初一二元一次方程组的解法

合集下载

初一 二元一次方程组及其解法(学生版)

初一 二元一次方程组及其解法(学生版)

3.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如 也是二元一次方程组.4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个.题型1:二元一次方程【例1-1】已知下列方程,其中是二元一次方程的有________. (1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6);(7);(8);(9);(10).举一反三:下列各方程中,是二元一次方程的是( ) A .=y+5x B .3x+2y=2x+2y C .x=y 2+1 D .题型2:二元一次方程的解【例2-1】下列数组中,是二元一次方程x+y=7的解的是( ) A .B .C .D .【例2-2】已知二元一次方程. ⎩⎨⎧=-=+52013y x x x ay b =⎧⎨=⎩2526x y x y +=⎧⎨+=⎩1222x y x y +=-⎧⎨+=-⎩102x +=251x y+=132x y +=280x y -=462x y +=3142x y +=(1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ; (3)用适当的数填空,使是方程的解.举一反三:1、若方程的一个解是,则a= .2、已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .题型3:二元一次方程组及方程组的解【例3-1】下列各方程组中,属于二元一次方程组的是( ) A .B .C .D .【例3-2】判断下列各组数是否是二元一次方程组的解.(1) (2)举一反三:2_______x y =-⎧⎨=⎩24ax y -=21x y =⎧⎨=⎩4221x y x y +=⎧⎨+=-⎩①②35x y =⎧⎨=-⎩21x y =-⎧⎨=⎩1、写出解为的二元一次方程组.知识点二:代入消元法1、消元法消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.消元的基本思路:未知数由多变少.消元的基本方法:把二元一次方程组转化为一元一次方程. 2、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便; ③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.题型1:用代入法解二元一次方程组 【例1-1】用代入法解方程组:的解为 .12x y =⎧⎨=-⎩【例1-2】用代入法解二元一次方程组:举一反三:1、若方程y =1-x 的解也是方程3x +2y =5的解,则x =____,y =____.2、与方程组有完全相同的解的是( )A .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .3、若∣x-2y +1∣+(x +y -5)2=0,则 x= , y= .题型2:由解确定方程组中的相关量 【例2-1】已知关于x ,y 的二元一次方程组的解互为相反数,求k 的值.【例2-1】若方程组的解为,试求的值.举一反三:524050x y x y --=⎧⎨+-=⎩①②2020x y x y +-=⎧⎨+=⎩22(2)0x y x y +-++=ax+by=11(5-a)x-2by+14=0⎧⎨⎩14x y =⎧⎨=⎩a b 、1、已知是二元一次方程组的解,则m﹣n的值是.知识点三:加减消元法1、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.2、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.题型1:加减法解二元一次方程组【例1-1】直接加减:已知21xy=⎧⎨=⎩是二元一次方程组21mx nynx my+=⎧⎨-=⎩的解,则3m n+的值为.【例1-2】先变系数后加减:2521 4323x yx y-=-⎧⎨+=⎩①②【例1-3】建立新方程组后巧加减:解方程组2511 524x yx y+=⎧⎨+=-⎩①②【例1-4】先化简再加减:解方程组0.10.3 1.3123x yx y+=⎧⎪⎨-=⎪⎩①②举一反三:1、已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.题型2:用适当方法解二元一次方程组【例2-1】(1)323112x yx y-=⎧⎨=-⎩(2)5(1)2(3)2(1)3(3)m nm n-=+⎧⎨+=-⎩举一反三:1、用两种方法解方程组29(1) 321(2) x yx y+=⎧⎨-=-⎩三、课堂练习一、选择题1.下列方程组是二元一次方程组的是()A.53x yz x+=⎧⎨+=⎩B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩2. 是方程ax﹣y=3的解,则a的取值是()A.5 B.﹣5 C.2 D.13. 方程组233x yx y-=⎧⎨+=⎩的解是()A .12x y =⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .11x y =⎧⎨=⎩ D .23x y =⎧⎨=⎩4.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解5.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( ) A .4和6 B .6和4C .2和8D .8和﹣26.对于方程3x-2y-1=0,用含y 的代数式表示x ,应是( ). A .1(31)2y x =- B .312x y += C .1(21)3x y =- D .213y x += 7.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解.则a-b 的值为( ).A .-1B .1C .2D .38.已知2|21|(27)0x y x y --++-=,则3x y -的值是( ) A .3 B .1 C .﹣6 D .8 9.用加减消元法解二元一次方程组231543x y x y +=⎧⎨-=⎩①②,下列步骤可以消去未知数x 的是( )A .①×4+②×3B .①×2-②×5C .①×5+②×2D .①×5-②×2 10.解方程组①3759y x x y =-⎧⎨+=-⎩,②3512,215 6.x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法 二、填空题11.已知方程2x+y ﹣5=0用含y 的代数式表示x 为:x= .12.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==13.若(a ﹣3)x+y |a|﹣2=1是关于x 、y 的二元一次方程,则a 的值是 .14.解方程组523,61,x y x y +=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.15.若方程3x-13y =12的解也是x-3y =2的解,则x =________,y =_______. 16.方程组的解是 .17.用加减法解方程组3634x y x y -=⎧⎨+=-⎩①②时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________. 18.若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 19.已知关于x ,y 的方程组271x y x y +=⎧⎨-=-⎩满足3x y +=,则k = .三、解答题20.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组. (1)甲数的13比乙数的2倍少7;(2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的1.4倍,5件皮装比3件时装贵700元.21.用代入法解下列方程组:一、选择题1.下列各方程中,是二元一次方程的是()A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=12. 关于,m n的两个方程23321m n m n-=+=与的公共解是()A.3mn=⎧⎨=-⎩B.11mn=⎧⎨=-⎩C.12mn=⎧⎪⎨=⎪⎩D.122mn⎧=⎪⎨⎪=-⎩3.利用代入消元法解方程组,下列做法正确的是()A.由①得x= B.由①得y=C.由②得y= D.由②得y=4.已知x+3y=0,则3232y xy x+-的值为().A.13B.13- C.3 D.-35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为( ) .A. B. C. D.6.用加减消元法解二元一次方程组时,必须使这两个方程中()A.某个未知数的系数是1 B.同一个未知数的系数相等C.同一个未知数的系数互为相反数 D.某一个未知数的系数的绝对值相等7.方程组231498x yx y+=-⎧⎨-=⎩的解是()A.13xy=⎧⎪⎨=-⎪⎩B.2xy=⎧⎨=⎩C.1223xy⎧=⎪⎪⎨⎪=-⎪⎩D.1223xy⎧=-⎪⎪⎨⎪=-⎪⎩8.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣二、填空题9.若是二元一次方程的一个解,则的值是__________.10.已知,且,则___________.11.若方程ax-2y=4的一个解是21xy=⎧⎨=⎩,则a的值是 .12.二元一次方程组的解是.13.方程组525x yx y=+⎧⎨-=⎩的解满足方程x+y-a=0,那么a的值是________.14.已知二元一次方程组2728x yx y+=⎧⎨+=⎩,则x-y=________,x+y=________.三、解答题15.若方程组是二元一次方程组,求a的值.16.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.。

七年级数学下册 10.2 二元一次方程的解法 加减消元法 青岛版

七年级数学下册 10.2 二元一次方程的解法 加减消元法 青岛版

x y
3 2
参考小丽的思路,怎样解 下面的二元一次方程组呢?
2x 5y 7① 2x 3 y ②1
分析:
观察方程组中的两个方程,未知数x的系数
相等,都是2.把这两个方程两边分别相减, 就可以消去未知数x,同样得到一个一元一
次方程.
2x 5y 7 ① 2x 3y 1 ②
解:把 ②-①得:8y=-8 y=-1
主要步骤:
变形
用一个未知数的代数式
表示另一个未知数
代入
消去一个元
求解 分别求出两个未知数的值
写解
写出方程组的解
怎样解下面的二元一次 方程组呢?
3x 5y 21 ① 2x 5y -11 ②
5 y和 5y
互为相反数…… 按照小丽的思路,你能消去 一个未知数吗?
3x 5y 21 ① 小丽 2x 5y -11 ②
解方程组
3x 4y 5
3x2y2.5 11

3x 2y 5 ②
第八章 二元一次方程组
8.2 消元习题课
分析:乍一看此题很麻烦,但当我们 仔细观察两个方程中同一未知数的系数 关系时,很容易看到,①与②中含有x项 的系数都是3,所以可以直接把②代入① 消去x.
解:。 把②代入①,得
2 y 5 y 5 2 y 5 2 y 2 .5
依据是等式性质.
一.填空题:
x+3y=17
1.已知方程组
两个方程
2x-3y=6
只要两边 分别相加 就可以消去未知数 y
25x-7y=16
2.已知方程组
两个方程
25x+6y=10
只要两边分别相减就可以消去未知数 x
应用新知
问题 如何用加减消元法解下列二元一次方程组?

初一数学二元一次方程组的解法与应用

初一数学二元一次方程组的解法与应用

初一数学二元一次方程组的解法与应用二元一次方程组是初中数学中的重要内容,它涉及到两个未知数的方程组。

在本文中,我们将介绍二元一次方程组的解法以及它在实际生活中的应用。

一、解法1. 消元法消元法是求解二元一次方程组最常用的方法之一。

对于形如:a₁x + b₁y = c₁a₂x + b₂y = c₂的方程组,首先选择其中一个方程,通过系数的适当倍乘,使得其中一个未知数的系数相等。

然后将两个方程相减,消去该未知数,得到一个只含有另一个未知数的一元一次方程。

求解该方程后,代入到原方程得出另一未知数的值。

2. 代入法代入法是另一种常用的解二元一次方程组的方法。

首先选择其中一个方程,解出其中一个未知数,然后将该值代入到另一个方程中,求解得到另一个未知数的值。

二、应用1. 几何问题二元一次方程组可以应用于几何问题中。

例如,已知两条直线的方程,求解它们的交点坐标。

将两条直线的方程组成二元一次方程组,通过解方程组可以求得它们的交点坐标。

2. 商业问题二元一次方程组在商业问题中也有广泛的应用。

例如,某公司生产两种产品,已知这两种产品的生产成本和售价,求解生产和销售这两种产品的数量,以最大化利润。

通过建立二元一次方程组,并求解方程组可以得到最优解。

3. 等比数列问题等比数列问题中常常需要解二元一次方程组。

例如,已知等比数列的第一项和公比,求解前n项的和。

通过建立关于等比数列的二元一次方程组,并求解可以得到所需的结果。

总结:二元一次方程组的解法有消元法和代入法,根据问题的要求可以选择不同的方法进行求解。

而二元一次方程组在几何、商业和数列等领域都有广泛的应用,通过解方程组可以求解实际问题,提高解决问题的能力。

以上是关于初一数学二元一次方程组的解法与应用的内容论述。

通过消元法和代入法,我们可以解决二元一次方程组,并且这些方法在几何、商业和数列等领域都有广泛的应用。

希望本文对您理解和掌握二元一次方程组有所帮助。

初中数学知识点二元一次方程的解法

初中数学知识点二元一次方程的解法

初中数学知识点二元一次方程的解法二元一次方程是初中数学中的重要知识点之一,解二元一次方程的方法有多种。

本文将介绍三种常用的解法,分别是图像法、代入法和消元法。

1. 图像法图像法是一种直观的解方程方法,适用于解二元一次方程组。

我们可以将二元一次方程组的解看作是两个直线的交点坐标。

例如,考虑下面的方程组:2x + 3y = 73x - y = 5我们可以将这两个方程转化为两个直线的方程,绘制出它们的图像。

通过观察两个直线的交点,我们可以得到方程组的解。

2. 代入法代入法是一种常用的解二元一次方程的方法。

该方法适用于含有一个未知数的方程,可以将一个方程的解代入到另一个方程中,得到另一个只含有一个未知数的方程,然后解得该未知数的值,进而求得另一个未知数的值。

例如,考虑下面的方程组:2x + y = 53x - 2y = 8可以解得其中一个未知数,例如令 y = 5 - 2x,将其代入到第二个方程中,则得到3x - 2(5 - 2x) = 8,整理后得到7x = 18,解得 x = 18/7。

然后将 x 的值代入到第一个方程中,得到2(18/7) + y = 5,整理后得到y = 11/7,解得 y = 11/7。

3. 消元法消元法是一种通过加减运算来求解二元一次方程组的方法。

通过合理地调整两个方程的系数,使得其中一个未知数的系数相等或相反,然后相加或相减得到一个只含有一个未知数的方程,进而解得这个未知数的值,再带入另一个方程求得另一个未知数的值。

例如,考虑下面的方程组:2x + 3y = 73x - 2y = 8可以通过调整两个方程的系数,使得其中一个未知数的系数相等或相反。

这里我们可以将第一个方程的系数调整为6,将第二个方程的系数调整为-6,即得到:6(2x + 3y) = 6(7)-6(3x - 2y) = -6(8)整理后得到:12x + 18y = 42-18x + 12y = -48将两个方程相加,得到:-6x + 30y = -6解方程-6x + 30y = -6,可以得到 x 的值为 1。

七年级数学二元一次方程组的解法

七年级数学二元一次方程组的解法
(4)把求得的未知数的值代入变形后的方程,求出另一个未知数的值。
注意:写出方程组的解时,必须用大括号括在一起。
【例题精讲一】
例1.1、用代入消元法解方程组:
(1) (2)
【课堂练习】
1、用代入消元法解方程组:
(1) (2)
知识点二 用加减消元法解二元一次方程组
【知识梳理】
通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。
(3)解这个一元一次方程,求出一个未知数的值;
(4)把求得的未知数的值代入原方程组中比较简单的一个方程,求出另一个未知数的值;
(5)写出方程组的解。
【例题精讲二】
例2.1、用加减消元法解方程组:
(1) (2)
【课堂练习】
1、用加减消元法解方程组:
(1)
【例题精讲三】换元法与整体思想的运用
例3.1、解方程组
2、解方程组:(1) (2)
【课堂练习】
1、若 ,求 的值,
2、解方程组:
3、解关于x、y的二元一次方程组:
【例题精讲四】由方程组的解求参数的值
例4.1、已知关于x、y的方程组 与 有相同的解,求a、b的值。
2、甲、乙两人解方程组 ,甲正确地解得 ,乙因为把c看错,误认为d,解得 求a、b、c、d。
2、已知 是二元一次方程组 的解,则a-b的值为()
A.1B.-1C.2D.3
3、已知一等腰三角形的两边长x、y满足方程组 则此等腰三角形的周长为()
A.5B.4C.3D.5或4
4、已知方程mx十ny=5有两对解分别是 和 则 ,n=。
5、若 则 。
6、若方程组 的解满足方程3x-5y-38=0.那么a的值是()

七年级数学二元一次方程组解法教案(优秀6篇)

七年级数学二元一次方程组解法教案(优秀6篇)

七年级数学二元一次方程组解法教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学二元一次方程组解法教案(优秀6篇)《二元一次方程与一次函数》教学设计这次漂亮的本店铺为亲带来了6篇《七年级数学二元一次方程组解法教案》,希望能够满足亲的需求。

初中七年级数学二元一次方程的解法

初中七年级数学二元一次方程的解法

二元一次方程的解法•二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

1.消元解法“消元”是解二元一次方程组的基本思路。

所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。

这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。

代入消元法(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.。

这种解方程组的方法叫做代入消元法,简称代入法。

(2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

2.加减消元法(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.(2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

七年级下-二元一次方程组的定义及解法

七年级下-二元一次方程组的定义及解法

二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。

所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。

注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。

例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。

注意三条:①方程组中有且只有两个未知数。

②方程组中含有未知数的项的次数为1。

③方程组中每个方程均为整式方程。

注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。

例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。

2.未知数的次数为1。

注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。

例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。

'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。

初中数学:二元一次方程组的几种简便解法

初中数学:二元一次方程组的几种简便解法

初中数学:二元一次方程组的几种简便解法1、整体代入法整体代入法是用含未知数的表达式代入方程进行消元.有些方程组并不一定能直接应用这种解法,不过,我们可以创造条件进行整体代入.解析:这道题中的系数较繁,按常规方法去解比较麻烦.我们可以先将②式有目的地进行变形,再将①式中的看成一个整体代入求解.由②式可得.化简,得.③将①代入③,得.解得,代入①可得.故方程组的解为2、换元法换元法就是设出一个辅助未知数,分别用含有这个未知数的代数式表示原方程组中未知数的值,把二元一次方程组转化为一元一次方程组进行求解.换元有一定的技巧性.有代数式整体换元,还有设比值换元等多种方法,下面举例说明.解析:我们可以分别尝试整体换元和设比值换元.方法1:设,则.代入②,得.解得.从而可得方程组的解为方法2:设.由①得,所以.③由②得.④③÷④,得.解得.从而可得3、直接加减法直接加减法有别于课本中的加减消元法,它通过将方程组中的方程相加减后把较繁的题目转化得相对简单.解析:若用一般方法去解这个方程组,其复杂程度可想而知,我们采用直接加减法.①+②,得,即.③①-②,得.④由③④可得4、消常数项法解析:可将两式消去常数项,直接得到与的关系式,而后代入消元.①-②,得,即.将代入②,得,即.从而可得5、相乘保留法解析:去分母时,如果把两数相乘得出结果,不仅数值变大,而且给下面的解题过程带来麻烦,所以有时我们暂时保留相乘的形式.由①,得.③由②,得.④④-③,得.从而可得6、科学记数法当方程组中出现比较大的数字时,可用科学记数法简写.例6、解方程组解析:这个数比较大,可用科学记数法写成.由②,可得.③将①代入③,得.从而可得7、系数化整法若方程组中含有小数系数,一般要将小数系数化为整数,便于运算.解析:利用等式的性质,把①式变形为.③利用分子、分母相除,把②式变形为.④③-④,得.从而可得8、对称法例8、解方程组解析:这个方程组是对称方程组,其特点是把某一个方程中的互换即可得到另一个方程.由对称性可知,则可得解得9、拆数法例9、解方程组解析:我们可以有目的地将常数项进行变形,通过观察得出方程组的解.原方程组可变形为从而可得。

解2元一次方程组的方法

解2元一次方程组的方法

对于二元一次方程组的解法,我们用的方法是消元思想。

也就是把两个未知数转换为一个未知数,这也是我们初中数学中重要的思想。

知识点将未知数的个数由多化少、逐一解决的思想,叫做消元思想.代入消元法和加减消元法是二元一次方程组的两种基本解法,它们都是通过消元将方程组转化为一元一次方程,再求解.代入消元法1. 把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.2. 用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用另一个未知数如x的代数式表示出来,即写成y=mx+n的形式;②代入消元:把y=mx+n代入另一个方程中,消去y,得到一个关于x的一元一次方程;③解这个一元一次方程,求出x的值;④回代求解: 把求得的x的值代入y=mx+n中求出y的值,从而得出方程组的解.⑤把这个方程组的解写成{x=ay=b的形式.例: 解方程组①②{x−y=2 ① 2x+3y=9 ②解: 由①得y=x−2③把③代入②得2x+3(x−2)=9解得x=3把x=3代入③得y=1所以方程组的解是{x=3y=1总结:在使用代入消元法时,我们需要把握的一点就是当未知数的系数出现±1时,用代入消元法。

加减消元法1. 当二元一次方程组的两个方程中同一未知数的系数互为相反数或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.2. 用加减法解二元一次方程组的一般步骤:①变换系数: 把一个方程或者两个方程的两边都乘适当的数, 使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元: 把两个方程的两边分别相加或相减, 消去一个未知数, 得到一个一元一次方程③解这个一元一次方程, 求得一个未知数的值;④回代求解: 将求出的未知数的值代入原方程组的任一方程中, 求出另一个未知数的值;⑤把这个方程组的解写成{x=ay=b的形式.例:解方程组①②{3x−2y=1 ① 2x+y=3 ②解:②×2 得4x+2y=6③①+③得7x=7解得x=1把x=1代入①得3−2y=1即y=1所以方程组的解是{x=1y=1总结:(1)加减消元法是万能的,所有二元一次方程组都可以使用加减消元法。

七年级数学—二元一次方程组的解法

七年级数学—二元一次方程组的解法

根据市场调查,某种消毒液的大瓶装 (500g)和小瓶装(250g),两种产品的销 2:5 售数量(按瓶计算)的比为 某厂每天 生产这种消毒液22.5吨,这些消毒液应该分 装大、小瓶两种产品各多少瓶?
解:设这些消毒液应该分装x大瓶、y小瓶。 ① 5 x 2 y 根据题意可 ② 列方程组: 500 x 250 y 22500000 5 由 ① 得: y x ③ 2 5 500 x 250 x 22500000 把 ③ 代入 ② 得: 2 x 20000 解得:x=20000
x+4y=13 x=13 - 4y
② ③
把y=2代入① 或②可以吗?
把③代入① ,得 2(13 - 4y)+3y=16 26 –8y +3y =16 -5y= -10 y=2 把y=2代入③ ,得 x=5 ∴原方程组的解是 x=5 y=2
把求出的解 代入原方程 组,可以知 道你解得对 不对。
例2 学以致用
七年级数学下册(人教版)
8.2消元—二元一次方程组的解法
(第1课时)
不如好之者,
好之者不如乐之者。
本节学习目标 :
1、会用代入法解二元一次方程组。 2、初步体会解二元一次方程组的基本思 想——“消元”。 3、通过对方程中未知数特点的观察和分析, 明确解二元一次方程组的主要思路是 “消元”,从而促成未知向已知的转化, 培养观察能力和体会化归的思想。
y 22 x 由①我们可以得到:
再将②中的y换为 22 x 就得到了③ ③是一元一次方程,相信大家都会解。那么 根据上面的提示,你会解这个方程组吗?
比较一下上面的 方程组与方程有 什么关系?
二元一次方程组中有两个未知数, 如果消去其中一个未知数,将二元一 次方程组转化为我们熟悉的一元一次 方程,我们就可以先解出一个未知数, 然后再设法求另一未知数.这种将未知 数的个数由多化少、逐一解决的思想, 叫做消元思想.

3.3(2)二元一次方程组的解法(加减消元)及典型例题

3.3(2)二元一次方程组的解法(加减消元)及典型例题
ቤተ መጻሕፍቲ ባይዱ
m = 1 +2n
1 2 2 5
所以原方程组的解:
m =5 n=2
即m 的值是5,n 的值是4.
7、如果∣y + 3x - 2∣+∣5x + 2y -2∣= 0,求 x 、y 的值. 解:由题意知, y + 3x – 2 = 0 ① 5x + 2y – 2 = 0 ② 由①得:y = 2 – 3x ③ 把③代入② 得: 5x + 2(2 – 3x)- 2 = 0 5x + 4 – 6x – 2 = 0 5x – 6x = 2 - 4 -x = -2 即x 的值是2,y 的值是-4. 把x = 2 代入③,得: y= 2 - 3×2 y= -4 所以原方程组的解: ∴ x=2 y = -4
1 3y 2 3y 6
把(3)代人(2)得
5
解法二:由(1)得:3 y=1-2x (3) 把(3)代人(2)得5x-(1-2x)=6 解法三:(1)+(2)得 : 7x=7 x=1
y 1 3
把x=1代入(1)得 2+3y=1

x 1 1 y 3
试 一 试 , 有 谁 能 用 三 种 方 法 解 ?
有相
这样可以通过第一个方程组求出x和y的值,再将 这两个值代入第二个方程,求关于a和b的二元 一次方程组。
9、 关于x、y的方程组 解满足3x+2y=19,求原方程组的解。
解:

分别把m=1代入到 x=7m、y=-m中, 得: x=7 ,y=-1 ∴原方程组的解为:
①+②,得: 2x=14m x=7m
6、若方程5x 求m 、n 的值.
m-2n+4y 3n-m =

七年级数学二元一次方程组解法

七年级数学二元一次方程组解法
之间的函数关系式;
(2)若要使车间每天所获利润不低于24000元,你认
为至少要派多少名工人去制造乙种零件才合适?
课本P34 习题11.8 1,2
; 天臣娱乐,天臣娱乐官网,天臣娱乐开户,天臣娱乐注册 vgd69wjw
是好奇这是什么地方,心想会不会是还在做梦,于是捏了自己一把,发现是有痛觉的,但我又担心自己像盗梦空间那样,做梦 做得有真实的感受,于是开始抱着头摇来摇去的。小男孩见我不太正常,于是大喊着“玉儿姐姐”什么的。刚过没多久,门外 又进来一个人,是个女子,但在我眼中看来,年纪撑死就是个高中生。那女生穿着确实简朴,或者我从这木屋就该猜到,他们 并不是有钱人。我稍微从不可思议的穿越中(尽管我不确定是不是穿越)缓过一些神来,才开始有心思打量了一下这一男一女。 这小正太确实长得好可爱,又不缺乏秀气,长大之后肯定是高富帅;这女生长相略显平凡,但是也透漏出一种秀气,我想,大 概是她现在是素颜,没有任何打扮的模样吧。小男孩的衣服稍微比较鲜艳一点,也显得他比较活泼。他见他的姐姐来了,就跑 过去冲着她的耳朵说了些什么。这女生听后,把目光转向我,开口说道:“公子,身体可好了?”我这么一听,倒是听到了一 口流利的普通话,这让我有点小吃惊。这是,我略显慌张,抚了抚自己的喉咙,张口说道:“应该七七八八了吧?”“应该七 七八八?那是何解?”女子一脸疑惑的看着我。我又吃了一小惊,忙改口道:“就是说,我的身体好很多了。”“是这样啊。” 女子像完成了什么事情一样,说完舒了一口气。我一边纳闷这突如其来的改变,一边组织好想问的问题去问这女生。由于知道 我们语言并没什么阻碍,能正常交流,再加上我知道我的谈吐应该更文绉绉一点才会让她听懂,于是我便问道:“姑娘,能问 你几个问题吗?”“嗯。”我索性翻下床来,站到她身旁问起来,“你知道这是哪吗?这是什么年代?这是由皇帝来统治的 吗?”蓦地,又觉得自己问出一连串好夸张的问题,于是又感觉自己有点小失礼了。这时,这女生脸显现一片通红,我这才有 意识到,我刚才问问题的时候靠得她太近了。那也不能怪我,向来问别人问题,就应该靠近点好让对方挺清楚不是吗?“这是 南国,年代是吕王八年。”女子羞涩地回答道。我见状,先有礼貌的向这女生道个歉,说道:“姑娘,刚才失礼了,我只是还 没习惯说话却不靠近别人说啊。”话一讲完,又发现自己说了一些莫名其妙的话,这使我觉得,用这种方式谈吐,真突出一个 烦字啊。女子蓦地转过脸去,脸部抽搐了几下,想必是在偷笑吧。那也难怪,这样的言行是挺让这时代的人感到奇怪搞笑的 第001章 天不收地不留“我的妻,你在哪里?“恍惚间,一个磁性的男声不断在耳畔重复着如此

初一数学二元一次方程组解法

初一数学二元一次方程组解法

初一数学二元一次方程组解法
一元一次方程是指方程中只有一个未知数的一次方程,而二元一次方程是指方程中有两个未知数的一次方程。

解二元一次方程的方法有三种:代入法、消元法和 Cramer 法则。

1. 代入法:
通过消元将其中一个方程变成只有一个未知数的一次方程,然后将该未知数的解代入另一个方程中求解。

2. 消元法:
通过对两个方程进行适当的加、减、乘、除运算,使得一个未知数的系数相等,然后进行消元,最后求解一个未知数,再带回原方程中求出另一个未知数。

3. Cramer 法则:
针对二元一次方程组,可以利用行列式的性质,通过计算行列式的值来求解未知数。

无论使用哪种方法,我们都需要遵循以下步骤来解决二元一次方程组:
1. 将方程组写出来,明确其中的未知数和系数。

2. 选择一种解法方法(代入法、消元法或 Cramer 法则)。

3. 根据选定的方法,进行相应的运算和代入,得出未知数的解。

4. 将解代入原方程组中验证,确保解是正确的。

需要注意的是,在使用代入法或消元法时,我们要先判断方程组是否有解、无解或有无穷多解。

如果方程组无解或有无穷多解,则应当相应地说明。

希望以上解法能够帮助你解决初一数学中的二元一次方程组问题。

初一数学二元一次方程组的解法课件

初一数学二元一次方程组的解法课件

x y
3 2

5(3x+ 2y)
=8
2台大收割机和5台小收割机工作2小时 收割小麦3.6公顷;3台大收割机和2台小收 割机工作5小时收割小麦8公顷。1台大收割 机和1台小收割机工作1小时各收割小麦多 少公顷? 解: 设1台大收割机1小时收割小麦 x 公顷.
1台小收割机1小时收割小麦 y公顷 由题意得

2(2x+ 5y) = 3.6 5(3x + 2y) = 8
解: 设1台大收割机1小时收割小麦 x 公顷.
1台小收割机1小时收割小麦 y 公顷.
由题意得

2(2x+ 5y) = 3.6 5(3x +2y) = 8
解这个方程组得

x = 0.4 y = 0.2
答:1台大收割机1小时收割小麦0.4公顷. 1台小收割机1小时收割小麦0.2公顷.
x y
2 5
2
2 (2x+ 5y)
= 3.6
2台大收割机和5台小收割机工作2小时收 割小麦3.6公顷;3台大收割机和2台小收割 机工作5小时收割小麦8公顷。1台大收割机 和1台小收割机工作1小时各收割小麦多少 公顷? 解: 设1台大收割机1小时收割小麦 x 公顷.
1台小收割机1小时收割小麦 y 公顷. 效率 大收割机 小收割机 台数 时间 工作量
小结
1.加减消元法的含义是什么?
答:将方程组中两个方程的左、右两 边分别相加(或相减),消去其中的一个 未知数,将二元一次方程组转化为一元一 次方程的方法叫加减消元法,简称加减法
加减消元
二元一次方程组
一元一次方程
小结
2.加减消元法需满足的条件是什么?
答:相同的未知数中,有一个未知数的 系数互为相反数(采用加法),或者有一 个未知数的系数相等(采用减法),二者 必须满足一个。

七年级数学二元一次方程组解法教案优秀7篇

七年级数学二元一次方程组解法教案优秀7篇

七年级数学二元一次方程组解法教案优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学二元一次方程组解法教案优秀7篇作为一位杰出的老师,可能需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。

七年级下册数学二元一次方程组解法

七年级下册数学二元一次方程组解法

七年级下册数学二元一次方程组解法
解二元一次方程组的方法主要有消元法和代入法。

以下是七年级下册数学中解二元一次方程组的步骤:
假设有如下二元一次方程组:
1. 方程一:ax + by = c
2. 方程二:dx + ey = f
消元法解法步骤:
Step 1: 确定一个未知数的系数,使得两个方程中该未知数的系数在绝对值上相等。

Step 2: 将两个方程相加或相减,使得其中一个未知数的系数相消,从而得到一个只包含一个未知数的方程。

Step 3: 解得这个未知数的值。

Step 4: 将得到的未知数的值代入任意一个方程中,解得另一个未知数的值。

Step 5: 得到两个未知数的值,从而得到方程组的解。

代入法解法步骤:
Step 1: 将其中一个方程中的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程中。

Step 2: 解得一个未知数的值。

Step 3: 将得到的未知数的值代入任意一个方程中,解得另一个未知数的值。

Step 4: 得到两个未知数的值,从而得到方程组的解。

无论是消元法还是代入法,最后都需要验证求得的未知数的值是否符合原方程组,以确保解的正确性。

1/ 1。

七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版

七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版

初一数学教学设计消元——二元一次方程组的解法(代入消元法)教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。

讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。

知识目标通过探索,领会并总结解二元一次方程组的方法。

根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。

能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法。

情感目标体会解二元一次方程组中的“消元” 思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。

由此感受“划归”思想的广泛应用。

教学重点难点疑点及解决办法重点是用代入法解二元一次方程组。

难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。

疑点是如何“消元”,把“二元”转化为“一元”。

解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。

教学方法:引导发现法,谈话讨论法,练习法,尝试指导法课时安排: 1 课时。

教具学具准备:电脑或投影仪。

教学过程教 师 活动学生活动(一)创设情境,激趣导入在 8.1 中我们已经看到,直接设两个未知数( 设胜 x 场,负 yx y 22看图,分析已知条2x y40表示本章引言中场 ) ,可以列方程组件问题的数量关系。

如果只设一个未知数 ( 设胜 x 场 ) , 思考 这个问题也可以用一元一次方程________________________[1] 来解。

师生互动分析: [1]2x + (22 - x)=40 。

列式解答观察思考,同 上面的二元一次方程组和一元一次方程有什么关系?[2]桌交流 [2] 通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方 总结程。

初一二元一次方程组的解法

初一二元一次方程组的解法

二元一次方程组的解法考点名称:二元一次方程组的解法二元一次方程组的解:使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。

二元一次方程组解的情况:一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

求方程组的解的过程,叫做解方程组。

一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:1、有一组解。

如方程组:x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2、有无数组解。

如方程组:x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3、无解。

如方程组:x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。

可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:ax+by=cdx+ey=f当a/d≠b/e 时,该方程组有一组解。

当a/d=b/e=c/f 时,该方程组有无数组解。

当a/d=b/e≠c/f 时,该方程组无解。

二元一次方程组的解法:解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c>0)一、消元法1)代入消元法用代入消元法的一般步骤是:①选一个系数比较简单的方程进行变形,变成 y = ax +b 或x = ay + b的形式;②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;③解这个一元一次方程,求出 x 或 y 值;④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。

例:解方程组:x+y=5①{6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即 y=59/7把y=59/7代入③,得x=5-59/7即 x=-24/7∴ x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组的解法
考点名称:二元一次方程组的解法
二元一次方程组的解:
使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。

二元一次方程组解的情况:
一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

求方程组的解的过程,叫做解方程组。

一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:
1、有一组解。

如方程组:
x+y=5①
6x+13y=89②
x=-24/7
y=59/7 为方程组的解
2、有无数组解。

如方程组:
x+y=6①
2x+2y=12②
因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3、无解。

如方程组:
x+y=4①
2x+2y=10②,
因为方程②化简后为
x+y=5
这与方程①相矛盾,所以此类方程组无解。

可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:
ax+by=c
dx+ey=f
当a/d≠b/e 时,该方程组有一组解。

当a/d=b/e=c/f 时,该方程组有无数组解。

当a/d=b/e≠c/f 时,该方程组无解。

二元一次方程组的解法:
解方程的依据—等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c>0)
一、消元法
1)代入消元法
用代入消元法的一般步骤是:
①选一个系数比较简单的方程进行变形,变成 y = ax +b 或x = ay + b的形式;
②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
③解这个一元一次方程,求出 x 或 y 值;
④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;
⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。

例:解方程组:
x+y=5①

6x+13y=89②
解:由①得
x=5-y③
把③代入②,得
6(5-y)+13y=89
即 y=59/7
把y=59/7代入③,得
x=5-59/7
即 x=-24/7
∴ x=-24/7
y=59/7 为方程组的解
我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

2)加减消元法
用加减法消元的一般步骤为:
①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),
再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
③解这个一元一次方程;
④将求出的一元一次方程的解代入原方程组系数比较简单
的方程,求另一个未知数的值;
⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。

例:解方程组:
x+y=9①

x-y=5②
解:①+②
2x=14
即 x=7
把x=7代入①,得
7+y=9
解,得:y=2
∴ x=7
y=2 为方程组的解
利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解。

像这种解二元一次方程组的方法叫做加减消元法,简称加减法。

3)加减-代入混合使用的方法
例:解方程组:
13x+14y=41①

14x+13y=40 ②
解:②-①得
x-y=-1
x=y-1 ③
把③代入①得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入③得
x=1
所以:x=1,y=2
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。

二、换元法
例:解方程组:
(x+5)+(y-4)=8

(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。

三、设参数法
例:解方程组:
x:y=1:4

5x+6y=29
令x=t,y=4t
方程2可写为:5t+6×4t=29
29t=29
t=1
所以x=1,y=4
四、图像法
二元一次方程组还可以用做图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,
两条直线的交点坐标即二元一次方程组的解。

相关文档
最新文档