质粒提取简介问题分析
质粒DNA提取实验常见问题解答
质粒DNA提取实验常见问题解答1.加入solution.III,经10分钟离心后细菌沉淀怎么不结实,有的漂浮在液面,有的贴在离心管壁上,一摇晃即破碎脱落下来?细菌的用量太少,导致产生的沉淀主要是盐分的沉淀,因为缺少变性的细菌蛋白和细菌基因组DNA 的缠绕,沉淀就显得不结实。
解决方法:将细菌的用量增加。
2.加入soln.III,经10分钟离心后细菌沉淀怎么不结实,呈大块的水泡状,上清较少?(1)使用了过多的细菌,导致菌体未被有效裂解。
解决方法:将细菌用量减半。
(2)细菌悬浮不充分,存留小菌块,导致菌体未被有效裂解。
解决方法:注意将细菌悬浮充分。
(3)加Solution III后中和不充分。
解决方法:如果细菌用量较多,请注意多翻转几次直至中和后的沉淀呈松散的豆腐花状(也可以稍用力混合直至沉淀呈松散的豆腐花状)。
(4)Solution II出现沉淀。
解决方法:如果实验室内温度低于15℃,使用试剂盒前请注意观察Solution II中是否出现沉淀。
如果出现沉淀,请于37℃水浴溶解沉淀后再使用。
(5)Solution II 长时间暴露于空气中被CO2中和,导致菌体未能被有效裂解。
解决方法:可用经典碱裂解法抽提质粒DNA方法中的II液替代Solution II使用。
3.出现严重的RNA污染?(1)未在Solution I中事先加入RNase A1。
解决方法:补加RNase A1。
(2)加入RNase A1的Solution I长期保存于室温,导致RNase A1活性下降。
(3)细菌过量,RNase A1不能有效降解RNA。
解决方法:将细菌用量减半或增加RNase A1在Solution I中的浓度。
4.抽提的质粒DNA电泳时怎么出现切口.断裂或降解现象?(1)使用的是收集后冷冻保藏的细菌。
解决方法:使用新鲜培养的细菌。
(2)宿主菌富含核酸内切酶。
解决方法:增加一步Rinse A洗涤步骤以彻底去除残留的核酸内切酶。
质粒提取简介及问题分析(最终5篇)
质粒提取简介及问题分析(最终5篇)第一篇:质粒提取简介及问题分析质粒提取简介及问题分析一、导论(一)质粒提取的原理:为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖,25 mM Tris-HCl,10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH,1% SDS;溶液III,3 M 醋酸钾,2 M 醋酸。
让我们先来看看溶液I的作用。
任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-HCl溶液,是再自然不过的了。
那么50 mM葡萄糖是干什么的呢?加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言几乎没有任何影响,所以说溶液I中葡萄糖是可缺的。
EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。
在溶液I中加入高达 10 mM 的EDTA,就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了的,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。
如果手上正好缺了溶液I,可不可以抽质粒呢?只要用等体积的水或LB 培养基来悬浮菌体就可以了。
有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。
轮到溶液II了。
这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
质粒提取常见问题
4.为什么用无水乙醇沉淀DNA?
用无水乙醇沉淀DNA,这是实验中最常用的沉淀DNA的方法。乙醇的优点是可以任意比和水相混溶,乙醇与核酸不会起任何化学反应,对DNA很安全,因此是理想的沉淀剂。
DNA溶液是DNA以水合状态稳定存在,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而易于聚合。一般实验中,是加2倍体积的无水乙醇与DNA相混合,其乙醇的最终含量占67%左右。因而也可改用95%乙醇来替代无水乙醇(因为无水乙醇的价格远远比95%乙醇昂贵)。但是加95%的乙醇使总体积增大,而DNA在溶液中有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。折中的做法是初次沉淀DNA时可用95%乙醇代替无水乙酵,最后的沉淀步骤要使用无水乙醇。也可以用0.6倍体积的异丙醇选择性沉淀DNA。一般在室温下放置15-30分钟即可。
保存在冰箱中的酚,容易被空气氧化而变成粉红色的,这样的酚容易降解DNA,一般不可以便用。为了防止酚的氧化,可加入疏基乙醇和8-羟基喹琳至终浓度为0.1%。8-羟基喹琳是带有淡黄色的固体粉末,不仅能抗氧化,并在一定程度上能抑制DNase的活性,它是金属离子的弱螯合剂。用Tris pH8.0水溶液饱和后的酚,最好分装在棕色小试剂瓶里,上面盖一层Tris水溶液或TE缓冲液,隔绝空气,以装满盖紧盖子为宜,如有可能,可充氮气,防止与空气接触而被氧化。平时保存在4℃或-20℃冰箱中,使用时,打开盖子吸取后迅速加盖,这样可使酚不变质,可用数月。
3. 溶液III--3mol/L NaAc(pH4.8)溶液:
NaAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸。所以该溶液实际上是NaAc-HAc的缓冲液。用pH4.8的NaAc溶液是为了把pH12.6的抽提液,调回pH至中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol/L NaAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而互相聚合,后者是因为钠盐与SDS-蛋白复合物作用后,能形成较小的钠盐形式复合物,使沉淀更完全。
质粒提取与分析 Protocol
质粒提取与分析是分子生物学实验中的基本技术之一,它是从细菌中提取和纯化质粒DNA,并对质粒DNA进行相关的分析和检测。
下面是质粒提取与分析的实验原理、所需试剂和耗材、实验仪器、准备工作、实验方法、注意事项、常见问题及解决方法。
一、实验原理质粒是一种独立于细菌染色体之外的DNA分子,它不参与细胞的染色体复制,而是在细胞分裂时进行自我复制。
质粒提取的原理是通过物理和化学方法裂解细菌,释放出质粒DNA,然后通过离心、沉淀和洗涤等步骤将质粒DNA与细菌其他成分分离,最终得到纯化的质粒DNA。
二、所需试剂和耗材1.试剂:o溶液Ⅰ:10mmol/L Tris-HCl(pH=8.0)、1mmol/L EDTA (pH=8.0)、50mmol/L葡萄糖。
o溶液Ⅱ:0.1mol/L NaOH、1% SDS。
o溶液Ⅲ:3mol/L醋酸钾、20mmol/L Tris-HCl(pH=8.0)。
o70%乙醇。
o TE缓冲液:10mmol/L Tris-HCl(pH=8.0)、1mmol/L EDTA (pH=8.0)。
2.耗材:o移液器。
o离心管和离心管盖。
o 1.5ml微量移液器。
o无菌水。
o0.22μm滤膜。
o培养板和涂布器。
o细菌培养液(如LB液体培养基)。
o氯仿。
o异戊醇。
三、实验仪器1.实验室搅拌器。
2.高速冷冻离心机。
3.水浴锅。
4.无菌工作台或超净工作台。
5.紫外线分光光度计。
6.电泳仪和电泳槽。
7.显微镜。
8.恒温摇床或振荡器。
9.烘箱或微波炉。
10.量筒和烧杯。
11.计时器。
12.手套和实验服。
四、准备工作1.阅读实验步骤和注意事项,了解所需的试剂和耗材及其使用方法。
2.准备好所需的试剂和耗材,并确保它们处于保质期内。
3.检查实验室内是否具备上述实验仪器,并确保其正常运行。
4.用70%乙醇擦拭实验台面,以确保无菌环境。
5.用高压蒸汽灭菌法灭菌所有的实验器具,包括离心管、移液器等。
6.设置离心机的高速和低速离心参数,以及水浴锅的温度等参数。
质粒提取常见问题
细菌太老,活力不够 质粒为严谨型 在 DNA 结合溶液中已经 形成沉淀
画线培养细菌使之活化。 使用 5-10ml 菌液但是不要超过 10ml 菌液。
将 DNA 结合溶液加热到 37℃混匀冷却到 30℃备用。
DNA 结合柱太干 用错试剂
步骤 7 之后立即用 DP 洗脱液洗脱。 请仔细核对试剂名称。
用自动 荧光 测序没 有结果
悬器或剧烈震荡
紫外测定 DNA 浓度 低于琼 脂糖 凝胶测 定浓度
微量的 污染物 同时 被洗脱 出来, 会影响 紫外 分光光 度计读数
用酚/仿抽提, 酒精沉淀,70%酒 精清洗后干燥, 水溶,重 新紫外定量。
质粒酶切效果不好
要优化
使用 TE 缓冲液 使用 EndA+菌株导致 DNA 在酶切时降解
总体积的 1/10,酶切时间不要超过 2 小时。 尽量使用 DP 洗脱液洗脱。 在步骤 5 之后用 1ml 40%异丙醇/4.2M 盐酸胍溶液清洗 DNA 胞 裂解溶 液后 使用涡 加细胞裂解溶液后不要剧烈震荡
测序反应体系中 DNA 的 量加得不够
使用 TE 洗脱
杂质多 内切酶 浓度和 酶切 时间需
提取的质粒要经过琼脂糖凝胶电泳定量。要使用新鲜的 LB 培养基和新活化的菌株摇菌。
最好使用 DP 洗脱液洗脱(TE 中的 EDTA 能降低测序反应 中 M g2+的有效浓度)。 重复步骤 6。 尽量使用内切酶 的最佳酶切 缓冲液;内 切酶浓度不 要超过
DNA 结合柱中酒精没有除 增加步骤 7 的离心时间,如果 DNA 已经洗脱出来,可以用
干净。
酒精沉淀 DNA 并风干,然后水溶。
摇细菌 时间太 长, 造成空 菌生长过量。
确认是否所有的 培养基都加 了抗生素, 不要培养细 菌超过 24 小时(固体/液体培养基),一般 12-16 小时已经足够。
质粒提取dna浓度很低的原因
质粒提取dna浓度很低的原因
1.样本质量问题:如果样本的起始DNA量很少,或者样本受到污染、破坏等因素影响,提取出来的质粒DNA量就会很低。
2. 提取方法问题:不同的质粒提取方法可能对DNA的收获率有影响,如果使用的方法不当或者操作不规范,也会导致提取DNA浓度很低。
3. 洗涤步骤问题:在提取DNA的过程中,洗涤步骤可以去除干扰性杂质,但如果洗涤不彻底或者使用的洗涤缓冲液有问题,也会导致提取DNA浓度很低。
4. 储存问题:提取出来的DNA需要正确储存,否则会失去活性或者被分解,从而导致DNA浓度很低。
综上所述,提取DNA浓度很低的原因可能是多方面的,需要仔细排查和分析,以找到解决问题的途径。
- 1 -。
质粒提取实验报告分析
质粒提取实验报告分析引言质粒提取是分子生物学实验中常用的技术手段之一,可以用于获取目标质粒并纯化。
在本次质粒提取实验中,我们使用了传统的琼脂糖凝胶柱层析法提取目标质粒。
本报告将对实验过程、结果和讨论进行详细的分析。
实验方法1. 质粒培养和提取1. 选取目标质粒进行大规模培养,添加适量的抗生素并摇床培养。
2. 收集培养液,离心沉淀并洗涤。
3. 使用琼脂糖凝胶柱层析法提取目标质粒。
2. 质粒浓度检测1. 取提取得到的质粒样品,使用纳米比色计测量DNA的浓度。
2. 根据测量结果计算质粒的浓度。
实验结果1. 质粒提取情况根据琼脂糖凝胶柱层析法分离得到的质粒经紫外线照射后观察,发现提取效果良好,目标质粒很大程度上得到了纯化。
2. 质粒浓度检测根据纳米比色计的测量结果,计算得到质粒的浓度为XX ng/μl。
测量的标准曲线显示结果可靠。
结果分析1. 实验验证质粒提取的过程中,通过琼脂糖凝胶柱层析法有效地分离出了目标质粒,并得到了相对较纯的质粒样品。
通过紫外线照射观察质粒形态,进一步确认了提取效果良好。
2. 质粒浓度结果根据浓度检测结果,我们可以初步了解到质粒的含量。
这对后续实验的设计和操作非常重要。
结论通过本次实验使用琼脂糖凝胶柱层析法提取质粒,成功获得了相对纯净的目标质粒样品。
质粒的浓度检测结果进一步验证了实验的成功。
这为后续的实验研究和应用提供了基础数据。
改进和展望1. 实验中可以尝试使用其他提取方法,比较不同方法的效果并选取最佳方案。
2. 在质粒浓度检测方面,可以引入其他的分析方法,如凝胶电泳等,以更全面地评估质粒的品质。
参考文献[1] 张三, 李四. 质粒提取实验方法综述[J]. 生物技术通讯,20XX,XX(XX):XX-XX.。
质粒提取dna浓度很低的原因
质粒提取dna浓度很低的原因质粒提取DNA浓度很低的原因可以归结为实验技术问题和样本质量问题。
1.实验技术问题:a.细胞破裂条件不恰当:细胞破裂是质粒提取过程中的关键步骤。
若破裂条件不合适,细胞壁、细胞膜等难以有效破裂,导致DNA无法充分释放。
b.酶处理不完全:一些质粒提取试剂盒中含有各种酶,用于去除RNA、蛋白质等杂质。
若酶处理不完全,则会影响到最终的DNA提取效果。
c.DNA沉淀损失:在质粒提取的过程中,需要将DNA以乙醇或异丙醇的形式沉淀下来。
若操作不当,可能会导致DNA的沉淀损失,影响最终的DNA浓度。
2.样本质量问题:a.初始细胞数量不足:DNA的浓度与初始细胞数量有关。
若所得样本细胞数量较少,提取出的DNA浓度自然会较低。
b.样本存储问题:DNA在长时间的存储过程中容易降解。
若样本保存不当,例如长期暴露在高温、阳光、酶活等有害条件下,会导致DNA降解,从而降低提取出的DNA浓度。
c.PCR抑制物存在:在一些样本中可能存在抑制PCR的物质,例如多重抑制剂、碱金属离子等。
这些物质会影响到DNA提取过程中的DNA释放、纯化和扩增。
3.仪器设备问题:a.毛细管堵塞:在质粒提取过程中,一些步骤需要通过离心机或多通道吸头进行操作。
若这些仪器设备存在故障或堵塞,会导致样本流失、不完全吸取,从而降低DNA提取效率。
b.测量仪器不准确:DNA的浓度通常是通过分光光度计等仪器进行测量的。
若仪器不准确或校准不当,可能会导致DNA浓度的误差。
针对以上问题,可以采取一些措施来提高质粒提取DNA的浓度:1.优化破裂条件:选择合适的细胞破裂缓冲液、酶和破碎方式,确保细胞充分破裂,使DNA能够完全释放。
2.酶处理完全:严格按照试剂盒说明书中的操作步骤进行酶处理,确保RNA、蛋白质等杂质被充分去除。
3.注意DNA沉淀:在沉淀DNA时,要注意沉淀时间、温度和离心速度,确保DNA能够充分沉淀,并避免沉淀损失。
4.增加初始细胞数量:可以尝试增加样本量或提取较高浓度的细菌培养物,以获得更多的初始细胞数量。
质粒提取详解
碱裂解时间的延长而降低,随着粘稠度的增加而减低这个现象,完全可以使用碱裂解法来抽提大质粒的:增加试剂的使用量,使加入NaOH/SDS液后,溶液在1分钟内就能变得很清澈;立即加入中和试剂。
这个实验我们没有做过,但QIAGEN抽提大质粒用的就是碱裂解法。
【质粒抽提的8大窍门】1:摇菌时间-过夜培养是一个普遍接受的概念,而且适合大部分情况。
如果出现了问题,调整培养时间会有帮助:Nick多,则增加培养时间;酶切出现问题,则减少培养时间。
2:起始菌体量-大家习惯说“从多少ml菌液中抽提质粒”,但一定要养成每次都观察菌体量的习惯,因为质粒毕竟是在菌体中,而且,抽提质粒所用的试剂量,都只与菌体量有关。
3:菌体的彻底悬浮-如果没有彻底悬浮菌体,则残留的菌体团块在溶液II加入后,变成一个外围几乎彻底裂解,往里不完全裂解,中间没有裂解的团块。
这个团块在溶液III加入后,会有一部分蛋白质继续存在于溶液中,成为蛋白质残留的最大根源。
4:使用相对过量的试剂-这是适合所有核酸抽提的建议。
试剂相对过量的好处是:稳定性好,纯度高,操作更简单。
如果认为这样不经济,就少用一点菌体。
5:裂解时间-加入溶液II后,混匀,体系最好能立即变得清澈。
体系如果变得清澈了,马上加入溶液III中和。
如果体系不马上变清澈,下次少用一点菌液,或者多用一点溶液。
如今的质粒设计得越来越复杂了,奇怪的现象也越来越多,而所有的奇怪现象,多与裂解时间有关。
6:中和的操作-在 1.5ml离心管中加入溶液III后,先颠倒两次,使管底朝上,用指头弹击管底数次,再颠倒混匀。
效果非常好。
7:中和后的离心去蛋白-一定要将蛋白质彻底离心下去。
如果发现离心后仍然有蛋白质漂浮在液面,继续离心的效果并不好;而将上清倒入另外一个离心管中,再离心,效果要好许多。
【降低RNA残留的方法】RNA的去除,首先是使用RNase消化。
在溶液I中加入高浓度的RNase A(100ug/ml),或者用含25ug RNase A/ml TE溶解抽提好的质粒,都可以降低RNA残留,但都不能彻底去除。
质粒提取常见问题解析
其pH值在此范围内,如果pH过低可能导致洗脱量低。洗脱时将灭菌蒸馏水或洗脱
缓冲液加热至60℃后使用有利于提高洗脱效率。
△ 洗脱体积太小
洗脱体积对回收率有一定影响。随着洗脱体积的增大回收率增高,但产品浓度降
溶液,才能使用。
△ 吸附柱过载
不同产品中吸附柱吸附能力不同,如果需要提取的质粒量很大,请分多次提取。若
用富集培养基,例如TB 或2×YT,菌液体积必须减少;若质粒或宿主菌是非常高
的拷贝数或生长率,则需调整LB培养液体积。
△ 质粒未全部溶解(尤其质粒较大时)
洗脱ቤተ መጻሕፍቲ ባይዱ解质粒时,可适当加温或延长溶解时间。
△ 混有RNA
RNase A处理不彻底,请减少菌体用量或加入溶液P3之后室温放置一段时间。如
果溶液P1已保存6个月以上,请在溶液P1中添加RNase A。
△ 混有基因组DNA
加入溶液P2和P3后应温和混匀,如果剧烈振荡,可能把基因组DNA剪切成碎片从
而混杂在质粒中。如果加入溶液P2后过于粘稠,无法温和混匀,请减少菌体用
应接种单菌落。另外,检查筛选用抗生素使用浓度是否正确。
△ 碱裂解不充分
使用过多菌体培养液,会导致菌体裂解不充分,可减少菌体用量或增加溶液P1、
P2和P3的用量。对低拷贝数质粒,提取时,可加倍使用溶液P1、P2和P3,可能
有助于增加质粒提取量和质粒质量。
△ 溶液使用不当
溶液P2、P3在温度较低时可能出现浑浊,应置于37℃保温片刻直至溶解为清亮的
△ 大肠杆菌老化
请涂布平板培养后,重新挑选新菌落进行液体培养。
质粒提取常见问题与解决方法参考
质粒提取常见问题与解决方法参考质粒提取常见问题与解决方法参考来源:易生物实验浏览次数:632 网友评论 0 条关键词:质粒质粒提取1. 细菌离心后,加入溶液I蜗旋振荡时,发现菌体呈絮状不易混匀,或成细砂样。
——很可能是细菌发生溶菌,可减少培养时间、降低培养温度试试看,通常降低培养温度会使细菌生长更加稳定;同时也可以试试平板培养,培养后,用PBS将菌落洗下,再进行质粒的提取,固体培养基上细菌生长的要好一些。
2. 加入溶液II,菌液浑浊度没有发生明显变化。
——裂解不完全,主要问题是发生在溶液II上。
确保10%SDS是澄清的,确认NaOH是有效的,如使用的是试剂盒,确认溶液II是澄清没有沉淀的。
如确认原因不是发生在溶液II上,而是细菌浓度比较高,可相应增加溶液I/II/III的体积。
此外,啤酒肚16059978战友还提出,有可能是“杂菌”污染。
3. 加入酚仿抽提,离心后在水相和有机相间没有变性蛋白层,但随后的乙醇沉淀发现大量的半透明沉淀,溶解后蛋白浓度高。
——乙醇沉淀时,较纯的质粒沉淀应该是白色(PEG纯化的沉淀是透明的,肉眼不易发现),如沉淀是半透明的凝胶状,则是蛋白含量高。
出现此类问题时确认两点:1. 平衡酚是否被氧化、pH是否是8.0。
2. 溶液I/II/III反应后,离心的上清pH是否在8.0左右。
有时,由于溶液III配置的问题,导致溶液I/II/III反应后离心的上清pH与8.0偏差较大,导致平衡酚抽提时没有有效的将蛋白抽提出来,有时,离谱的pH会导致水相和平衡酚互溶。
4.使用酚仿抽提方法,质粒A260/A280的纯度也很好,但酶切不能完全切开。
——1.确认酶的有效性;2. 平衡酚是否被氧化而呈现棕色,而非正常的黄色;3. 是否不小心吸入了痕量的酚;4.乙醇沉淀后,70%乙醇漂洗的是否充分,残留的盐类会影响酶切;5.乙醇漂洗后是否完全干燥,残留的乙醇会影响酶切;5. 提取质粒中RNA没有去除。
质粒提取常见问题解析
质粒提取常见问题解析质粒, 解析本帖引用网址:/thread-29246-1-1.html涂布棒在酒精蘸一下,然后烧一下,能不能保证把所用的菌烧死?参考见解:涂布棒可以在酒精中保藏,但是酒精不能即时杀菌。
蘸了酒精后再烧一小会,烧的是酒精而不是涂布棒。
建议涂布棒还是干烧较长时间后,冷却了再涂。
同时作多个转化时,应用几个涂布棒免得交叉污染。
原先测序鉴定没有问题的细菌,37℃摇菌后发现质粒大小或序列出现异常?参考见解:这种情况出现的几率较小,常出现在较大质粒或比较特殊的序列中。
解决办法:1、降低培养温度,在20~25℃下培养,或室温培养可明显减少发生概率。
2、使用一些特殊菌株,如Sure菌株,它缺失了一些重组酶,如rec类等,使得质粒复制更加稳定。
3、质粒抽提有一个酶切不完全的原因就是溶液Ⅱ中的NaOH浓度过高造成的,请大家注意一下!【有两种方法可以在提质粒前判断菌生长是否正常:1、利用你的嗅觉。
只要平时做实验仔细点就能闻出大肠杆菌的气味,新鲜的大肠杆菌是略带一点刺鼻的气味,但不至于反感。
而在泥水状的菌液中你只要一凑过去就感觉到其臭无比或者没有气味,可以和正常菌液对照。
2、肉眼观察活化菌株。
对于生长不正常的菌液进行划板验证或者稀释到浓度足够低涂板,第二天观察单克隆生长情况,LB平板生长的DH5A正常形态在37℃16h后直径在1mm左右,颜色偏白,半透明状,湿润的圆形菌斑,如果观察到生长过快,颜色又是泛黄的话基本上不正常了。
】未提出质粒或质粒得率较低,如何解决?参考见解:1、大肠杆菌老化:涂布平板培养后,重新挑选新菌落进行液体培养。
2、质粒拷贝数低:由于使用低拷贝数载体引起的质粒DNA提取量低,可更换具有相同功能的高拷贝数载体。
3、菌体中无质粒:有些质粒本身不能在某些菌种中稳定存在,经多次转接后有可能造成质粒丢失。
例如,柯斯质粒在大肠杆菌中长期保存不稳定,因此不要频繁转接,每次接种时应接种单菌落。
另外,检查筛选用抗生素使用浓度是否正确。
质粒提取问题与心得
质粒提取问题与心得质粒提取是分子生物学实验中常见的操作,用于从细菌中提取质粒DNA。
质粒是细菌细胞内的环状DNA分子,通常用于在细菌中传递外源基因。
质粒提取的过程涉及细胞破裂、DNA纯化和浓缩等步骤,下面我将从几个方面来谈谈质粒提取的问题与心得。
首先,质粒提取的关键步骤包括细胞破裂、DNA纯化和浓缩。
在细胞破裂过程中,使用适当的细胞破裂缓冲液和方法对细菌进行破裂,释放质粒DNA。
在DNA纯化过程中,通过离心、溶液添加和酚/氯仿提取等方法,将质粒DNA与蛋白质、RNA等杂质分离。
最后,通过乙醇沉淀等方法对DNA进行浓缩,得到纯净的质粒DNA。
其次,质粒提取过程中可能遇到的问题包括DNA污染、纯化不彻底、DNA浓度不足等。
为了解决这些问题,可以在细胞破裂缓冲液中添加蛋白酶等物质,提高DNA的纯化效果;在DNA纯化过程中,可以多次进行酚/氯仿提取和乙醇沉淀,提高纯化的彻底性;在最后的浓缩过程中,可以根据实际情况调整乙醇的浓度,以获得所需浓度的质粒DNA。
此外,质粒提取的心得体会包括操作技巧、实验条件和耐心。
在进行质粒提取实验时,需要熟练掌握各个步骤的操作技巧,尤其是在细胞破裂和DNA纯化过程中需要细心操作;实验条件也很重要,包括细菌培养的状态、破裂缓冲液的配制和储存等;此外,需要有耐心,因为质粒提取是一个细致而耗时的过程,需要耐心等待和细心操作。
综上所述,质粒提取是分子生物学实验中常见的操作,需要注意细节、耐心等。
在实际操作中,我们需要不断总结经验,积累心得,以期获得更好的实验结果。
希望以上内容能够对你有所帮助。
质粒提取常见问题解答
质粒提取常见问题解答在一代测序或者去内毒素大提质粒时经常会发生一些质粒提取得率很低影响测序或大提质粒得率的情况。
可从以下几种情况作出改善。
第一种情况.没有提出质粒或者质粒收获量很低,可能原因如下:A菌种老化建议:对于甘油保存的菌种,需要先进行活化,涂布或者划线菌种,重新挑选单菌落进行液体培养,并对菌种进行初摇活化,按照1:500的比例进行菌种培养。
二次培养时间最好不要超出16小时(或者OD600不超过3.0)。
B低拷贝质粒建议:如果是由于低拷贝质粒引起的质粒收获量低,可以采用两倍的菌体量,并相应增加各种BUffer的用量。
C质粒丢失建议:某些质粒在次继代培养的过程中会出现丢失的想象,另外检查筛选抗生素的浓度是否正确。
D裂解不充分建议:如果采用超过推荐量的菌体进行质粒制备,会导致菌体裂解不充分。
可适当减少菌体的用量或者相应增大各种Buffer的用量。
并确保细菌混悬均匀。
EBUffer中有沉淀未溶解建议:BUfferBI和BUfferN1,BUfferC1在温度较低时会出现沉淀,使用前请检查是否有沉淀生成,如果有沉淀生成,请置于37°C温育片刻,待溶液澄清后使用。
FDNAWashBuffer中未加入要求量的乙醇建议:按照说明书要求加入要求量的无水乙醇,使用后旋紧瓶盖,防止乙醇挥发。
另外对于质粒中提,大提等,要求用70%乙醇洗涤,请确保乙醇的体积不小于70%。
G离心柱中乙醇残留建议:漂洗后,可适当延长离心时间,尽量去除残留的乙醇。
另外对于质粒大提,建议离心后,将柱子或大漏斗用吹风机冷风吹片亥∣J(或置于65℃烘箱),以彻底去除残留的乙醇,便于洗脱和后续实验操作。
H洗脱液加入位置不正确建议:洗脱液应加在膜中央,已取得最好的洗脱效果。
I洗脱液PH值不正确建议:将DNA从柱子上洗脱下来的最适PH值在7.0∙8.5之间,如果洗脱液的PH超出此范围将会显著影响洗脱效果,请使用试剂盒配套的日UtionBUffer(PH8.5,1OmMTriS-HC1)进行洗脱,如果用ddH20进行洗脱,请确保PH在7.0-8.5之间。
质粒提取dna浓度很低的原因
质粒提取dna浓度很低的原因
1.质粒品质问题:质粒的质量可能不够好,可能会包含杂质,如蛋白质、RNA、碎片等,这些杂质可能影响DNA的纯度和浓度。
2.操作不当:在提取过程中,可能存在一些环节操作不当,如去除超
凝胶溶剂不彻底、离心不充分、洗涤溶液不足等,这些因素都会导致DNA
的损失和浓度降低。
3.样本问题:样本的质量也会影响DNA提取的浓度,样本不足、降解、污染、固化等都会导致DNA浓度低。
4.过度纯化:过度纯化可能导致DNA损失,也可能将DNA纯化到无法
检测的程度。
5.储存条件不当:DNA必须储存在适当的条件下,如低温、干燥,否
则会导致DNA降解和损失。
质粒提取简介及问题分析
质粒提取简介及问题分析一、导论(一) 质粒提取得原理:为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50mM葡萄糖,25mMTris-HCl,10 mMEDTA,pH8、0;溶液II,0、2N NaOH,1%SDS;溶液III,3M 醋酸钾,2M 醋酸。
让我们先来瞧瞧溶液I得作用。
任何生物化学反应,首先要控制好溶液得pH,因此用适当浓度得与适当pH值得Tris-HCl溶液,就就是再自然不过得了。
那么50 mM葡萄糖就就是干什么得呢?加了葡萄糖后最大得好处只就就是悬浮后得大肠杆菌不会快速沉积到管子得底部。
因此,如果溶液I中缺了葡萄糖其实对质粒得抽提本身而言几乎没有任何影响,所以说溶液I中葡萄糖就就是可缺得。
EDTA就就是Ca2+与Mg2+等二价金属离子得螯合剂,配在分子生物学试剂中得主要作用就就是:抑制DNase得活性,与抑制微生物生长。
在溶液I中加入高达10mM 得EDTA,就就就是要把大肠杆菌细胞中得所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了得,只要就就是在不太长得时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒得TE缓冲液中有EDTA。
如果手上正好缺了溶液I,可不可以抽质粒呢?只要用等体积得水或LB培养基来悬浮菌体就可以了。
有一点不能忘得就就是,菌体一定要悬浮均匀,不能有结块。
轮到溶液II了。
这就就是用新鲜得0、4 N得NaOH与2%得SDS等体积混合后使用得。
要新从浓NaOH稀释制备0、4N得NaOH,无非就就是为了保证NaOH没有吸收空气中得CO2而减弱了碱性。
很多人不知道其实破细胞得主要就就是碱,而不就就是SDS,所以才叫碱法抽提。
事实上NaOH就就是最佳得溶解细胞得试剂,不管就就是大肠杆菌还就就是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这就就是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构得相变化所导致。
质粒提取常见问题分析
质粒提取常见问题分析■未提出质粒或质粒得率较低:△大肠杆菌老化请涂布平板培养后,重新挑选新菌落进行液体培养。
△质粒拷贝数低由于低使用低拷贝数载体引起的质粒DNA提取量低,可更换具有相同功能的高拷贝数载体。
△菌体中无质粒有些质粒本身不能在某些菌种中稳定存在,经多次转接后有可能造成质粒丢失。
例如,柯斯质粒在大肠杆菌中长期保存不稳定,因此不要频繁转接,每次接种时应接种单菌落。
另外,检查筛选用抗生素使用浓度是否正确。
△碱裂解不充分使用过多菌体培养液,会导致菌体裂解不充分,可减少菌体用量或增加溶液P1、P2和P3的用量。
对低拷贝数质粒,提取时,可加倍使用溶液P1、P2和P3,可能有助于增加质粒提取量和质粒质量。
△溶液使用不当溶液P2、P3在温度较低时可能出现浑浊,应置于37℃保温片刻直至溶解为清亮的溶液,才能使用。
△吸附柱过载不同产品中吸附柱吸附能力不同,如果需要提取的质粒量很大,请分多次提取。
若用富集培养基,例如TB 或2×YT,菌液体积必须减少;若质粒或宿主菌是非常高的拷贝数或生长率,则需调整LB培养液体积。
△质粒未全部溶解(尤其质粒较大时)洗脱溶解质粒时,可适当加温或延长溶解时间。
△乙醇残留漂洗液洗涤后应离心尽量去除残留液体,树脂型试剂盒漂洗后应晾干树脂,再加入洗脱缓冲液。
△洗脱液加入位置不正确洗脱液应加在硅胶膜中心部位以确保洗脱液会完全覆盖硅胶膜的表面达到最大洗脱效率。
△洗脱液不合适DNA只在低盐溶液中才能被洗脱,如洗脱缓冲液EB (10 mM Tris·Cl, pH 8.5)或水。
洗脱效率取决于pH值。
最大洗脱效率在pH7.0-8.5间。
当用水洗脱时确保其pH值在此范围内,如果pH过低可能导致洗脱量低。
洗脱时将灭菌蒸馏水或洗脱缓冲液加热至60℃后使用有利于提高洗脱效率。
△洗脱体积太小洗脱体积对回收率有一定影响。
随着洗脱体积的增大回收率增高,但产品浓度降低。
为了得到较高的回收率可以增大洗脱体积。
质粒提取简介及问题分析
质粒DNA的抽提与纯化目的:采用碱变性法,学习小规模制备质粒DNA的技术原理:碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。
在pH值高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性。
质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,当以pH4.8的NaAc高盐缓冲液去调节其pH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
仪器与主要试剂仪器(见附录):主要试剂:溶液I:50 mmol/L葡萄糖10 mmol/L EDTA25 mmol/L Tris-HCl (pH 8.0)2毫克/毫升溶菌酶溶液I可成批配制,每瓶约100ml,高压下蒸气灭菌15分钟,贮存于4℃。
溶液II:200 mmol/L NaOH1% SDS溶液III: 3 mol/L NaAc (pH4.8)溶液TE缓冲液:10 mmol/L Tris-HCl ,pH 7.51 mmol/L EDTA实验方法:1.将大肠杆菌菌落挑取一环接种在含有2毫升加入抗菌素的LB液体培养基的10毫升试管里,37℃振培过夜,16~18小时2.转移以上菌液1.5毫升于EP管中,8000rpm离心30秒3.小心去除上清,并用吸水纸吸干残余液体,再将沉淀物在振荡器上振匀4.加入溶液I 100μl,盖紧EP管盖,翻转数次,冰上放置10分钟5.加入溶液II 200μl,温和翻转EP管5次(可观察到溶液逐步由混浊变为透明),冰上放置5分钟6.加入溶液III 150μl,将EP管盖紧后累累来回翻转23次,混匀后冰上放置20分钟7.12000rpm离心15分钟8.将上清转移到另一个EP管中(吸取时不可吸入底部的沉淀)。
加入等体积的酚和氯仿:异戊醇各抽提一次9.加入1毫升预冷的无水乙醇和1/10体积的NaAc(3 mol/L,pH5.2),盖紧,并翻转EP管数次混匀10.置于-20℃冰箱1~2小时11.15000rpm离心15分钟,去除上清,收集管底白色沉淀12.70%乙醇洗涤一次,空气干燥或真空抽干13.将沉淀溶于50μl TE缓冲液或去离子水,完全溶解后,-20℃保存14.取样5μl,在0.8%的琼脂糖凝胶上电泳,观察DNA条带。
碱裂解法制备质粒的各种溶液的作用及可能出现的问题(最新整理)
碱裂解法制备质粒的各种溶液的作用及提取中可能出现的问题一、质粒提取三种溶液的作用:1.溶液I溶液Ⅰ:50 mM葡萄糖,25 mM Tris-HCl,10 mM EDTA,pH 8.0任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH 值的Tris-HCl溶液,是再自然不过的了。
那么50 mM葡萄糖是干什么的呢?加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言几乎没有任何影响,所以说溶液I中葡萄糖是可缺的。
EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。
在溶液I中加入高达10 mM 的EDTA,就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了的,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。
如果手上正好缺了溶液I,可不可以抽质粒呢?只要用等体积的水或LB培养基来悬浮菌体就可以了。
有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。
1. 溶液II溶液II,0.2 N NaOH,1% SDS轮到溶液II了。
这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质粒提取简介及问题分析一、导论(一) 质粒提取的原理:为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖,25 mM Tris-HCl,10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH,1% SDS;溶液III,3 M 醋酸钾,2 M 醋酸。
让我们先来看看溶液I的作用。
任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-HCl溶液,是再自然不过的了。
那么50 mM葡萄糖是干什么的呢?加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言几乎没有任何影响,所以说溶液I中葡萄糖是可缺的。
EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。
在溶液I中加入高达10 mM 的EDTA,就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了的,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。
如果手上正好缺了溶液I,可不可以抽质粒呢?只要用等体积的水或LB培养基来悬浮菌体就可以了。
有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。
轮到溶液II了。
这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH 稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。
如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。
很多人对NaOH的作用误以为是为了让基因组DNA 变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。
有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。
这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。
基因组DNA的断裂会带来麻烦。
溶液III加入后就会有大量的沉淀,但大部分人却不明白沉淀的本质。
最容易产生的误解是,当SDS 碰到酸性后发生的沉淀。
如果这样怀疑,往1%的SDS溶液中加2M醋酸溶液看看就知道不是这么回事了。
大量沉淀的出现显然与SDS的加入有关系。
如果在溶液II中不加SDS,也会有少量沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。
既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,会发现SDS在高盐浓度下是会产生沉淀的。
因此高浓度的盐导致了SDS的沉淀。
但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。
这其实是十二烷基硫酸钠(SDS)遇到钾离子后变成了十二烷基硫酸钾(PDS),而PDS是水不溶的,因此发生了沉淀。
如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。
大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。
这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。
(二)细菌的收获和裂解。
细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。
选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。
尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。
1、大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。
将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS一类去污剂溶解球形体。
这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。
2、可用更剧烈的方法来分离小质粒。
在加入EDTA后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。
这些处理可破坏碱基配对,故可使宿主的线状染色体DNA变性,但闭环质粒DNA链由于处于拓扑缠绕状态而不能彼此分开。
当条件恢复正常时,质粒DNA链迅速得到准确配置,重新形成完全天然的超螺旋分子。
3、一些大肠杆菌菌株(如HB101的一些变种衍生株) 用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯-溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。
糖类会在梯度中紧靠超螺旋质粒DNA所占位置形成一致密的、模糊的区带。
因此很难避免质粒DNA内污染有糖类,而糖类可抑制多种限制酶的活性。
故从诸如HB101和TG1等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。
4、当从表达内切核酸酶A的大肠杆菌菌株(endA 株,如HB101) 中小量制备质粒时,建议不使用煮沸法。
因为煮沸不能完全灭活内切核酸酶A,以后在温育(如用限制酶消化)时,质粒DNA会被降解。
但如果通过一个附加步骤(用酚:氯仿进行抽提)可以避免此问题。
5、目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。
然而,某些工作者沿用氯霉素并不是要增加质粒DNA的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。
大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。
有氯霉素存在时从较少量细胞获得的质粒DNA的量以与不加氯霉素时从较大量细胞所得到的质粒DNA的量大致相等。
(三)质粒DNA的纯化。
常用的纯化方法都利用了质粒DNA 相对较小及共价闭合环状这样两个性质。
如,用氯化铯-溴化乙锭梯度平衡离心分离质粒和染色体DNA 就取决于溴化乙锭与线状以及与闭环DNA分子的结合量有所不同。
溴化乙锭通过嵌入碱基之间而与DNA结合,进而使双螺旋解旋。
由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。
最后,超螺旋度大为增加,从而阻止了溴化乙锭分了的继续嵌入。
但线状分子不受此限,可继续结合更多的染料,直至达到饱和(每2个碱基对大约结合1个溴化乙锭分子)。
由于染料的结合量有所差别,线状和闭环DNA分了在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。
多年来,氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA 的首选方法。
然而该过程既昂贵又费时,为此发展了许多替代方法。
其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀等分离质粒DNA和宿主DNA的方法。
二、质粒DNA的小量制备(一)细菌的收获和裂解。
1、收获。
1) 将2ml含相应抗生素的LB加入到容量为15ml 并通气良好(不盖紧)的试管中,然后接入一单菌落,于30℃剧烈振摇下培养过夜。
2) 将1.5ml培养物倒入离心管中,4℃、12000g离心30秒,将剩余的培养物贮存于4℃。
3) 吸去培养液,使细菌沉淀尽可能干燥。
2、碱法裂解。
1) 将细菌沉淀,所得重悬于100μl用冰预冷的溶液I中,剧烈振荡。
溶液I可成批配制,高压下蒸气灭菌15分钟,贮存于4℃。
须确使细菌沉淀在溶液I中完全分散。
2) 加200μl新配制的溶液Ⅱ。
盖紧管口,快速颠倒离心管5次,以混合内容物。
应确保离心管的整个内表面均与溶液Ⅱ接触。
不要振荡,将离心管放置于冰上。
3) 加150μl用冰预冷的溶液Ⅲ。
盖紧管口,将管倒置后温和地振荡10秒钟溶液Ⅲ在粘稠的细菌裂解物中分散均匀,之后将管置于冰上3-5分钟。
4) 用离心机于4℃、12000g离心5分种,将上清转移到另一离心管中。
5) 可做可不做:加等量酚:氯念,振荡混匀,用微量离心机于4 ℃以12000g离心2分钟,将上清转移到另一良心管中。
有些工作者认为不必用酚:氯仿进行抽提,然而由于一些未知的原因,省略这一步,往往会得到可耐受限制酶切反应的DNA。
6) 用2倍体积的乙醇于室温沉淀双锭DNA。
振荡混合,于室温放置2分钟。
7) 用微量离心机于4℃以12 000g离心5分钟。
8) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。
再将附于管壁的液滴除尽。
9) 用1ml70%乙醇于4℃洗涤双链DNA沉淀,去掉上清,在空气中使核酸沉淀干燥10分钟。
i. 此法制备的高拷贝数质粒(如Xf3或pUC),其产量一般约为:每毫升原细菌培养物3-5μg。
ii. 如果要通过限制酶切割反应来分析DNA,可取1μl DNA溶液加到另一含8μl水的微量离心管内,加1μl 10×限制酶缓冲液和1单位所需限制酶,在适宜温育1-2小时。
将剩余的DNA贮存于-20℃。
iii. 此方法按适当比例放大可适用于100ml细菌培养物:。
3、煮沸裂解。
1) 将细菌沉淀,所得重悬于350μlSTET中。
STET:0.1mol/L NaCL,10mmol/L Tris.Cl(pH8.0),1mmol/L EDTA(pH8.0),5% Triton X-100。
2) 加25μl新配制的溶菌酶溶液[10mg/ml,用10mmol/L Tris.Cl(pH8.0)配制],振荡3秒钟以混匀之。
如果溶淮中pH低于8.0,溶菌酶就不能有效发挥作用。
3) 将离心管放入煮沸的水浴中,时间恰为40秒。
4) 用微量离心机于室温以12000g离心10分种。
5) 用无菌牙签从微量离心管中去除细菌碎片。
6) 在上清中加入40μl 5mol/L乙酸钠(pH5.2)和420μl异丙醇,振荡混匀,于室温放置5分钟。
7) 用微量离心机于4℃以12 000g离心5分种,回收核酸沉淀。
8) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。
再将附于管壁的液滴除尽。
除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。
当液体从管中吸出时,尽可能使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管的液滴。
9) 加1ml 70%乙醇,于4℃以12 000g离心2分钟。