细胞生物学第四版ppt课件

合集下载

细胞生物学第四课件优选演示

细胞生物学第四课件优选演示

本章概要(二)
• 细菌与蓝藻是原核细胞的两个重要代表。原核细胞的共同特征:没有核膜、遗传信息载体仅仅是一 个裸露的环状DNA分子,除核糖体与细胞质膜及其特化结构外,几乎不存在其他复杂的细胞器。将 原核细胞与真核细胞进行比较,从进化与动态的观点分析,主要有两个基本差异:一是以生物膜系 统的分化与演变为基础,真核细胞形成了复杂的内膜系统,构建成各种具有独立功能的细胞器,双 层核膜将细胞分隔为细胞核与细胞质两个基本部分;二是遗传结构装置的扩增与基因表达方式的相 应变化。由于上述的根本差异,真核细胞的体积也相应增大,内部结构更趋复杂化,生命活动的时 间与空间的布局更为严格,细胞内部出现精密的网架结构——细胞骨架。
本章概要
• 细胞生物学是研究细胞生命活动基本规律的学科,它是现 代生命科学的基础学科之一。细胞生物学研究的主要方面 包括: ① 生物膜与细胞器;②细胞信号转导;③细胞骨 架体系;④细胞核、染色体及基因表达;⑤ 细胞增殖及其 调控;⑥细胞分化及干细胞;⑦ 细胞死亡;⑧细胞衰老; ⑨ 细胞工程;⑩细胞的起源与进化。
第二章 细胞的统一性与多样性
第一节 细胞的基本特征 第二节 原核细胞与古核细胞 第三节 真核细胞 第四节 病毒—非细胞形态的生命体
第一节 细胞的基本特征
一、细胞是生命活动的基本单位 二、细胞的基本共性
人体由200多种不同的细胞组成 (图2-1)
第二节 原核细胞与古核细胞
一、原核细胞 二、支原体—最小最简单的细胞 三、细菌和蓝藻—原核细胞的两个代表类群 四、古核细胞(古细菌)
类病毒的电镜照片(图2-13)
病毒的基本类型(图2-14)
病毒结构的示意图(图2-15)
戊型肝炎病毒的冷冻电镜图片(图216)
在细胞核内增殖的腺病毒(图2-17)

《细胞生物学》ppt课件(2024)

《细胞生物学》ppt课件(2024)
叶绿体
主要功能是进行光合作用,将光能转化为化学能储存在有 机物中。其结构包括外膜、内膜和类囊体,类囊体上附有 大量与光合作用有关的色素和酶。
高尔基体
主要功能是参与蛋白质的加工、分类和包装,形成分泌泡 或分泌颗粒,将其运输到细胞表面或分泌到细胞外。其结 构包括扁平囊泡、大泡和小泡。
2024/1/30
核糖体
2024/1/30
01 02 03 04
推动医学发展
细胞生物学在医学领域有着广泛 的应用,如研究疾病的发病机理 、开发新的治疗方法和药物等。
探索生命起源与进化
通过研究细胞的起源、进化和多 样性,可以深入了解生命的起源 和进化过程,探索生命科学的奥 秘。
6
02
细胞的基本结构与功能
Chapter
2024/1/30
能量代谢的调节机制
受到细胞内能量状态、激素水平、神经调节等多 种因素的影响。
2024/1/30
14
细胞的信号传导与调控
信号传导的基本概念
信号传导的主要途径
信号传导是指细胞通过特定的信号分子和 信号通路,将外界刺激转化为细胞内生物 化学反应的过程。
包括G蛋白偶联受体信号通路、酶联受体信 号通路、离子通道受体信号通路等。
7
细胞膜的结构与功能
2024/1/30
细胞膜的主要成分
01
脂质、蛋白质和糖类
细胞膜的结构特点
02
流动性、选择透过性
细胞膜的功能
03
物质运输、信息传递、能量转换、细胞识别等
8
细胞质的结构与功能
2024/1/30
细胞质的主要成分
水、无机盐、脂质、蛋白质、糖类等
细胞质的结构特点
胶态、不均一性

细胞生物学第四版(13至17章)ppt课件

细胞生物学第四版(13至17章)ppt课件
• CDK有多种:在人体中发现并命名的CDK包括CDK1(Cdc2) ~CDK13。不同的CDK在细胞周期中起调节作用的时期不同。
• 某些CDK与cyclin的配对关系及执行的功能的时期:见表14-1。 • CDK激酶结构域:各种CDK的CDK激酶结构域保守程度有所不
同,但其中有一小段序列则相当保守,即PSTAIRE序列,与周期 蛋白结合有关。 • CDK的活性受磷酸化修饰调节:细胞内存在多种因子,对CDK 分子结构进行磷酸化修饰,从而调节CDK的活性。 • CDK抑制蛋白(CDK inhibitor, CKI):指对CDK起负调控作用 的蛋白质,包括Cip/Kip家族和INK家族。① Cip/Kip家族:包括 pC2D1K、6)p2起7和抑p制57作等用,p其2中1还p2与1D主N要A对聚G合1酶期δCD的K辅(助CD因K子2~增4殖和细胞 核抗原(PCNA)结合,抑制DNA的复制;② INK家族:包括p16、 p15、p18和p19等,其中p16主要抑制CDK4和CDK6活性。
.
有丝分裂中后期转换(图13-20 )
.
动物细胞胞质分裂示意图(图13-21 )
.
中央纺锤体和星体微管作用于细胞 皮层并诱导分裂沟形成(图13-22)
.
真核细胞减数分裂的3种类型(图 13-23)
.
有丝分裂与减数分裂比较(图13-1 )
.
减数分裂过程图解 (图13-24)
.
偶线期DNA在减数分裂前期Ⅰ才进 行复制示意图(图13-25)
.
第一节 细胞增殖调控
一、MPF的发现及其作用 二、p34cdc2激酶的发现及其与MPF的关系 三、周期蛋白 四、CDK和CDK抑制因子 五、细胞周期运转调控 六、其他因素在细胞周期调控中的作用

细胞生物学第四版至章ppt课件

细胞生物学第四版至章ppt课件
• 信号肽(signal peptide):信号肽位于蛋白质的N端,一 般由16~26个氨基酸残基组成,其中包括信号肽疏水核心区、 N端和C端等3部分;原核细胞某些分泌性蛋白的N端也具有 信号序列。值得注意的是,信号肽似乎没有严格的专一性 (好利用!)。
信号肽的一级结构序列(图8-1)
• 信号识别颗粒(signal recognition particle,SRP ):信 号识别颗粒是由6种不同蛋白质和一个7S小RNA分子构成的 RNP颗粒。SRP含有2种结构域,即信号肽识别结构域和核 糖体结合结构域,其中信号肽识别结构域中的p54蛋白是一 种包含成簇Met残基的GTP酶,Met侧链与信号肽的疏水核 心结合;当SRP与信号肽结合后,核糖体结合结构域中的 p9和p14蛋白复合体阻断新生肽链的翻译。 SRP通常存在 于细胞质基质中,等待信号肽从多核糖体上延伸暴露出来, SRP既可与新生信号肽序列和核糖体大亚基结合,又可与 内质网膜上SRP受体结合,指导新生多肽及核糖体和mRNA 附着到内质网膜上。
• 继信号假说提出与确证后,人们又发现一系列蛋白质分选信号 序列,统称信号序列(signal sequence),而且有些信号序 列还可形成三维结构的信号斑(signal patch),指导蛋白的 靶向转运和定位。
指导蛋白质从细胞基质转运到细胞 器的靶向序列的主要特征(表8-2)
二、蛋白质分选转运的基本途径与类型
• 信号识别颗粒的受体(又称停泊蛋白,docking protein, DP):DP是内质网膜的整合蛋白,由α和β亚基组成,可特 异地与SRP结合。α亚基可结合GTP。
• 信号肽酶(signal peptidase ):内质网腔面上蛋白水解 酶,负责切除并快速降解新生多肽的N端信 图(图8-2)

新细胞生物学课件翟中和第四版1

新细胞生物学课件翟中和第四版1

新细胞生物学课件翟中和第四版1
新细胞生物学课件是一本介绍细胞结构和功能的教材,
讲述了细胞的基本单位、细胞结构、细胞功能和细胞生命周期等内容。

该书的作者是翟中和,是一位细胞生物学家和教育家,已经出版了四版。

下面我们将就此细说。

第一章是介绍细胞的基本单位。

文章讲述了细胞是生命
的基本单位,同时也介绍了细胞的重要性,包括生命过程、生物体的形态和功能、细胞疾病等。

第二章是关于细胞结构的内容。

文章介绍了细胞的形态、细胞质和核等重要结构,包括细胞膜、内质网、高尔基体、线粒体、细胞骨架、溶酶体、过氧化物酶体等。

通过对这些结构的讨论,读者可以深入了解细胞的结构和功能。

第三章讨论了基本细胞过程,如细胞膜的过渡、内质网
的转运和运输、酶反应、细胞骨架等。

文章还介绍了细胞骨架的组成和功能,包括微管、中间纤维和微丝等。

第四章介绍了细胞核的结构和功能。

文章包括对染色体、染色体结构、DNA和RNA的讨论,讲述了转录和翻译等过程。

此外还介绍了核糖体、核仁和核膜等重要结构。

第五章涉及到细胞周期,包括G1期、S期、G2期和M期。

其中还包括讨论细胞生长、细胞分化和细胞凋亡等过程。

第六章讲述了细胞信号转导,包括激活酶、离子通道,
以及细胞因子和其它复杂的信号传递机制等。

总之,《新细胞生物学课件》是一本介绍细胞结构和功
能的教材,内容简明扼要,对初学者非常友好。

对于那些想更
深入了解细胞结构和功能的学者们来说,这本书也是不可或缺的参考。

2024细胞生物学翟中和第四版PPT大纲

2024细胞生物学翟中和第四版PPT大纲

目录•细胞生物学概述•细胞的基本结构与功能•细胞的物质运输与信号转导•细胞的能量转换与代谢•细胞的生长、分裂与分化•细胞衰老、凋亡与疾病细胞生物学概述细胞生物学的定义与研究对象01定义细胞生物学是研究细胞结构、功能和生活规律的科学。

02研究对象包括所有类型的细胞,从原核生物到真核生物,从单细胞生物到多细胞生物的各种细胞。

03研究内容涉及细胞的形态结构、生理功能、遗传变异、生长发育、衰老死亡等方面。

细胞生物学的发展历史早期研究0117世纪,随着显微镜的发明,人们开始观察和研究细胞。

细胞学说的提出0219世纪,德国植物学家施莱登和动物学家施旺提出了细胞学说,奠定了细胞生物学的基础。

现代细胞生物学的发展0320世纪以来,随着分子生物学、遗传学、生物化学等学科的交叉融合,细胞生物学得到了快速发展。

细胞生物学是生命科学领域的基础学科之一,对于理解生命的本质和规律具有重要意义。

基础学科细胞生物学与分子生物学、遗传学、生物化学等学科相互交叉、相互渗透,共同推动了生命科学的发展。

交叉学科细胞生物学在医学、农业、工业等领域具有广泛的应用前景,如疾病治疗、作物改良、生物制药等。

应用前景细胞生物学在现代科学中的地位细胞的基本结构与功能细胞形态多样,有球形、椭球形、柱形、扁平形等,不同形态的细胞具有不同的功能。

细胞的形态细胞的大小细胞的计量单位细胞大小因生物种类和细胞类型而异,一般细菌细胞较小,动植物细胞较大。

细胞的大小通常以微米(μm)为单位进行计量。

030201细胞的形态与大小03质膜与细胞壁的关系质膜和细胞壁共同构成了细胞的边界,维持细胞内环境的稳定。

01细胞质膜细胞质膜是包裹在细胞质外的一层薄膜,由磷脂双分子层和蛋白质组成,具有选择透过性。

02细胞壁细胞壁是位于细胞质膜外的一层厚壁,主要成分为多糖和蛋白质,具有保护和支持细胞的作用。

细胞质膜与细胞壁细胞器细胞器是细胞内具有一定形态和功能的微小结构,如线粒体、叶绿体、内质网、高尔基体等,各细胞器分工合作,共同完成细胞的生命活动。

2024版年度细胞生物学翟中和第四版第13章ppt大纲

2024版年度细胞生物学翟中和第四版第13章ppt大纲
22
05
细胞内受体介导信号转导
2024/2/3
23
细胞内受体类型及结构特点
细胞内受体主要类型
包括甾类激素受体、甲状腺激素受体和维生素D受体等。
2024/2/3
结构特点
细胞内受体通常具有特定的结构域,如DNA结合域、配体结合 域和转录激活域等,这些结构域在信号转导过程中发挥关键作 用。
24
甾类激素受体介导信号转导途径
3
细胞通讯基本概念
细胞通讯是指一个细胞发出的 信息通过介质传递到另一个细 胞并产生相应的反应。
2024/2/3
细胞通讯在生物体的生长、发 育、分化、代谢等过程中发挥 重要作用。
细胞通讯的方式包括直接接触、 间隙连接、化学信号等。
4
信号分子及其受体类型
信号分子包括激素、神经递质、生长因子、细胞 因子等。
2024/2/3
14
激素受体介导信号转导途径
G蛋白偶联受体途径
激素与受体结合后,激活G蛋白,进而引起细胞内信号转导。
酶联受体途径
激素与受体结合后,激活受体本身的酶活性或促进细胞内酶的活 性,从而引发细胞响应。
核受体途径
激素直接进入细胞,与核内受体结合,调节基因转录和表达。
2024/2/3
15
神经递质受体介导信号转导途径
自分泌和旁分泌概念及特点
01
02
03
自分泌
细胞自身产生的信号分子 作用于自身,调节细胞功 能。
2024/2/3
旁分泌
细胞产生的信号分子通过 细胞间隙扩散,作用于邻 近的其他细胞。
特点
作用范围局限,调节精确, 对细胞间通讯和细胞微环 境的维持具有重要意义。
19
自分泌因子及其功能

细胞生物学ppt课件(2024)

细胞生物学ppt课件(2024)
针对细胞信号转导途径中的关键分子设计药物,可以实现对疾病的精准 治疗。例如,靶向肿瘤细胞表面受体的抗体药物可以阻断肿瘤细胞的生 长和扩散。
信号转导与疾病预防
通过调节饮食、生活方式等,可以影响细胞信号转导过程,从而预防疾 病的发生。例如,适量运动可以促进细胞信号转导的正常进行,降低心 血管疾病的风险。
05
细胞的增殖与分化
细胞周期与有丝分裂
细胞周期的定义与阶段
细胞从一次分裂结束到下一次分裂结束所经历的全过程, 包括间期和分裂期两个阶段。
间期的特点与功能
间期是细胞生长和DNA复制的时期,包括G1期、S期和 G2期三个阶段,为细胞分裂准备物质基础。
有丝分裂的过程与意义
有丝分裂是真核细胞进行细胞分裂的主要方式,包括前期 、中期、后期和末期四个阶段,确保遗传物质平均分配到 两个子细胞中。
主动运输
需要消耗能量,物质逆浓度梯度进 行运输,包括原发性主动转运和继 发性主动转运。
膜泡运输
通过膜包裹、膜融合、膜分离等步 骤,实现大分子和颗粒物质的跨膜 运输,包括胞吞作用和胞吐作用。
细胞信号转导的基本过程
信号分子识别
细胞通过表面受体识别信号分子,启动 信号转导过程。
信号跨膜转导
信号分子与受体结合后,通过激活或抑 制膜内信号转导蛋白,将信号跨膜传递 。
04
细胞的能量转换与代谢
细胞的能量转换过程
1 2
ATP的合成与分解
细胞通过ATP的合成和分解来实现能量的转换和 储存,其中ATP的合成主要在线粒体中进行,而 分解则发生在细胞质中。
氧化磷酸化
在线粒体中,通过氧化磷酸化过程将NADH和 FADH2中的能量转化为ATP中的高能磷酸键。
3
光合作用

细胞生物学全套ppt课件(共277张PPT)

细胞生物学全套ppt课件(共277张PPT)

激光共聚焦显微镜
结合激光扫描和共聚焦技术,实现三 维重建和动态观察,用于研究细胞内 分子定位和相互作用。
电子显微镜
利用电子束代替光束,通过电磁透镜 成像,可观察细胞的超微结构,如透 射电子显微镜和扫描电子显微镜。
分子生物学技术在细胞生物学中应用
DNA重组技术
通过体外操作DNA片段,实现基因克隆、表达和调控研究,用于 解析基因功能和调控网络。
细胞周期调控异常可能导致细胞增殖失控和肿瘤发生。因此,深入研究 细胞周期调控因子和机制对于理解细胞增殖、分化和癌变等生物学过程 具有重要意义。
06
细胞分化、衰老与凋亡
细胞分化类型和影响因素
细胞分化类型 多能干细胞分化
专能干细胞分化
细胞分化类型和影响因素
01
终末分化细胞
02
影响因素
基因表达调控
03
系。
蛋白质组学技术
利用质谱技术、蛋白质芯片等方 法,研究细胞内蛋白质组成、相 互作用和修饰等,揭示蛋白质在
细胞生命活动中的作用。
生物信息学分析
运用生物信息学方法对基因组学 和蛋白质组学数据进行挖掘和分 析,发现新的基因、蛋白质和调 控网络及其与细胞生物学过程的
关系。
THANKS
胞内外环境的稳定。
物质跨膜运输方式及机制
被动运输
01
包括简单扩散和易化扩散两种方式,不需要消耗能量,物质顺
浓度梯度进行运输。
主动运输
02
包括原发性主动转运和继发性主动转运两种方式,需要消耗能
量,物质逆浓度梯度进行运输。
膜泡运输
03
包括出胞和入胞两种方式,通过膜泡的形成和移动来实现物质
的跨膜运输。
膜蛋白功能及其调控

细胞生物学第四版(细胞骨架1) (2)ppt课件

细胞生物学第四版(细胞骨架1) (2)ppt课件

微绒毛的微丝和微丝交联蛋白(图10-10)
• A:微绒毛结构模式图 B:小肠上皮细胞表面微绒毛 C: 耳蜗毛细胞顶端的微绒毛(实心箭头示微丝断面,空心箭 头示微绒毛膜)
胞质分裂环(图10-11)
A:胞质分裂环和细胞皮层(均为红色) B:胞质分裂环模式图
三、肌球蛋白:依赖于微丝的分子马达
在细胞内参与物质运输的马达蛋白(motor protein), 即能够利用水解ATP释放的能量驱动自身有规则地沿微丝 或微管定向运动的蛋白,如沿微丝运动的肌球蛋白 (myosin)、沿微管运动的驱动蛋白(kinesin)和动力 蛋白(dynein)。马达蛋白具有2种结构域:①与微丝或 微管结合的马达结构域;②与大分子复合物或膜性细胞器 特异结合的“货物”结构域。
在细胞生命活动过程中,细胞骨架是细胞结构和功 能的组织者,它们通过蛋白亚基的组装/去组装过程来 调节细胞内骨架网络的分布和结构,通过与细胞骨架结 合蛋白、马达蛋白等的相互作用来行使其生物学功能。
细胞骨架具有为细胞提供结构支架、维持细胞形态、 负责细胞内生物大分子和细胞器转运和极性分布、细胞 分化和细胞运动等功能。
• 肌动蛋白结合蛋白(actin binding protein):与肌 动蛋白单体或肌动蛋白丝结合的蛋白,对微丝的组 装、物理性质及其功能具有调控作用。
体内肌动蛋白的组装在2个水平上受到 微丝结合蛋白的调节:①可溶性肌动蛋白 的存在状态;②微丝结合蛋白的种类及其 存在状态。
细胞内微丝网络的组织形式和功能通 常取决于与其结合的微丝结合蛋白,而不 是微丝本身。 根据微丝结合蛋白作用方式的不同,可将 其分成如下几种类型:
成网的蛋白将微丝交联成网状或凝胶样结构。细 丝蛋白(filamin)和血影蛋白(spectrin)的2个肌 动蛋白结合域之间的区域都是柔软的,或者本身就是 弯曲的。

2024版年细胞生物学全套ppt课件

2024版年细胞生物学全套ppt课件

2024年细胞生物学全套ppt课件•细胞生物学概述•细胞的基本结构与功能•细胞的物质运输与能量转换•细胞的信号传导与基因表达调控目录•细胞的分化、衰老与凋亡•细胞工程与应用前景细胞生物学概述细胞生物学的定义与研究对象细胞生物学的定义研究对象包括原核细胞、真核细胞、病毒与细胞的关系,以及细胞的起源、进化、结构、功能、生长、分裂、分化、代谢、运动、衰老、死亡等生命现象。

细胞生物学的发展历史与现状发展历史从17世纪列文虎克发现细胞,到19世纪施莱登和施旺提出细胞学说,再到20世纪电子显微镜的发明和分子生物学的兴起,细胞生物学逐渐从描述性学科向实验性学科发展。

现状随着现代科学技术的进步,特别是分子生物学、遗传学、免疫学等学科的飞速发展,细胞生物学已经成为生命科学领域最活跃的前沿学科之一。

目前,细胞生物学的研究已经深入到亚细胞结构和分子水平,对于揭示生命的本质和规律具有重要意义。

细胞生物学的研究意义与价值揭示生命活动的规律促进医学发展推动生物工程发展细胞的基本结构与功能细胞膜组成细胞膜功能细胞膜特性030201细胞质组成01细胞质功能02细胞质与细胞核的协调03细胞核组成主要由核膜、核仁、染色质等构成。

细胞核功能遗传信息库,控制细胞代谢和遗传。

细胞核与细胞质的协调细胞核通过控制蛋白质合成等调控细胞质的活动,细胞质也为细胞核提供必要的物质和能量。

叶绿体线粒体参与光合作用,合成有机物并储存能量。

内质网01020304高尔基体溶酶体中心体核糖体细胞的物质运输与能量转换简单扩散协助扩散主动运输胞吞和胞吐物质的跨膜运输方式ATP的合成与分解ATP的结构与功能ATP的合成途径ATP的分解与能量利用细胞的呼吸作用与光合作用细胞呼吸作用光合作用光合作用与细胞呼吸的关系细胞的信号传导与基因表达调控1 2 3信号分子与受体的识别与结合信号传导通路的组成与功能信号传导的放大与终止信号传导的分子机制与途径基因表达的调控机制与转录后加工基因表达的转录调控01转录后加工与mRNA的稳定性02蛋白质翻译后修饰与功能调控03细胞周期检查点与DNA 损伤修复阐述细胞周期检查点的功能,以及它们在DNA 损伤修复中的作用,以确保细胞的遗传稳定性。

细胞生物学-第17章-细胞的社会联系(翟中和第四版) PPT

细胞生物学-第17章-细胞的社会联系(翟中和第四版) PPT

3. 免疫球蛋白超家族 (IgSF)
• 分子结构中具有与免疫 球蛋白类似结构域的细 胞黏着分子超家族(不 依赖于Ca2+)
• 大多介导淋巴细胞和免 疫应答所需要的细胞之 间的黏着
4. 整联蛋白 (integrin)
• 普遍存在于脊椎动物细胞表面,异亲型结合、Ca2+ 或 Mg2+依赖性的细胞黏着分子,主要介导细胞与胞外基质间 的黏着
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
一、紧密连接(tight junction)
主要功能: • 形成上皮细胞膜
蛋白与膜脂分子 侧向扩散的屏障, 维持上皮细胞极 性
一、紧密连接(tight junction)
• 紧密连接形成的渗透屏障是相对的,某些小分子可通过紧密连接, 以细胞旁路途径从上皮细胞层一侧转运或“渗漏”到另一侧
• 细胞识别与黏着的分子基础是细胞表面的细胞黏着分子 • 细胞黏着分子分为 4 大类:钙黏蛋白、选择素、整联蛋白
及免疫球蛋白超家族
细胞黏着分子(cell adhesion molecule,CAM)
• 通过3 种方式介导细胞识别与黏着 同亲型结合、异亲型结合、衔接分子依赖性结合
细胞黏着分子(cell adhesion molecule,CAM)
钙黏蛋白家族部分成员
钙黏蛋白参与的细胞连接
钙黏蛋白的结构与功能
钙黏蛋白介导高度选择性的细胞识别与黏着
• 通过调控钙黏蛋白的种类与数量能影响细胞间的 黏着与迁移,从而影响组织分化
小鼠8 细胞胚胎时期,表达E-钙黏蛋白将松散的分裂球细胞变成紧 密黏合的细胞。E-钙黏蛋白突变,会导致胚胎细胞的分离和死亡
结构与成分:
• 基本结构单位是连接 子,形成一个直径约 1.5 nm 的亲水通道

细胞生物学全套完整版PPT文档(2024)

细胞生物学全套完整版PPT文档(2024)

推动生物工程进步
细胞生物学的研究也为生物工程领域提供了重要的理论和 技术支持,例如通过细胞工程可以生产具有特定功能的细 胞和组织工程产品。
2024/1/29
探索未知领域
随着研究的深入,细胞生物学将不断揭示新的未知领域和 生命现象,为人类探索生命奥秘提供更多的线索和启示。
6
02 细胞的基本结构 与功能
细胞质内含有各种细胞器,如线粒体、叶绿体、 内质网、高尔基体等,参与细胞的代谢和合成。
细胞质还承担着细胞内物质运输和能量转换的功 能。
2024/1/29
10
细胞核的结构与功能
01
细胞核是细胞的遗传信息库,由 核膜、核仁和染色质组成。
02
核膜将细胞核与细胞质分开,核 膜上有核孔,控制物质进出细胞
核。
2024/1/29
7
细胞的形态与大小
动物细胞形态多样,一般呈圆形、椭圆形或不规则形;植物细胞形态较规则,多为 长方形、正方形或多边形。
细胞大小差异很大,最小的细菌细胞直径仅0.2微米,最大的卵细胞直径可达200微 米以上。
2024/1/29
细胞的大小与生物体的复杂程度有关,一般来说,高等生物细胞较大,低等生物细 胞较小。
激光共聚焦显微镜
利用激光束扫描样品并收集荧光信号,实现 高分辨率的三维成像。
2024/1/29
电子显微镜
利用电子束代替光束,实现更高分辨率的细 胞结构观察。
33
细胞分离与培养技术
2024/1/29
细胞分离技术
包括机械法、酶消化法、免疫磁珠法等,用于从组织或血液中分 离出特定类型的细胞。
细胞培养技术
代谢组学技术
研究细胞内代谢产物的种 类、含量和变化,揭示细 胞代谢状态和调控机制。

细胞生物学第四版详细课件 PPT

细胞生物学第四版详细课件 PPT

本章概要(二)
• 细菌与蓝藻是原核细胞的两个重要代表。原核细胞的共同特征:没有核膜、遗传信息载体仅仅是一个 裸露的环状DNA分子,除核糖体与细胞质膜及其特化结构外,几乎不存在其他复杂的细胞器。将原核 细胞与真核细胞进行比较,从进化与动态的观点分析,主要有两个基本差异:一是以生物膜系统的分 化与演变为基础,真核细胞形成了复杂的内膜系统,构建成各种具有独立功能的细胞器,双层核膜将 细胞分隔为细胞核与细胞质两个基本部分;二是遗传结构装置的扩增与基因表达方式的相应变化。由 于上述的根本差异,真核细胞的体积也相应增大,内部结构更趋复杂化,生命活动的时间与空间的布 局更为严格,细胞内部出现精密的网架结构——细胞骨架。 • 古核细胞在形态结构、遗传装置虽与原核细胞相似,但一些基本分子生物学特点又与真核细胞接近。 • 真核细胞的结构可以概括为三大体系:(1)生物膜体系以及以生物膜为基础构建的各种独立的细胞 器;(2)遗传信息表达的结构体系;(3)细胞骨架体系。此外,细胞体积的守恒规律及其制约因素 的分析,细胞的形态结构和功能的相关性与一致性,动植物细胞的差异等均是真核细胞知识的重要组 成部分。 • 病毒是非细胞形态的生命体,但所有的病毒,必须在细胞内才能表现它们的基本生命活动——复制与 增殖。病毒是最小、最简单的生命体,主要是由一个核酸分子(DNA或RNA)与蛋白质构成的复合结 构,类病毒仅由一条有感染性的RNA构成。病毒在细胞内的复制(增殖)过程大致可分为: 侵染、脱 衣壳、早基因复制与表达、晚基因复制、结构蛋白合成、装配与释放等过程。
生物界的基本类群(图2-2)
支原体(A)及其模式图(B) (图2-3)
细菌的结构(图2-4)
革兰氏阳性菌(A)与革兰氏阴性菌 (B)的细胞壁(图2-5)
细菌的复制、转录和翻译同时进行 (图2-6)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 继信号假说提出与确证后,人们又发现一系列蛋白质分选信号 序列,统称信号序列(signal sequence),而且有些信号序 列还可形成三维结构的信号斑(signal patch),指导蛋白的 靶向转运和定位。
指导蛋白质从细胞基质转运到细胞 器的靶向序列的主要特征(表8-2)
二、蛋白质分选转运的基本途径与类型
在非细胞系统中蛋白质的翻译过程与 SRP、DP和微粒体的关系(表8-1)
分泌性蛋白的合成与跨越内质网膜 的共翻译转运图解(图8-3)
共翻译转运(cotranslational translocation):分泌 蛋白向rER腔内的转运是同蛋白质翻译过程偶联进行的,这 种蛋白在信号肽引导下边翻译边跨膜转运的过程称为共翻译 转运。
• 内部信号锚定序列(internal signal-anchor sequence, SA ):位于新生肽链内部的疏水序列,既是信号序列,又是 肽链跨膜锚定在脂双层中的序列。
• 内部停止转移锚定序列(internal stop-transfer anchor sequence, STA):位于新生肽链内部的疏水序列,既是肽 段终止转移,又是肽链跨膜锚定在脂双层中的序列。
一、信号假说与蛋白质分选信号 二、蛋白质分选转运的基本途径与类型 三、蛋白质向线粒体、叶绿体和过氧化酶体的分选的游离核糖体产生非分泌蛋白,内质网附着核糖体产 生分泌蛋白。核糖体没有结构差异,假设存在于蛋白质本身。
• 信号假说(signal hypothesis):分泌蛋白可能携带N端短 信号序列,一旦该序列从核糖体翻译合成,结合因子和蛋白 结合,指导其转移到内质网膜,后续翻译过程将在内质网膜 上进行。现在已知,信号假说是解释分泌性蛋白在糙面内质 网上合成的重要理论,该过程是包括蛋白质N端的信号肽、 信号识别颗粒和内质网膜上信号识别颗粒的受体(又称停泊 蛋白)等因子共同协助完成的。
膜蛋白的共翻译转运机理
• 膜蛋白的共翻译转运涉及几个问题:(1)靠疏水区滞留在内 质网膜上;(2)单次跨膜和多次跨膜;(3)跨膜段的定向。
• 开始转移序列(start transfer sequence):位于新生肽链 N端的信号序列(信号肽)(最终不保留),既可被SRP识 别,又可引导新生肽链开始穿膜转移。
• 多次跨膜蛋白:含有多个SA和多个STA的肽链将成为多次跨 膜蛋白。
• 跨内质网膜肽段的取向:一般而言,带正电荷氨基酸残基多 的一端,或带正电荷氨基酸残基多的一侧,朝向细胞质基质 一侧(外侧)。
内质网膜整合蛋白的拓扑学类型 (图8-4)
• STA:内部停止转移锚定序列 SA:内部信号锚定序列
• 线粒体、叶绿体和过氧化物酶体的蛋白质的信号序列特称为导 肽(leader peptide),其基本的特征是蛋白质在细胞质基质 中的游离核糖体上合成以后再转移到这些细胞器中,因此称这 种翻译后再转运的方式为翻译后转运(post-translational translocation)。这种转运方式在蛋白质跨膜过程中不仅需要 消耗ATP使多肽去折叠,而且还需要跨膜后由分子伴侣帮助蛋 白质再正确折叠形成有功能的蛋白。
• 信号肽(signal peptide):信号肽位于蛋白质的N端,一 般由16~26个氨基酸残基组成,其中包括信号肽疏水核心区、 N端和C端等3部分;原核细胞某些分泌性蛋白的N端也具有 信号序列。值得注意的是,信号肽似乎没有严格的专一性 (好利用!)。
信号肽的一级结构序列(图8-1)
• 信号识别颗粒(signal recognition particle,SRP ):信 号识别颗粒是由6种不同蛋白质和一个7S小RNA分子构成的 RNP颗粒。SRP含有2种结构域,即信号肽识别结构域和核 糖体结合结构域,其中信号肽识别结构域中的p54蛋白是一 种包含成簇Met残基的GTP酶,Met侧链与信号肽的疏水核 心结合;当SRP与信号肽结合后,核糖体结合结构域中的 p9和p14蛋白复合体阻断新生肽链的翻译。 SRP通常存在 于细胞质基质中,等待信号肽从多核糖体上延伸暴露出来, SRP既可与新生信号肽序列和核糖体大亚基结合,又可与 内质网膜上SRP受体结合,指导新生多肽及核糖体和mRNA 附着到内质网膜上。
核基因编码的蛋白质的分选大体可分2条途径: (1)共翻译转运(cotranslational translocation)途径:
即蛋白质合成在游离核糖体上起始之后,由信号肽和与之结 合的SRP引导转移至糙面内质网,然后新生肽边合成边转 入糙面内质网腔或定位在ER膜上,经转运膜泡运到高尔基 体加工包装再分选至溶酶体、细胞质膜或分泌到细胞外。这 种蛋白在信号肽引导下边翻译边跨膜转运的过程称为共翻译 转运。注意:内质网和高尔基体本身的蛋白质分选也按此途 径来完成。 (2)翻译后转运(post-translational translocation)途径: 即蛋白质在细胞质基质游离核糖体上合成以后,再转移到膜 围绕的细胞器,如细胞核、线粒体、叶绿体和过氧化物酶体, 或者成为细胞质基质的可溶性驻留蛋白和骨架蛋白。酵母中 有些分泌蛋白由结合ATP的分子Bip蛋白(Bip-ATP)与膜整 合蛋白Sec63复合物相互作用,水解ATP提供动力驱动翻译 后转运途径,即分泌蛋白在细胞质基质游离核糖体上合成后, 再转运至内质网中。
• 信号识别颗粒的受体(又称停泊蛋白,docking protein, DP):DP是内质网膜的整合蛋白,由α和β亚基组成,可特 异地与SRP结合。α亚基可结合GTP。
• 信号肽酶(signal peptidase ):内质网腔面上蛋白水解 酶,负责切除并快速降解新生多肽的N端信号肽序列。
信号识别颗粒(SRP)的结构示意 图(图8-2)
细胞生物学教学课件
第八章~~~~~~第十二章
第八章 蛋白质分选与膜泡运输
第一节 细胞内蛋白质的分选 第二节 细胞内膜泡运输
第一节 细胞内蛋白质的分选
真核细胞中除线粒体和植物细胞叶绿体中能合成少量蛋白 质外,绝大多数蛋白质都是由核基因编码,起始合成均发生在 游离核糖体上,然后或在细胞质基质(游离核糖体)中完成翻 译过程,或在粗面内质网膜结合核糖体上完成合成。然而,蛋 白质发挥结构或功能作用的部位几乎遍布细胞的各种区间或组 分。因此必然存在不同的机制以确保蛋白质分选,转运至细胞 的特定部位,也只有蛋白质各就各位并组装成结构与功能的复 合体,才能参与实现细胞的各种生命活动。这一过程称蛋白质 分选(protein sorting)或蛋白质寻靶(protein targeting)。 蛋白质分选不仅保证了蛋白质的正确定位,也保证了蛋白质的 生物学活性。实际上,蛋白质分选主要依靠蛋白质自身信号序 列,从蛋白质起始合成部位转运到其功能发挥部位的过程。
相关文档
最新文档