得点P关于原点的对称点P'的坐标;〔3〕过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:〔1〕∵点P在反比例函数的图象上,∴把点P〔,8〕代入可得:k2=4,∴反比例函数的表达式为,∴Q 〔4,1〕.把P〔,8〕,Q 〔4,1〕分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;〔2〕点P关于原点的对称点P'的坐标为〔,﹣8〕;〔3〕过点P′作P′D⊥x轴,垂足为D.∵P′〔,﹣8〕,∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A〔,0〕,即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】此题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.〔8分〕〔2022•白银〕如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.〔1〕求证:四边形BEDF是平行四边形;〔2〕当四边形BEDF是菱形时,求EF的长.【分析】〔1〕根据平行四边形ABCD的性质,判定△BOE≌△DOF〔ASA〕,得出四边形BEDF的对角线互相平分,进而得出结论;〔2〕在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】〔1〕证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF〔ASA〕,∴EO=FO,∴四边形BEDF是平行四边形;〔2〕解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,那么DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+〔6﹣x〕2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】此题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.〔8分〕〔2022•白银〕如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.〔1〕假设点A〔0,6〕,N〔0,2〕,∠ABN=30°,求点B的坐标;〔2〕假设D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】〔1〕在Rt△ABN中,求出AN、AB即可解决问题;〔2〕连接MC,NC.只要证明∠MCD=90°即可;【解答】解:〔1〕∵A的坐标为〔0,6〕,N〔0,2〕,∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B〔,2〕.〔2〕连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】此题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.〔10分〕〔2022•白银〕如图,二次函数y=ax2+bx+4的图象与x轴交于点B〔﹣2,0〕,点C〔8,0〕,与y轴交于点A.〔1〕求二次函数y=ax2+bx+4的表达式;〔2〕连接AC,AB,假设点N在线段BC上运动〔不与点B,C重合〕,过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;〔3〕连接OM,在〔2〕的结论下,求OM与AC的数量关系.【分析】〔1〕由B、C的坐标,利用待定系数法可求得抛物线解析式;〔2〕可设N〔n,0〕,那么可用n表示出△ABN的面积,由NM∥AC,可求得,那么可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n 的值,即可求得N点的坐标;〔3〕由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:〔1〕将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;〔2〕设点N的坐标为〔n,0〕〔﹣2<n<8〕,那么BN=n+2,CN=8﹣n.∵B〔﹣2,0〕,C〔8,0〕,∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A〔0,4〕,OA=4,∴S=BN•OA=〔n+2〕×4=2〔n+2〕,△ABN∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N〔3,0〕时,△AMN的面积最大;〔3〕当N〔3,0〕时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】此题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在〔1〕中注意待定系数法的应用,在〔2〕中找到△AMN和△ABN的面积之间的关系是解题的关键,在〔3〕中确定出AB为OM和AC的中间“桥梁〞是解题的关键.此题考查知识点较多,综合性较强,难度适中.。
2024年甘肃省定西市中考数学真题试卷及答案
2024年甘肃省定西市中考数学真题试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项. 1. 下列各数中,比2-小的数是( )A. 1-B. 4-C. 4D. 12. 如图所示,该几何体的主视图是( )A. B. C. D.3. 若55A ∠=︒,则A ∠的补角为( )A. 35︒B. 45︒C. 115︒D. 125︒ 4. 计算:4222a b a b a b -=--( ) A. 2 B. 2a b - C. 22a b - D. 2a b a b-- 5. 如图,在矩形ABCD 中,对角线AC ,BD 相交于点O,60ABD ∠=︒,2AB =,则AC 的长为( )A. 6B. 5C. 4D. 36. 如图,点A,B,C 在O 上,AC OB ⊥,垂足为D,若35A ∠=︒,则C ∠的度数是( )A. 20︒B. 25︒C. 30︒D. 35︒7. 如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为( )A. 3y x =B. 4y x =C. 31y xD. 41y x =+8. 近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是( )A. 2023年中国农村网络零售额最高B. 2016年中国农村网络零售额最低C. 2016—2023年,中国农村网络零售额持续增加D. 从2020年开始,中国农村网络零售额突破20000亿元9. 敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为( )A. 一亩八十步B. 一亩二十步C. 半亩七十八步D. 半亩八十四步10. 如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x,PO 的长为y,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )A. 2B. 3C.D. 二、填空题:本大题共6小题,每小题3分,共18分.11. 因式分解:228x -=________.12. 已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13. 定义一种新运算*,规定运算法则为:*n m n m mn =-(m,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14. 围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D 中的一处即可,A,B,C,D 位于棋盘的格点上)15. 如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16. 甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______2cm .(结果用π表示)三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.17. 计算.18. 解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩ 19. 先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b .20. 马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A,B 两点;①延长MO 交O 于点C;即点A,B,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .21. 在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22. 中国将力争2030年前实现碳达峰,2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C,H,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.23. 在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:根据以上信息,回答下列问题:(1)写出表中m,n的值:m=_______,n=_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24. 如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x=>的图象于C,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式; (2)连接AD ,求ACD 的面积. 25. 如图,AB 是O 的直径,BC BD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.26. 【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.27. 如图1,抛物线()2y a x h k =-+交x 轴于O,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD . ①如图2,当点F 落在抛物线上时,求点F 的坐标;①如图3,连接BD ,BF ,求BD BF +的最小值.2024年甘肃省定西市中考数学真题试卷答案一、选择题.二、填空题.11.【答案】()()222x x +- 12.【答案】2-(答案不唯一) 13.【答案】8 14.【答案】A 或C 15.【答案】能 16.【答案】3000π三、解答题.17.【答案】018.【答案】173x << 19.【答案】2a b +,320.【答案】(1)略 (2)21.【答案】(1)23(2)这个游戏规则对甲乙双方不公平 22.【答案】105.6m四、解答题.23.【答案】(1)9.1;9.1 (2)甲 (3)应该推荐甲选手,理由见解析 24.【答案】(1)一次函数y ax b =+的解析式为132y x =+;反比例函数()0k y x x =>的解析式为()80y x x=>; (2)625.【答案】(1)略 (2)tan AEB ∠=26.【答案】(1)DE CD AE +=(2)AD DF =+(3)AD DF =-【答案】(1)2y x =+(2)2(3)①(2F ①。
定西中考数学试卷真题
定西中考数学试卷真题一、选择题1. 找出下列数中的最小值:( )A. $1.5\overline{51}$B. $1.55\overline{1}$C. $1.555$D.$1.555\overline{1}$2. 若$a$,$b$满足$a \neq b$,则$a^3 - b^3$等于( )A. $(a+b)^3 - 3ab(a+b)$B. $(a-b)^3 + 3ab(a-b)$C. $(a+b)(a^2 - ab + b^2)$D. $(a-b)(a^2 + ab + b^2)$3. 下列哪个数是无理数?( )A. $0.5\overline{51}$B. $\sqrt{2} + 2\sqrt{3}$C. $\frac{5}{4}$D. $\pi$4. 在平面直角坐标系$xOy$中,已知一点$A(3,-4)$,点$B(-3,5)$,则$\overrightarrow{AB}$的坐标是( )A. $(6,-9)$B. $(-6,9)$C. $(9,-6)$D. $(-9,6)$5. 如图,在直角三角形$ABC$中,$AD \perp BC$,则( )A. $\tan\angle A = \frac{BC}{AC}$B. $\sin\angle B =\frac{BC}{AC}$C. $\cos\angle C = \frac{BC}{AC}$D. $\sin\angle D =\frac{AB}{AC}$二、填空题6. 半径为5cm的圆上一段长为\_\_\_cm的弧所对的圆心角为$60^\circ$。
7. $\log_2 16 = $\_\_\_8. $2\sqrt{75} - \sqrt{48} =$\_\_\_9. $(-3)^4 \times (-3)^3 =$\_\_\_10. 若$f(x) = 3x^2 + 2x - 1$,则$f(2) = $\_\_\_三、解答题11. 把下面的代数式完全平方:$x^2 - 8x$。
甘肃省定西市中考数学试题及答案D
甘肃省定西市中考数学试题及答案D考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效. 一.选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项,将此选项的字母填在答题卡上.1.下列图形中,是中心对称图形的是【 】2.在1,-2,0,35这四个数中,最大的数是【 】 A.2 B.0 C.35D.13.在数轴上表示不等式01<-x 的解集,正确的是【 】4.下列根式中是最简二次根式的是【 】12.9.3.32.D C B A5.已知点),0(m P 在y 轴的负半轴上,则点M )1,(+--m m 在【 】 A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,AB ∥CD,DE ⊥CE,∠1=34°,则∠DCE 的度数为【 】 A .34° B.54° C.66° D.56°7.如果两个相似三角形的面积比是1∶4,那么它们的周长比是【 】 A.1∶16 B.1∶4 C.1∶6 D.1∶28.某工厂现在平均每天比原计划每天多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器.根据题意,下面所列方程正确的是【 】.50600800.;50600800.;60050800.;60050800.A -=+==-=+x x D x x C x x x x B9.若,0442=-+x x 则)1)(1(6)2(32-+--x x x 的值为【 】第6题图A.-6B.6C.18D.3010.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是【 】二、填空题:本大题共8小题,每小题3分,共24分. 11.因式分解:.___________822=-x 12.计算:=-⋅-)8()5(24ab a ___________.13.如图,点A(3,t )在第一象限,射线OA 与x 轴所夹的锐角为α,,23tan =α则t 的值是________.14.如果单项式2222+-+m n n m y x与75y x 是同类项,那么m n 的值是________.15.三角形的两边长分别是3和4,第三边长是方程040132=+-x x 的根,则该三角形的周长为____.16.如图,在⊙O 中,弦AC=32,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R=_______. 17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=_______cm.18.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性.若把第一个三角形数记为,1x第二个三角形数记为,2x …,第n 个三角形数记为n x ,则1++n n x x =_________.三.解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤:第13题图第16题图 第17题图19.(4分)计算:.)3-(-160sin 231--210-2+︒++⎪⎭⎫⎝⎛20.(4分)如图,在平面直角坐标系中,△ABC 的顶点A(0,1),B(3,2),C(1,4)均在正方形的网格的格点上. (1)画出△ABC 关于x 轴的对称图形;△111C B A (2)将111C B A △沿x 轴方向向左平移3个单位后得到222C B A △,写出顶点222C B A ,,的坐标.21.(6分)已知关于x 的方程022=-++m mx x . (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(6分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景.图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).(1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度(结果保留π)23.(6分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字-1,-2,0.现从甲袋中任意摸出第20题图第22题图第25题图第27题图一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).(1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数xy 2-=的图象上的概率. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)2016年《政府工作报告》中提出了十大新词汇.为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A :“互联网+政务服务”,B :“工匠精神”,C :“光网城市”,D :“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图. 请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了多少名同学? (2)条形统计图中,m =_______,n =_____.(3)扇形统计图中,热词B 所在扇形的圆心角是多少度?25.(7分)如图,函数41+-=x y 的图象与函数)0(2>=x xky 的图象交于),1(),1,(n B m A 两点. (1)求k ,m ,n 的值;(2)利用图象写出当1≥x 时,21y y 与的大小关系. 26.(8分)如图,已知EC ∥AB,∠EDA=∠ABF. (1)求证:四边形ABCD 为平行四边形; (2)求证:.OF OE OA 2⋅=第24题图第26题图27.(8分)如图,在△ABC 中,AB=AC,点D 在BC 上,BD=DC,过点D 作DE ⊥AC,垂足为E,⊙O 经过A,B,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明; (3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.28.(10分)如图,已知抛物线c bx x y ++-=2经过A(3,0),B(0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以2个单位/秒的速度向终点B 匀速运动,当E,F 中任意一点到达终点时另一点也随之停止运动.连接EF,设运动时间为t 秒.当t 为何值时,△AEF 为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B 处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.第28题图数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题3分,共24分. 11.2(2)(2)x x +-;12.5240a b ;13.92;14.13;15.12 ;16.6;17. 6 ;18.2(1)n +或n2+2n+1.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)解:原式=22-(3-1)+2×3+1 2分 =4-3+1+3+1 3分 =6 4分 20.(4分)解:(1)△A1B1C1为所作; 2分 (2)A2(-3,-1),B2(0,-2),C2(-2,-4). 4分21.(6分)(1)解:把x =1代入方程 220x mx m ++-=得 1m m ++ 解得 m =12. 2分 (2)证明:△=24(2)m m -- 3分题号 1 2 3 4 5 6 7 8 9 10 答案ACCBADDABByxO ABCB 1C 1A 12(2)4m =-+ 4分 ∵ 2(2)m -≥0,∴ 2(2)4m -+>0, 即 △>0, 5分 ∴ 此方程有两个不相等的实数根. 6分22.(6分)解:(1) 过点B 作BF ⊥AC 于点F . 1分 ∴ AF=AC -BD=0.4(米), 2分 ∴B=AF ÷sin20°≈1.17(米); 3分 (2)∵∠MON=90°+20°=110°, 4分 ∴ 1100.82218045MN ⨯π==π(米). 6分23.(6分)解:(1)画树状图:方法一: 方法二:2分 所以点M (x, y )共有9种可能:(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); 4分(2)∵只有点(1,-2),(2,-1)在函数2y x=-的图象上, 5分 ∴点M (x ,y )在函数2y x =-的图象上的概率为29. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.(注:解法合理,答案正确均可得分)24.(7分)解:(1)105÷35%=300(人).答:共调查了300名学生; 1分 (2)n =300×30%=90(人),m =300-105-90-45=60(人). 故答案为:60,90;(每空2分) 5分 (3)60300×360°=72°.答:B 所在扇形的圆心角是72°. 7分 (0, 0) (0, -1)(0, -2) (1, -1) (1, -2) (1, 0) (2, -2)(2, -1)1 0 2-1-2 0 乙袋甲袋结果(2, 0)25.(7分)解:(1)把点A (m,1)代入14y x =-+,得m=3, 2分 则 A (3,1),∴k =3×1=3; 3分 把点B (1,n )代入2ky x=,得出n=3; 4分 (2)如图,由图象可知:①当1<x <3时,1y >2y ; 5分②当x =1或x =3时,1y =2y ; 6分(注:x 的两个值各占0.5分) ③当x >3时,1y <2y . 7分 26.(8分)(1)证明:∵EC ∥AB, ∴∠C=∠ABF . 1分 又∵∠EDA=∠ABF,∴∠C=∠EDA . 2分 ∴AD ∥BC, 3分 ∴四边形ABCD 是平行四边形. 4分 (2)证明:∵EC ∥AB, ∴OA OB OEOD=. 5分又∵AD ∥BC, ∴OF OB OA OD =, 6分 ∴OA OF OEOA=, 7分∴2OA OE OF =⋅. 8分 27.(8分)(1)证明:如图①,连接AD, ∵在△ABC 中, AB=AC,BD=DC, ∴AD ⊥BC 1分∴∠ADB=90°,AB 是⊙O 的直径; 2分 (2)DE 与⊙O 的相切. 3分 证明:如图②,连接OD, ∵AO=BO,BD=DC, ∴OD 是△BAC 的中位线,图②ABCD E O图①AB CD E O∴OD ∥AC, 4分 又∵DE ⊥AC ∴DE ⊥OD,∴DE 为⊙O 的切线; 5分 (3)解:如图③,∵AO=3,∴AB=6, 又∵AB=AC,∠BAC=60°, ∴△ABC 是等边三角形, ∴AD=33, 6分 ∵AC ∙DE=CD ∙AD,∴6∙DE=3×33, 7分 解得 DE =332. 8分 28.(10分)解:(1)设直线AB 的解析式为y kx m =+, 1分 把A(3,0),B(0,3)代入,得 330m k m =⎧⎨+=⎩, 解得13k m =-⎧⎨=⎩ ∴直线AB 的解析式为3y x =-+ 2分 把A(3,0),B(0,3) 代入 2y x bx c =-++中,得 9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩∴抛物线的解析式为 223y x x =-++. 3分 (2)∵OA=OB=3,∠BOA=90°,∴∠EAF=45°. 设运动时间为t 秒,则AF=2t,AE=3-t . 4分 (i )当∠EFA=90°时,如图①所示: 在Rt △EAF 中,cos45°22AF AE ==,即2232t t =-. 解得 t =1. 5分(ii) 当∠FEA=90°时,如图②所示:在Rt △AEF 中,cos45°22AE AF ==, AB CDEO图③图①OyAxBEF图②yOA BE F即222t=. 解得t =32. 综上所述,当t =1或t =32时,△AEF 是直角三角形. 6分 (3)存在. 如图③,过点P 作PN ∥y 轴,交直线AB 于点N,交x 轴于点D. 过点B 作BC ⊥PN 交PN 于点C .设点P (x ,223x x -++),则点N (x ,3x -+)∴PN=2223(3)3x x x x x -++--+=-+. 7分 ∴ABP BPN APN S S S ∆∆∆=+=1122PN BC PN AD ⋅+⋅ 8分=2211(3)(3)(3)22x x x x x x -+⋅+-+- =23327228x ⎛⎫--+ ⎪⎝⎭ 9分当32x =时,△ABP 的面积最大,最大面积为278. 此时点P(32,154). 10分yx O xA x xB AP图③NC MD M。
全国各省市-甘肃省定西市中考数学试卷(解析版).doc
2019年甘肃省定西市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)(2018•定西)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3分)(2018•定西)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x3.(3分)(2018•定西)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.(3分)(2018•定西)已知=(a≠0,b≠0),下列变形错误的是()A.= B.2a=3b C.= D.3a=2b5.(3分)(2018•定西)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.06.(3分)(2018•定西)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3分)(2018•定西)关于x的一元二次方程x2+4x+k=0有两个实数根,则k 的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<48.(3分)(2018•定西)如图,点E是正方形ABCD的边DC上一点,把△ADE 绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.9.(3分)(2018•定西)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°10.(3分)(2018•定西)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)11.(3分)(2018•定西)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(3分)(2018•定西)使得代数式有意义的x的取值范围是.13.(3分)(2018•定西)若正多边形的内角和是1080°,则该正多边形的边数是.14.(3分)(2018•定西)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(3分)(2018•定西)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=.16.(3分)(2018•定西)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组<<的解集为.17.(3分)(2018•定西)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(3分)(2018•定西)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一)解(本大题共5小题,满分26分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)19.(4分)(2018•定西)计算:÷(﹣1)20.(4分)(2018•定西)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(6分)(2018•定西)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(6分)(2018•定西)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(6分)(2018•定西)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二)解(本大题共5小题,满分40分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)24.(7分)(2018•定西)“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位教会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?25.(7分)(2018•定西)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S=S△BOC,求点P的坐标.△ACP26.(8分)(2018•定西)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.27.(8分)(2018•定西)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.28.(10分)(2018•定西)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2019年甘肃省定西市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)(2018•定西)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)(2018•定西)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法.【专题】11 :计算题;512:整式.【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)(2018•定西)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°【考点】IL:余角和补角.【专题】551:线段、角、相交线与平行线.【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.(3分)(2018•定西)已知=(a≠0,b≠0),下列变形错误的是()A.= B.2a=3b C.= D.3a=2b【考点】S1:比例的性质.【专题】11 :计算题.【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.(3分)(2018•定西)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【考点】63:分式的值为零的条件.【专题】1 :常规题型.【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(3分)(2018•定西)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【专题】1 :常规题型;542:统计的应用.【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3分)(2018•定西)关于x的一元二次方程x2+4x+k=0有两个实数根,则k 的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【考点】AA:根的判别式.【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3分)(2018•定西)如图,点E是正方形ABCD的边DC上一点,把△ADE 绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.【考点】R2:旋转的性质;LE:正方形的性质.【专题】1 :常规题型.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.(3分)(2018•定西)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【考点】M5:圆周角定理;D5:坐标与图形性质.【专题】55:几何图形.【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.(3分)(2018•定西)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】31 :数形结合.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)11.(3分)(2018•定西)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.(3分)(2018•有意义的x的取值范围是x>3.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【专题】514:二次根式.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.(3分)(2018•定西)若正多边形的内角和是1080°,则该正多边形的边数是8.【考点】L3:多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.(3分)(2018•定西)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【考点】U3:由三视图判断几何体;I4:几何体的表面积;MM:正多边形和圆;U1:简单几何体的三视图.【专题】55:几何图形.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.(3分)(2018•定西)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=7.【考点】K6:三角形三边关系;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【专题】42 :配方法.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.16.(3分)(2018•定西)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组<<的解集为﹣2<x<2.【考点】FD:一次函数与一元一次不等式.【专题】53:函数及其图象.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.(3分)(2018•定西)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【考点】MN:弧长的计算;KK:等边三角形的性质.【专题】1 :常规题型.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.(3分)(2018•定西)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【考点】33:代数式求值.【专题】11 :计算题.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一)解(本大题共5小题,满分26分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)19.(4分)(2018•定西)计算:÷(﹣1)【考点】6C:分式的混合运算.【专题】11 :计算题;513:分式.【分析】先计算括号内分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(4分)(2018•定西)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【考点】N3:作图—复杂作图;MB:直线与圆的位置关系.【专题】13 :作图题.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.(6分)(2018•定西)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【考点】9A:二元一次方程组的应用.【专题】34 :方程思想;521:一次方程(组)及应用.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(6分)(2018•定西)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【考点】T8:解直角三角形的应用;KU:勾股定理的应用.【专题】55:几何图形.【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,BC=320,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(6分)(2018•定西)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【考点】P8:利用轴对称设计图案;X5:几何概率;X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二)解(本大题共5小题,满分40分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)24.(7分)(2018•定西)“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C对应的扇形的圆心角是117度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位教会落在B等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(7分)(2018•定西)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;=S△BOC,求点P的坐标.(2)若点P在x轴上,且S△ACP【考点】G8:反比例函数与一次函数的交点问题.【专题】533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)利用点A在y=﹣x+4上求a,进而代入反比例函数y=求k.(2)联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.【解答】解:(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函数y=∴k=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个的数表达式得解得或∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4∴点C(﹣4,0)设点P的坐标为(x,0)=S△BOC∵S△ACP∴解得x1=﹣6,x2=﹣2∴点P(﹣6,0)或(﹣2,0)【点评】本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.26.(8分)(2018•定西)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;LB:矩形的性质.【专题】55:几何图形.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.【点评】此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.27.(8分)(2018•定西)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.【考点】MC:切线的性质;T7:解直角三角形.【专题】15 :综合题.【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=【点评】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.28.(10分)(2018•定西)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;。
2024届甘肃省定西市临洮县重点名校中考联考数学试卷含解析
2024届甘肃省定西市临洮县重点名校中考联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°2.在直角坐标系中,设一质点M 自P 0(1,0)处向上运动一个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处……,如此继续运动下去,设P n (x n ,y n ),n =1,2,3,……,则x 1+x 2+……+x 2018+x 2019的值为( )A .1B .3C .﹣1D .20193.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( ) A .3×109B .3×108C .30×108D .0.3×10104.若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 的取值范围( )A .m >3B .m <3C .m ≤3D .m ≥35.计算(﹣3)﹣(﹣6)的结果等于( ) A .3 B .﹣3 C .9 D .186.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )A .6B .2C .-2D .-67.如图,65,AFD CD EB ∠=︒∕∕,则B 的度数为( )A .115°B .110°C .105°D .65°8.下列四个式子中,正确的是( ) A .81 =±9B .﹣()26- =6C .(23+)2=5D .1216=49.一元一次不等式2(1+x )>1+3x 的解集在数轴上表示为( ) A .B .C .D .10.某几何体的左视图如图所示,则该几何体不可能是( )A .B .C .D .二、填空题(共7小题,每小题3分,满分21分) 11.已知正比例函数的图像经过点M ( )、、,如果,那么________.(填“>”、“=”、“<”)12.如图,等腰△ABC 中,AB =AC ,∠BAC =50°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC 的度数是____________.13.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______. 14.如图,在平面直角坐标系中,函数y=2x(x >0)的图象经过矩形OABC 的边AB 、BC 的中点E 、F ,则四边形OEBF的面积为________.15.分解因式:3x3﹣27x=_____.16.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1.则cos∠BEC=________.17.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE.下列结论①BE平分∠ABC;②AE=BE=BC;③△BEC周长等于AC+BC;④E点是AC的中点.其中正确的结论有_____(填序号)三、解答题(共7小题,满分69分)18.(10分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.19.(5分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=kx在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.20.(8分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.21.(10分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式组:22.(10分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400 200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?23.(12分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为,图①中的m的值为;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.24.(14分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:本次调查中,王老师一共调查了名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°, 而∠ABD=∠D′=90°, ∴∠3=180°-∠2=68°, ∴∠BAB′=90°-68°=22°, 即∠α=22°. 故选D . 2、C 【解题分析】根据各点横坐标数据得出规律,进而得出x 1 +x 2 +…+x 7 ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果. 【题目详解】解:根据平面坐标系结合各点横坐标得出:x 1、x 2、x 3、x 4、x 5、x 6、x 7、x 8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x 1+x 2+…+x 7=﹣1∵x 1+x 2+x 3+x 4=1﹣1﹣1+3=2; x 5+x 6+x 7+x 8=3﹣3﹣3+5=2; …x 97+x 98+x 99+x 100=2…∴x 1+x 2+…+x 2016=2×(2016÷4)=1. 而x 2017、x 2018、x 2019的值分别为:1009、﹣1009、﹣1009, ∴x 2017+x 2018+x 2019=﹣1009,∴x 1+x 2+…+x 2018+x 2019=1﹣1009=﹣1, 故选C . 【题目点拨】此题主要考查规律型:点的坐标,解题关键在于找到其规律 3、A 【解题分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【题目详解】将数据30亿用科学记数法表示为9310⨯, 故选A . 【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4、C 【解题分析】根据“大大小小找不着”可得不等式2+m≥2m -1,即可得出m 的取值范围. 【题目详解】221x m x m ->⎧⎨-<-⎩①② , 由①得:x >2+m , 由②得:x <2m ﹣1, ∵不等式组无解, ∴2+m≥2m ﹣1, ∴m≤3, 故选C . 【题目点拨】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键. 5、A 【解题分析】 原式=−3+6=3, 故选A 6、A 【解题分析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【题目详解】∵3a 2+5a-1=0,∴3a 2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a 2+10a-9a 2+4=6a 2+10a+4=2(3a 2+5a )+4=6,故选A.【题目点拨】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.7、A【解题分析】根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.【题目详解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°−65°=115°,故选:A.【题目点拨】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.8、D【解题分析】A81的算术平方根;B、先算-6的平方,然后再求C、利用完全平方公式计算即可;D、1216.【题目详解】A9,故A错误;B、,故B错误;C、2,故C错误;D、1216=4,故D正确.故选D.【题目点拨】本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.9、B【解题分析】按照解一元一次不等式的步骤求解即可.【题目详解】去括号,得2+2x>1+3x;移项合并同类项,得x<1,所以选B.【题目点拨】数形结合思想是初中常用的方法之一.10、D【解题分析】解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,故选D.【题目点拨】本题考查几何体的三视图.二、填空题(共7小题,每小题3分,满分21分)11、>【解题分析】分析:根据正比例函数的图象经过点M(﹣1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题.详解:设该正比例函数的解析式为y=kx,则1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案为>.点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答.12、15°【解题分析】分析:根据等腰三角形的性质得出∠ABC的度数,根据中垂线的性质得出∠ABD的度数,最后求出∠DBC的度数.详解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵MN为AB的中垂线,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.413、16或1【解题分析】题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【题目详解】(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是1;故它的周长是16或1.故答案为:16或1.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14、2【解题分析】设矩形OABC 中点B 的坐标为()a b ,,∵点E 、F 是AB 、BC 的中点,∴点E 、F 的坐标分别为:1(?)2a b ,、1()2a b ,, ∵点E 、F 都在反比例函数2y x=的图象上, ∴S △OCF =1122a b ⨯⋅=1212⨯=,S △OAE =1212⨯=, ∴S 矩形OABC =4ab =,∴S 四边形OEBF = S 矩形OABC - S △OAE -S △OCF =4112--=.即四边形OEBF 的面积为2. 点睛:反比例函数k y x =中“k ”的几何意义为:若点P 是反比例函数k y x=图象上的一点,连接坐标原点O 和点P ,过点P 向坐标轴作垂线段,垂足为点D ,则S △OPD =12k . 15、3x (x +3)(x ﹣3).【解题分析】首先提取公因式3x ,再进一步运用平方差公式进行因式分解.【题目详解】3x 3﹣27x=3x (x 2﹣9)=3x (x +3)(x ﹣3).【题目点拨】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、1 2【解题分析】分析:连接BC,则∠BCE=90°,由余弦的定义求解. 详解:连接BC,根据圆周角定理得,∠BCE=90°,所以cos∠BEC=2142 CEBE==.故答案为1 2 .点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.17、①②③【解题分析】试题分析:根据三角形内角和定理求出∠ABC、∠C的度数,根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=36°,∴∠EBC=36°,∴∠EBA=∠EBC,∴BE平分∠ABC,①正确;∠BEC=∠EBA+∠A=72°,∴∠BEC=∠C,∴BE=BC,∴AE=BE=BC,②正确;△BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,③正确;∵BE>EC,AE=BE,∴AE>EC,∴点E不是AC的中点,④错误,故答案为①②③.考点:线段垂直平分线的性质;等腰三角形的判定与性质.三、解答题(共7小题,满分69分)18、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC,此时点P的坐标为(32,154).【解题分析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【题目详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+1,∴点C的坐标为(0,1),点P的坐标为(2,1),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(1,0)、C(0,1)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+1,∵点P的坐标为(t,﹣t2+2t+1),∴点F的坐标为(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(1,0),点C的坐标为(0,1),∴线段BC=2232OB OC+=,∴P点到直线BC的距离的最大值为272928832⨯=,此时点P的坐标为(32,154).【题目点拨】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P 点到直线BC 的距离的最大值.19、(1)反比例函数解析式为y=8x ;(2)C 点坐标为(2,1) 【解题分析】(1)由S △BOD =1可得BD 的长,从而可得D 的坐标,然后代入反比例函数解析式可求得k ,从而得解析式为y=8x; (2)由已知可确定A 点坐标,再由待定系数法求出直线AB 的解析式为y=2x ,然后解方程组82y x y x⎧=⎪⎨⎪=⎩即可得到C 点坐标.【题目详解】(1)∵∠ABO=90°,OB=1,S △BOD =1,∴OB×BD=1,解得BD=2,∴D (1,2)将D (1,2)代入y=kx ,得2=4k,∴k=8,∴反比例函数解析式为y=8x ;(2)∵∠ABO=90°,OB=1,AB=8,∴A 点坐标为(1,8),设直线OA 的解析式为y=kx ,把A (1,8)代入得1k=8,解得k=2,∴直线AB 的解析式为y=2x ,解方程组82y x y x ⎧=⎪⎨⎪=⎩得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩,∴C 点坐标为(2,1).20、(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.【解题分析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【题目详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:40300×360°=48°.(4)∵1800×80300=1(名),∴1800名学生中估计最喜爱科普类书籍的学生人数为1.21、(1),;(2)1≤x<1.试题分析:利用配方法进行解方程;首先分别求出两个不等式的解,然后得出不等式组的解.试题解析:(1)-1x=3-1x+1=7=7 x-2=±解得:,(2)解不等式1,得x≥1 解不等式2,得x<1 ∴不等式组的解集是1≤x<1考点:一元二次方程的解法;不等式组.22、(1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解题分析】(1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.【题目详解】(1)依题意得:y=200+50×40010x-.化简得:y=-5x+1.(2)依题意有:∵300 52200450 xx≥⎧⎨-+≥⎩,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2内,∴当x=320时,w最大=3.即售价定为320元/台时,可获得最大利润为3元.【题目点拨】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.23、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人【解题分析】(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;(II)根据众数、中位数和平均数的定义计算可得;(III)用总人数乘以样本中5天、6天的百分比之和可得.解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案为150、14;(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为4+42=4天,平均数为118+221+363+334+275+156150⨯⨯⨯⨯⨯⨯=3.5天;(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.【题目点拨】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24、(1)20;(2)作图见试题解析;(3)12.【解题分析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【题目详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,.共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:62。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定西市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分) 3的倒数是()
A . 3
B . -3
C .
D .
2. (2分) (2016七下·蒙阴期中) 下列实数中,是无理数的为()
A . ﹣3.567
B . 0.101001
C .
D .
3. (2分)如图,AB//CD ,EF⊥AB于E , EF交CD于F ,已知∠1=63°,则∠2=()
A . 63°
B . 53°
C . 37°
D . 27°
4. (2分)下列运算正确的是()
A .
B .
C .
D .
5. (2分) (2017八下·青龙期末) 下列调查中,最适合采用普查方式的是()
A . 对我县青龙河流城水质情况的调查
B . 对乘坐飞机的旅客是否携带违禁物品的调查
C . 对一批节能灯管使用寿命的调查
D . 对全县八年级学生视力情况的调查
6. (2分) (2016七上·连州期末) 如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是()
A .
B .
C .
D .
7. (2分)(2019·海珠模拟) 下列图形中是中心对称图形的是()
A .
B .
C .
D .
8. (2分)(2020·新乡模拟) 若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()
A . y=2(x+5)2﹣1
B . y=2(x+5)2+1
C . y=2(x﹣1)2+3
D . y=2(x+1)2﹣3
9. (2分) (2019八上·梅里斯达斡尔族月考) 如图,在△ABC,∠C=90°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于 EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D,若CD=6, AB=15则△ABD的面积为()
A . 45
B . 30
C . 15
D . 60
10. (2分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()
A . 76
B . 72
C . 68
D . 52
二、填空题 (共6题;共6分)
11. (1分) (2018七上·翁牛特旗期末) 光年是天文学中的距离单位,1光年大约是95000亿 km,这个数据用科学记数法表示是________km
12. (1分) (2019七上·潮安期末) 方程的解是________.
13. (1分)若关于x的不等式组有解,且关于x的方程有非负整数解,则符合条件的所有整数k的积为________.
14. (1分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是________ .
15. (1分) (2020九下·哈尔滨月考) 如图,在菱形ABCD中,BD为对角线,点N为BC边上一点,连接AN,交BD于点L,点R为CD边上一点,连接AR、LR,若tan∠BLN=2,∠ARL=45°,AR=10 ,CR=10,则AL=________ 。
16. (1分) (2018九上·深圳期末) 已知,在Rt△ABC中,∠ABC=90°, BD平分∠ ABC,∠CAD=45, AC=4,点E是线段BD的中点,则CE的最小值为________.
三、解答题 (共9题;共115分)
17. (5分)(2017·平川模拟) 先化简,再求值:(﹣),其中x= ﹣2.
18. (12分)课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果绘制了如下尚不完整的统计图表.
等
人数/名
级
优秀 a
良好 b
及格 150
不及格 50
解答下列问题:
(1) a=________ ,b=________
(2)补全条形统计图
(3)试估计这20000名九年级男生中50米跑达到良好和优秀等级的总人数.
19. (12分)(2017·抚顺) 某商场对某种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n分别是x(1≤x≤30,且x为整数)的一次函数,销售情况如表:
销售第x天第1天第2天第3天第4天 (30)
销售单价m(元/件)49484746 (20)
日销售量n(件)45505560 (190)
(1)观察表中数据,分别直接写出m与x,n与x的函数关系式:________,________;
(2)求商场销售该商品第几天时该商品的日销售额恰好为3600元?
(3)销售商品的第15天为儿童节,请问:在儿童节前(不包括儿童节当天)销售该商品第几天时该商品的日销售额最多?商场决定将这天该商品的日销售额捐献给儿童福利院,试求出商场可捐款多少元?
20. (15分)(2019·丹阳模拟) 如图,在平面直角坐标系中,函数(,是常数)的图像经过A(2,6),B(m,n),其中m>2.过点A作轴垂线,垂足为C,过点作轴垂线,垂足为,AC与BD交于点E,连结AD,,CB.
(1)若的面积为3,求m的值和直线的解析式;
(2)求证:;
(3)若AD//BC ,求点B的坐标 .
21. (15分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.
(1)求一次函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出y1>y2时x的取值范围.
22. (11分)(2020·盐城模拟) 已知△ABC是边长为的等边三角形.将△ABC绕点A逆时针旋转角θ(0°
<θ<180°),得到△ADE,BD和EC所在直线相交于点O.
(1)如图a,当θ=20°时,判断△ABD与△ACE是否全等?并说明理由;
(2)当△ABC旋转到如图b所在位置时(60°<θ<120°),求∠BOE的度数;
(3)在θ从60°到120°的旋转过程中,点O运动的轨迹长为________.
23. (15分)(2017·大石桥模拟) 某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,(即出厂价=基础价+浮动价)其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长x成正比例,在营销过程中得到了表格中的数据,已知出厂一张边长为40cm 的薄板,获得利润是26元.(利润=出厂价﹣成本价)
薄板的边长(cm)2030
出厂价(元/张)5070
(1)求一张薄板的出厂价y与边长x之间满足的函数关系式;
(2)求一张薄板的利润p与边长x之间的函数关系式;
(3)若一张薄板的利润是34元,且成本最低,此时薄板的边长为多少?当薄板的边长为多少时,所获利润最大,求出这个最大值.
24. (10分)(2020·宿迁) 如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.
(1)请判断直线AC是否是⊙O的切线,并说明理由;
(2)若CD=2,CA=4,求弦AB的长.
25. (20分)(2017·天水) 如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x 轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)求A、B两点的坐标及抛物线的对称轴;
(2)求直线l的函数表达式(其中k、b用含a的式子表示);
(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;
(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共9题;共115分)
17-1、
18-1、
18-2、
18-3、19-1、
19-2、19-3、
20-1、20-2、
20-3、21-1、
21-2、21-3、
22-1、
22-2、22-3、
23-1、23-2、23-3、
24-1、24-2、
25-1、
25-2、
25-3、。