工程材料第三章知识点

合集下载

工程材料复习资料

工程材料复习资料

⼯程材料复习资料第⼀章⼀、名词解释:晶体:当材料处于固体状态时,若组成它的离⼦、原⼦或分⼦在三维空间呈有规则的长距离(⼤⼤超过原⼦或分⼦尺⼨)的周期性重复排列,即具有长程有序,这⼀类固态物质称为晶体。

它们离⼦、原⼦、分⼦规则排列的⽅式就称为晶体结构。

晶格:为了便于描述晶体中原⼦排列规律,把晶体中的原⼦(或离⼦等)想象成⼏何结点,并⽤直线从其中⼼连接起来⽽构成的空间格架,称为晶格。

固溶体:在固态下,合⾦组元间会相互溶解,形成在某⼀组元晶格中包含其它组元的新相,这种新相称为固溶体。

强度:指在外⼒作⽤下材料抵抗变形和断裂的能⼒。

弹性:卸载后试样的变形⽴即消失即恢复原状,这种不产⽣永久变形的性能称为弹性。

刚度:,弹性模量,⼯程上叫刚度。

疲劳强度:疲劳强度是指在⼤⼩和⽅向重复循环变化的载荷作⽤下,材料抵抗断裂的能⼒。

在理论上,是抵抗断裂的最⼤应⼒,⽤σ-1表⽰。

塑性:⾦属的塑性指⾦属材料在外⼒作⽤下,产⽣永久性变形⽽不破坏其完整性的能⼒。

⽤伸长率δ和断⾯收缩率ψ表⽰。

硬度:硬度是在外⼒作⽤下,材料抵抗局部塑性变形的能⼒。

⼆、名词区别:1、置换固溶体与间隙固溶体置换固溶体是指溶质原⼦取代部分溶剂原⼦⽽占据着晶格的结点位置所形成的固溶体;若溶质原⼦不是占据晶格结点位置⽽是分布在晶格间隙所形成的固溶体,称为间隙固溶体。

2、相组成物和组织组成物相组成物有三种:铁素体、奥⽒体、渗碳体。

组织组成物是有相组成物组成的物质,也可由单⼀相构成,如:珠光体、莱⽒体。

算相对量⽤每种相的铁碳⽐例。

三、何谓点缺陷?对性能有何影响?点缺陷是⼀种在三维空间各个⽅向上尺⼨都很⼩,尺⼨范围约为⼀个或⼏个原⼦间距的缺陷,包括空位、间隙原⼦、置换原⼦。

四.固溶体和⾦属间化合物在结构、性能上有何不同?当合⾦中溶质含量超过固溶体的溶解度时,将析出新相。

若新相的晶体结构与合⾦其它组元相同,则新相是为另⼀个组元为溶剂的固溶体。

若新相不同于任⼀组元,则新相是组元间形成的⼀种新物质-化合物。

工程材料第三章PPT

工程材料第三章PPT

金属结晶过程示意图 ★杂质符合“结构相似,尺寸相当” 原则
★实际金属和合金中以非自发形核为主
(2)晶核的长大:(实质就是原子 由液体向固体表面的转移。)
1)平面长大:冷却速度较小,表面向前平行推移长大
2)树枝状长大:冷却速度较大,形成负温度梯度,树枝 状的形状长大。
金属结晶示意图
平面长大的规则形状晶体 金 属 的 树 枝 晶
( L)
4)两相的重量。
L重量 66.7% 50 33.4kg
重量 33.3% 50 16.7kg
例:求30%Ni合金在1280 时相的相对量
温 度
时间
A 15 30 50
70
B
3.成分偏析
实际生产条件下为非平衡 结晶,因此,先后结晶的部 分成分会不相同。 ① 枝晶偏析(晶内偏析): 先结晶的枝轴与后结晶的枝 轴间成分不同。 ② 区域偏析:由于不平衡冷 却造成宏观区域成分不一致。 例如焊接接头中的中心线偏 析和层状偏析。
4.杠杆定理 不同条件下,相的成分及其相对量可用杠杆定理求得。 1)确定两平衡相的成分 如图(a)所示,水平线与液相 线L的交点 即为相的成分。 2)确定两平衡相的相对量
QL

方法是:
① 设试验合金总量Q Me为1,液、固相的量分别为QL、Qα , 则 Q Me =QL+Qα =1 ② 设液、固相含Ni浓度分别为α、c,而x(b)为试验合金中的平均 含Ni量(%), 则 QL α +Qα c = Q Me b
QLα +Qα c = Q Me b = (QL+Qα )b = QL b +Qα b Qαc -Qα b = QL b - QL α Qα(c -b )= QL( b – α)

工程材料学知识点

工程材料学知识点

工程材料学知识点第一章材料是有用途的物质。

一般将人们去开掘的对象称为“原料”,将经过加工后的原料称为“材料”工程材料:主要利用其力学性能,制造结构件的一类材料。

主要有:建筑材料、结构材料力学性能:强度、塑性、硬度功能材料:主要利用其物理、化学性能制造器件的一类材料.主要有:半导体材料(Si)磁性材料压电材料光电材料金属材料:纯金属和合金金属材料有两大类:钢铁(黑色金属)非铁金属材料(有色金属)非铁金属材料:轻金属(Ni以前)重金属(Ni以后)贵金属(Ag,Au,Pt,Pd)稀有金属(Zr,Nb,Ta)放射性金属(Ra,U)高分子材料:由低分子化合物依靠分子键聚合而成的有机聚合物主要组成:C,H,O,N,S,Cl,F,Si三大类:塑料(低分子量):聚丙稀树脂(中等分子量):酚醛树脂,环氧树脂橡胶(高分子量):天然橡胶,合成橡胶陶瓷材料:由一种或多种金属或非金属的氧化物,碳化物,氮化物,硅化物及硅酸盐组成的无机非金属材料。

陶瓷:结构陶瓷Al2O3,Si3N4,SiC等功能陶瓷铁电压电材料的工艺性能:主要反映材料生产或零部件加工过程的可能性或难易程度。

材料可生产性:材料是否易获得或易制备铸造性:将材料加热得到熔体,注入较复杂的型腔后冷却凝固,获得零件的能力锻造性:材料进行压力加工(锻造、压延、轧制、拉拔、挤压等)的可能性或难易程度的度量焊接性:利用部分熔体,将两块材料连接在一起能力第二章(详见课本)密排面密排方向fcc{111}<110>bcc{110}<111>体心立方bcc面心立方fcc密堆六方cph点缺陷:在三维空间各方向上尺寸都很小,是原子尺寸大小的晶体缺陷。

类型:空位:在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”。

间隙原子:在晶格非结点位置,往往是晶格的间隙,出现了多余的原子。

它们可能是同类原子,也可能是异类原子。

异类原子:在一种类型的原子组成的晶格中,不同种类的原子占据原有的原子位置。

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。

因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。

应力的单位是帕斯卡(Pa),即XXX/平方米。

第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。

应变分为线性应变和非线性应变两种。

线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。

非线性应变则不满足这个比例关系。

2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。

3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。

XXX模量的大小反映了材料的柔软程度和刚度。

杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。

综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。

构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。

截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。

胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。

应力是指在截面m-m上某一点K处的力量。

它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。

其中,σ称为正应力,τ称为切应力。

将应力的比值称为微小面积上的平均应力,用表示。

在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。

杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。

某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。

工程材料知识点

工程材料知识点

第一章材料的结构与组成1、填写出下表中三种典型金属的基本参数2、根据刚性模型,计算体心立方、面心立方及密排六方晶格的致密度。

体心立方:首先在一个晶胞中总共有8*1/8+1=2个原子,这个两个原子的体积为V1=2*4/ 3πr^3,而晶胞体积为V2=a^3。

根据晶胞中的原子分布可知,体心立方密排方向为[111],从而可以得到4r=a*√3。

根据上述可以计算其致密度为η=V1/V2=π*√3/8=68%。

面心立方:一个胞共有8*1/8+6*1/2=4个原子,这个两个原子的体积为V1=4*4/3πr^3,而晶胞体积为V2=a^3。

面心立方密排方向为[110],从而有4r=a*√2。

根据上述可以计算其致密度为η=V1/V2=π*√2/6=74%。

密排六方:4/3πr^6/a^3=(4/3πx(a/2)^6)/6x(√3a/4)xc=0.743、晶粒的大小对材料力学性能有哪些影响?用哪些方法可使液态金属结晶后获得细晶粒?晶粒度的大小对金属材料的力学性能有很大影响。

金属材料晶粒越小,其综合力学性能越好,即强度、硬度、塑性、韧性越高。

细化液态金属结晶晶粒的方法:增大过冷度、变质处理、振动或搅拌。

4、什么是过冷度?过冷度和冷却速度有什么关系?金属在实际结晶过程中,从液态必须冷却到理论结晶温度(T0)以下才开始结晶,这种现象称为过冷。

理论结晶温度T0和实际结晶温度T1之差△T,称为过冷度。

金属结晶时的过冷度并不是一个恒定值,而是与冷却速度有关,冷却速度越大,过冷度就越大,金属的实际结晶温度也就越低。

5、实际金属晶体存在哪些缺陷?对材料性能有何影响?晶体缺陷有点缺陷、线缺陷、面缺陷三种缺陷。

其中点缺陷包括空位、间隙原子、置换原子。

线缺陷包括刃型位错、螺型位错。

面缺陷包括晶体的表面、晶界、亚晶界、相界。

它们对力学性能的影响:使得金属塑性、硬度以及抗拉压力显著降低等等。

第二章材料的力学行为1、说明下列力学性能指标的名称、单位及其含义。

机械工程材料重要知识点

机械工程材料重要知识点

第一章 金属材料的力学性能钢:含碳量介于0.0218%--2.11%的铁碳合金。

铁是含碳量大于2.11%的铁碳合金。

工业纯铁:含碳量小于0.0218%的铁碳合金。

使用性能:材料在使用过程中所表现的性能。

包括力学性能、物理性能和化学性能。

常用的力学性能材料在外力的作用下将发生形状和尺寸变化,称为变形。

刚度:材料受力时抵抗弹性变形的能力。

指标为弹性模量E 。

抗拉强度σb :材料断裂前所承受的最大应力值。

屈服强度σs :材料发生微量塑性变形时的应力值。

塑性:材料受力破坏前可承受最大塑性变形的能力。

指标为:伸长率、断面收缩率。

冲击韧性是指材料抵抗冲击载荷作用而不破坏的能力。

材料在外力的作用下将发生形状和尺寸变化,称为变形。

外力去除后能够恢复的变形称为弹性变形。

外力去除后不能恢复的变形称为塑性变形。

e ,即材料承受最大弹性变形时的应力。

刚度:材料受力时抵抗弹性变形的能力。

指标为弹性模量E 。

强度:材料在外力作用下抵抗变形和破坏的能力。

s 的重复交变应力作用下发生断裂的现象。

材料在规定次数应力循环后仍不发生断裂时的最大应力称为疲劳极限。

通过改善材料的形状结构,减少表面缺陷,提高表面光洁度,进行表面强化等方法可提高材料疲劳抗力。

硬度:材料抵抗表面局部塑性变形的能力。

压头为钢球时,布氏硬度用符号HBS 表示,适用于布氏硬度值在450以下的材料。

压头为硬质合金球时,用符号HBW 表示,适用于布氏硬度在650以下的材料。

HRA 用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。

HRB 用于测量低硬度材料, 如有色金属和退火、正火钢等。

HRC 用于测量中等硬度材料,如调质钢、淬火钢等。

机械工程材料包括:金属材料、高分子材料、陶瓷材料、复合材料。

第二章 金属与合金的晶体结构晶体与非晶体的相同点与不同点:晶体,原子(离子或分子)在三维空间中有规则地周期性重复排列构成的物质称为晶体。

非晶体:组成物质的微粒无规则排列。

如:玻璃、松香。

工程材料力学性能各章节复习知识点

工程材料力学性能各章节复习知识点

⼯程材料⼒学性能各章节复习知识点⼯程材料⼒学性能各个章节主要复习知识点第⼀章弹性⽐功:⼜称弹性⽐能,应变⽐能,表⽰⾦属材料吸收弹性变形功的能⼒。

滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。

包申格效应:⾦属材料经预先加载产⽣少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应⼒(弹性极限或屈服极限)增加,反向加载,规定残余伸长应⼒降低的现象。

塑性:指⾦属材料断裂前发⽣塑性变形的能⼒。

脆性:材料在外⼒作⽤下(如拉伸,冲击等)仅产⽣很⼩的变形及断裂破坏的性质。

韧性:是⾦属材料断裂前洗⼿塑性变形功和断裂功的能⼒,也指材料抵抗裂纹扩展的能⼒。

应⼒、应变;真应⼒,真应变概念。

穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。

拉伸断⼝形貌特征?①韧性断裂:断裂⾯⼀般平⾏于最⼤切应⼒并与主应⼒成45度⾓。

⽤⾁眼或放⼤镜观察时,断⼝呈纤维状,灰暗⾊。

纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,⽽灰暗⾊则是纤维断⼝便⾯对光反射能⼒很弱所致。

其断⼝宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。

②脆性断裂:断裂⾯⼀般与正应⼒垂直,断⼝平齐⽽光亮,常呈放射状或结晶状。

板状矩形拉伸试样断⼝呈⼈字形花样。

⼈字形花样的放射⽅向也与裂纹扩展⽅向平⾏,但其尖端指向裂纹源。

韧、脆性断裂区别?韧性断裂产⽣前会有明显的塑性变形,过程⽐较缓慢;脆性断裂则不会有明显的塑性变形产⽣,突然发⽣,难以发现征兆拉伸断⼝三要素?纤维区,放射区和剪切唇。

缺⼝试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪⼏种形式?磨损、腐蚀和断裂是材料的三种主要失效⽅式。

材料的形变强化规律是什么?层错能越低,n越⼤,形变强化增强效果越⼤退⽕态⾦属增强效果⽐冷加⼯态是好,且随⾦属强度等级降低⽽增加。

在某些合⾦中,增强效果随合⾦元素含量的增加⽽下降。

材料的晶粒变粗,增强效果提⾼。

材料工程基础知识点总结

材料工程基础知识点总结

材料工程基础知识点总结
第一章、材料的性能及应用
1、常用的力学性能,如:σS,σb,σe,σP 等所表示的含义,弹性模量E及其主要影响因素、塑性指标的意义。

不同材料所适用的硬度(HB、HR、HV)测量方法。

第二章、原子结构和结合键
1、结合键的类型(主要为金属键、离子键、共价键)及其主要特点,它们对材料性能的主要影响
第三章、晶体结构
1、晶面与晶向的标注和识别
2、BCC、FCC、HCP三种常见金属晶体结构中所含的原子数、它们的致密度。

3、相、固溶体、中间相、固溶强化的概念、固溶体的分类、中间相的分类以及固溶体和中间相的主要区别。

第四章、晶体缺陷
1、晶体缺陷的分类、位错的含义和分类及特点。

位错(及点缺陷)密度的变化对材料性能(主要是力学性能)的影响。

2、晶界原子排列?的特点及其分类,晶界的特性;相界的分类、润湿
第五章、固体材料中原子的扩散
1、Fick第一定律的含义、非稳态扩散的误差函数解的应用计算
2、扩散的机制及影响扩散的主要因素以及在工业上的应用(如:工业渗碳为何在奥氏体状态下进行)
第六章、相平衡与相图原理
1、Gibbs相律含义,二元匀晶、共晶相图分析,杠杆定律的应用计算;相图与合金使用性(强度、硬度)和工艺性(铸造)的关系
2、铁碳相图(简化版)及其标注上面主要的成分点和温度及相;不同含碳量的合金从高温到室温下组织的变化,利用杠杆定律计算组织或相组成物的含量(主要针对C%<2.11%的合金,即钢)第七章、材料的凝固
1、液态合金结构的特点,过冷度及其与冷却速率的关系?。

材料工程基础复习要点知识点整理

材料工程基础复习要点知识点整理

材料⼯程基础复习要点知识点整理材料⼯程基础复习要点第⼀章粉体⼯程基础粉体:粉末质粒与质粒之间的间隙所构成的集合。

*粉末:最⼤线尺⼨介于0.1~500µm的质粒。

*粒度与粒径:表征粉体质粒空间尺度的物理量。

粉体颗粒的粒度及粒径的表征⽅法:1.⽹⽬值表⽰——(⽬数越⼤粒径越⼩)直接表征,如果粉末颗粒系统的粒径相等时可⽤单⼀粒度表⽰。

2.投影径——⽤显微镜测试,对于⾮球形颗粒测量其投影图的投影径。

①法莱特(Feret)径D F:与颗粒投影相切的两条平⾏线之间的距离②马丁(Martin)径D M:在⼀定⽅向上将颗粒投影⾯积分为两等份的直径③克伦贝恩(Krumbein)径D K:在⼀定⽅向上颗粒投影的最⼤尺度④投影⾯积相当径D H:与颗粒投影⾯积相等的圆的直径⑤投影周长相当径D C:与颗粒投影周长相等的圆的直径3.轴径——被测颗粒外接⽴⽅体的长L、宽B、⾼T。

①⼆轴径长L与宽B②三轴径长L与宽B及⾼T4.球当量径——把颗粒看做相当的球,并以其直径代表颗粒的有效径的表⽰⽅法。

(容易处理)*粉体的⼯艺特性:流动性、填充性、压缩性和成形性。

*粉体的基本物理特性:1.粉体的能量——具备较同质的块状固体材料⾼得多的能量。

2.分体颗粒间的作⽤⼒——⾼表⾯能,固相颗粒之间容易聚集(分⼦间引⼒、颗粒间异性静电引⼒、固相侨联⼒、附着⽔分的⽑细管⼒、磁性⼒、颗粒表⾯不平滑引起的机械咬合⼒)。

3.粉体颗粒的团聚。

第⼆章粉体加⼯与处理粉体制备⽅法:1.机械法——捣磨法、切磨法、涡旋磨法、球磨法、⽓流喷射粉碎法、⾼能球磨法。

①脆性⼤的材料:捣磨法、涡旋磨法、球磨法、⽓流喷射粉碎法、⾼能球磨法②塑性较⾼材料:切磨法、涡旋磨法、⽓流喷射粉碎法③超细粉与纳⽶粉:⽓流喷射粉碎法、⾼能球磨法2.物理化学法①物理法(雾化法、⽓化或蒸发-冷凝法):只发⽣物理变化,不发⽣化学成分的变化,适于各类材料粉末的制备②物理-化学法:⽤于制备的⾦属粉末纯度⾼,粉末的粒度较细③还原法:可直接利⽤矿物或利⽤冶⾦⽣产的废料及其他廉价物料作原料,制的粉末的成本低④电解法:⼏乎可制备所有⾦属粉末、合⾦粉末,纯度⾼3.化学合成法——指由离⼦、原⼦、分⼦通过化学反应成核和长⼤、聚集来获得微细颗粒的⽅法①固相法:以固态物质为原始原料(热分解反应法、化合反应法、⽔热法等)②液相沉淀法:最常见的⽅法沉淀法(直接沉淀法、均匀沉淀法、共沉淀法)、溶胶-凝胶法影响颗粒粉碎的因素:易碎性、碰撞速度(碎料例⼦碰撞速度、粉碎介质碰撞速度)粉体的分级:把粉体材料按某种粒度⼤⼩或不同种类颗粒进⾏分选的操作。

《材料科学与工程基础》顾宜 第三章 课后答案

《材料科学与工程基础》顾宜 第三章 课后答案

3-1.解释以下名词:金属键、晶格、晶胞、合金、组元、相、机械混合物、铁素体、奥氏体、渗碳体、马氏体、黄铜、青铜、形变铝合金、非晶态金属键:是化学键的一种,主要在金属中存在。

由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。

无方向性和饱和性.晶格:表示晶体结构周期重复规律的简单几何图形.晶胞:晶体内部的基本重复单元(最小重复单元).合金:是由两种或两种以上的金属与金属或非金属经一定方法所合成的具有金属特性的混合物。

一般通过熔合成均匀液体和凝固而得。

组元:组成合金的独立的、最基本的单元称为组元,组元可以是组成合金的元素或稳定的化合物。

相:指一个宏观物理系统所具有的一组状态,也通称为物态。

机械混合物:指由两种或以上的互不相溶晶体结构(纯金属、固溶体或化合物)机械地混合而形成的显微组织。

机械混合物的性能主要取决于组成它的各组成物的性能以及其数量、形状、大小和分布情况。

铁素体:是碳溶解在α-Fe中的间隙固溶体,常用符号F表示。

具有体心立方晶格,其溶碳能力很低.奥氏体:是钢铁的一种层片状的显微组织,通常是ɣ-Fe中固溶少量碳的无磁性固溶体,也称为沃斯田铁或ɣ-Fe。

一般由等轴状的多边形晶粒组成,晶粒内有孪晶。

渗碳体:铁与碳形成的稳定化合物,其化学式为Fe3C。

渗碳体的含碳量为ωc=6.69%,熔点为1227℃。

其晶格为复杂的正交晶格,硬度很高HBW=800,塑性、韧性几乎为零,脆性很大。

马氏体:是黑色金属材料的一种组织名称,是碳在α-Fe中的过饱和固溶体黄铜:由铜和锌所组成的合金,由铜、锌组成的黄铜就叫作普通黄铜,如果是由二种以上的元素组成的多种合金就称为特殊黄铜。

黄铜有较强的耐磨性能,黄铜常被用于制造阀门、水管、空调内外机连接管和散热器等。

青铜:是金属冶铸史上最早的合金,在纯铜(紫铜)中加入锡或铅的合金,有特殊重要性和历史意义,与纯铜(紫铜)相比,青铜强度高且熔点低(25%的锡冶炼青铜,熔点就会降低到800℃。

材料科学与工程基础第三章标准答案

材料科学与工程基础第三章标准答案

材料科学与⼯程基础第三章标准答案3.8 铁具有BCC晶体结构,原⼦半径为0.124 nm,原⼦量为55.85g/mol。

计算其密度并与实验值进⾏⽐较。

答:BCC结构,其原⼦半径与晶胞边长之间的关系为:a = 4R/3= 4?0.124/1.732 nm = 0.286 nmV = a3 = (0.286 nm)3 = 0.02334 nm3 = 2.334?10-23 cm3BCC结构的晶胞含有2个原⼦,∴其质量为:m = 2?55.85g/(6.023?1023) = 1.855?10-22 g密度为ρ= 1.855?10-22 g/(2.334?10-23 m3) =7.95g/cm33.9 计算铱原⼦的半径,已知Ir具有FCC晶体结构,密度为22.4g/cm3,原⼦量为192.2 g/mol。

答:先求出晶胞边长a,再根据FCC晶体结构中a与原⼦半径R的关系求R。

FCC晶体结构中⼀个晶胞中的原⼦数为4,ρ= 4?192.2g/(6.023?1023?a3cm3) = 22.4g/cm3,求得a = 0.3848 nm 由a = 22R求得R = 2a/4 = 1.414?0.3848 nm/4 = 0.136 nm 3.10 计算钒原⼦的半径,已知V 具有BCC晶体结构,密度为5.96g/cm3,原⼦量为50.9 g/mol。

答:先求出晶胞边长a,再根据BCC晶体结构中a与原⼦半径R的关系求R。

BCC晶体结构中⼀个晶胞中的原⼦数为2,ρ= 2?50.9g/(6.023?1023?a3cm3) = 5.96 g/cm3,求得a = 0.305 nm 由a = 4R/3求得R = 3a/4 = 1.732?0.305 nm/4 = 0.132 nm 3.11 ⼀些假想的⾦属具有图3.40给出的简单的⽴⽅晶体结构。

如果其原⼦量为70.4 g/mol,原⼦半径为0.126 nm,计算其密度。

答:根据所给出的晶体结构得知,a = 2R =2?0.126 nm = 0.252 nm ⼀个晶胞含有1个原⼦,∴密度为:ρ= 1?70.4g/(6.023?1023?0.2523?10-21cm3)= 7.304 g/cm33.12 Zr 具有HCP晶体结构,密度为6.51 g/cm3。

机械工程材料第三章ppt课件

机械工程材料第三章ppt课件

• 2.塑性变形对金属性能的影响
1〕加工硬化:随着冷变形程度 的添加,金属的强度、硬度提高, 塑性下降的景象称加工硬化或形 变强化。
缘由:随着变形的发生,不仅晶 粒外形发生变化,而且晶粒内部 也发生变化。在晶粒内先出现明 显的滑移线和滑移带。随着变形 量的添加,位错密度添加,晶粒 破碎成亚晶粒。晶格产生严重畸 变,使金属进一步滑移的阻力增 大。
例3 :发电机的护环, 资料:高锰奥氏体无磁钢。 如40Mn18Cr3,不能经过热处置强化。但能产生 剧烈的加工硬化景象。 因此,消费中经常采用冷变形来提高其强度。
冷加工成形得以顺利进展(拉拔,拉深)
无加工硬化 容易拉穿
截面减小,假设无加工 硬化,钢丝在出模后, 能够被拉断。
拉深时,弯角处变形最 严重,产生加工硬化, 该处变形到一定的程度 后,随后的变形转移到
第三章 金属的塑性变形与再结 晶3.1金属的塑性变形
• 金属塑性变形的本质是原子相对挪动到达新的稳定位置。 其挪动间隔往往超越了晶格中的原子间距,使原子失去 恢复到原始形状的才干。因此,产生永久变形。
塑性变形的根本方法
3.塑性成形的优缺陷
1〕机械性能高。加工 后组织性能得到改善和提 高
2〕资料利用率高 。
• 二.单晶体的滑移变形
受力条件: 正应力 与滑移面垂直的应力 只产生弹性变形
或断裂。 切应力 与滑移面平行的应力 产生塑性变形
弹性变形
正断
临界切应力:使晶体开场滑移的切应力。
P A c ocso sc ocso s
当σ=σS时,那么临界切应力
c sc osc os
coscos 取向因子
T再 = 0.4T熔 = 0.4〔3380+273〕= 1461〔K〕

材料力学第三章知识点总结

材料力学第三章知识点总结

直升机的旋转轴
电机每秒输入功:外力偶作功完成:
×
=P W
M W
e

=
形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。

倾斜了同一个角度,小方格变成了平行四边形。

τdα
τ
l
ϕ
做薄壁圆筒的扭转试验可得
l
是材料的一个弹性常数,称为剪切弹性模量,G的量纲各向同性材料,三个弹性常数之间的关系:
ρργγtg ≈x
d d d ′=x d d ϕρ⋅=O 1O 2ABCD 为研究对象
D’
微段扭转变形d dx Rd dx DD tg ϕγγ==≈'d ϕ/ d x -扭转角沿x 轴的变化率
扭转变形计算式
O d A ρTρ⋅
(实心截面)
1、横截面上角点处,切应力为零;
2、横截面边缘各点处,切应力
3、切应力沿横截面周边形成与
4、横截面周边长边中点处,切应力最大。

有关,见教材P93 之表3.2。

工程材料笔记整理重点

工程材料笔记整理重点

工程材料复习笔记整理(重点中的重点)名词解释:1.强度:抵抗塑性变形和破坏屈服强度:抵抗产生塑性变形抗拉强度:抵抗产生断裂前硬度:抵抗局部塑性变形塑性:产生塑性变形而不破坏的能力韧度:材料抵抗冲击载荷作用而不致破坏的极限能力称为冲击韧度疲劳强度:材料在规定的重复次数或交变应力作用下不致发生断裂的能力2.再结晶:升高温度,形成新的晶粒,使原来被拉大的晶粒转变为等轴晶粒,完全消除冷变形强化,力学性能恢复到塑性变形前的状态3.冷变形与热变形:再结晶温度以上进行的塑性变形为热变形,以下的为冷变形4.巴氏合金:铅基轴承合金5.下贝氏体,强度、韧度高,有最佳的综合机械性能,理想的强韧化组织,生产中常采用等温淬火获得下贝氏体组组织6. 一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。

二次渗碳体:指从奥氏体中析出的渗碳体三次渗碳体:从中析出的称为三次渗碳体共晶渗碳体:莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:珠光体中的渗碳体称为共析渗碳体7.纤维组织:热变形使铸态金属的偏析、分布在晶界上的夹杂物和第二相逐渐沿变形方向延展拉长、拉细而形成锻造流线;难以用热处理来消除8.变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

9.索氏体:在650〜600℃温度范围内形成层片较细的珠光体10.屈氏体:在600〜550℃温度范围内形成片层极细的珠光体。

11.马氏体:碳在a-Fe中的过饱和固溶体。

12.过冷度:实际结晶温度与理论结晶温度之差称为过冷度13.玻璃钢:玻璃纤维增强塑料称为玻璃钢。

玻璃钢具有成本低,工艺简单;强度低,绝缘等特点,它可制造壳体、管道、容器等14.加工硬化:随变形量的增加,金属的强度大为提高,塑性却有较大降低产生原因:位错密度升高为了继续变形,退火可消除加工硬化15.调质:调质处理后钢获得回火索氏体组织,其性能特点是具有较高的综合力学性能16.铁素体:(a或F )碳原子溶于a-Fe形成的间隙固溶体性能:固溶强化不明显,强度,硬度低,塑性韧性高17.奥氏体:(Y或A)碳原子溶于丫-Fe形成的间隙固溶体性能:高塑性,是理想的锻造组织18.渗碳体:(Fe3C )由12个铁原子和4个碳原子组成的具有复杂晶体结构间隙化合物性能:高硬度、高脆性、低强度19.珠光体:(P )铁素体和渗碳体的混合物称为珠光体,它具有较高的综合力学性能的特点20.莱氏体Ld 或Ld':组织:Ld : Fe3C ( Fe3C+Fe3CH) + Y Ld‘: Fe3C ( Fe3C+Fe3c口)+ P 机械化合物,性能:高硬度、高脆性。

机械工程材料知识点汇总

机械工程材料知识点汇总

1大学课程《机械工程材料》知识点汇总第一章金属的晶体结构与结晶一、解释下列名词过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。

非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。

变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核 的固态质点,使结晶时的晶核数目大大增加,从而提局了形核率,细化晶粒,这 种处理方法即为变质处理。

变质剂:在浇注前所加入的难熔杂质称为变质剂。

二、常见的金属晶体结构有哪几种?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;五、实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金 属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。

因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。

同时晶 体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。

六、过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?答:①冷却速度越大,则过冷度也越大。

②随着冷却速度的增大,则晶体内形核率和长大速 度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这 时原子的扩散能力减弱。

③过冷度增大,AF 大,结晶驱动力大,形核率和长大速度都 大,且N 的增加比G 增加得快,提高了 N 与G 的比值,晶粒变细,但过冷度过大,对 晶粒细化不利,结晶发生困难。

7、金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:①金属结晶的基本规律是形核和核长大。

②受到过冷度的影响,随着过冷度的增大,晶 核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及 振动和搅拌的方法也会增大形核率。

材料力学第三章知识点总结

材料力学第三章知识点总结

直升机的旋转轴
电机每秒输入功:外力偶作功完成:
×
=P W
M W
e

=
形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。

倾斜了同一个角度,小方格变成了平行四边形。

τdα
τ
l
ϕ
做薄壁圆筒的扭转试验可得
l
是材料的一个弹性常数,称为剪切弹性模量,G的量纲各向同性材料,三个弹性常数之间的关系:
ρργγtg ≈x
d d d ′=x d d ϕρ⋅=O 1O 2ABCD 为研究对象
D’
微段扭转变形d dx Rd dx DD tg ϕγγ==≈'d ϕ/ d x -扭转角沿x 轴的变化率
扭转变形计算式
O d A ρTρ⋅
(实心截面)
1、横截面上角点处,切应力为零;
2、横截面边缘各点处,切应力
3、切应力沿横截面周边形成与
4、横截面周边长边中点处,切应力最大。

有关,见教材P93 之表3.2。

工程材料知识点总结(全)

工程材料知识点总结(全)

工程材料知识点总结(全)第二章材料的性能1、布氏硬度布氏硬度的优点:测量误差小,数据稳定。

缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。

适于测量退火、正火、调质钢,铸铁及有色金属的硬度(硬度少于450HB)。

2、洛氏硬度HRA用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。

HRB用于测量低硬度材料, 如有色金属和退火、正火钢等。

HRC用于测量中等硬度材料,如调质钢、淬火钢等。

洛氏硬度的优点:操作简便,压痕小,适用范围广。

缺点:测量结果分散度大。

3、维氏硬度维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。

4、耐磨性是材料抵抗磨损的性能,用磨损量来表示。

分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。

5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象。

6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。

7、应力强度因子:描述裂纹尖端附近应力场强度的指标。

第三章金属的结构与结晶1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。

为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。

晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。

由任意两个原子之间连线所指的方向称为晶向。

组成晶格的最小几何组成单元称为晶胞。

晶胞的棱边长度、棱边夹角称为晶格常数。

①体心立方晶格晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。

属于体心立方晶格的金属有铁、钼、铬等。

②面心立方晶格原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)典型金属(金、银、铝、铜等)。

③密排六方晶格每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。

西南交大工程材料学知识点

西南交大工程材料学知识点

第一章 钢的合金化基础一、合金元素(Me )的定义合金化:加入适当元素改变金属性能的方法。

合金元素: 为合金化所加入的元素。

(主动加入)锰(Mn ) 铬(Cr ) 钼(Mo ) 钨(W ) 钒(V ) 铌(Nb ) 钛(Ti ) 镍(Ni ) 铜(Cu ) 钴(Co ) 硅(Si ) 硼(B ) 氮(N ) 铝(AL ) 稀土(RE )碳钢(碳素钢):Fe+C+杂质元素(S 、P 、Si 、Mn 、O 、H 、N ……)合金钢(合金化的钢): Fe+C+合金元素(Me )+杂质元素杂质元素:混入钢中的元素硫(S ) 磷(P ) 硅(Si ) 锰(Mn ) 氧(O ) 氢(H ) 氮(N )二、合金元素的分类及性质1、分类a 、按是否形成碳化物(c’)分为:(1)碳化物(c’)形成元素:弱碳化物形成元素,Mn ——Mn 3C (固溶态);强碳化物形成元素(Me 强)Cr 、Mo 、W 、V 、Nb 、Ti ,其中:Cr 、Mo 、W (部分固溶态,部分化合态),V 、Nb 、Ti (化合态)。

(2)非碳化物形成元素:Ni 、Si 、Al 、B 、Cu 、Co 、RE (固溶态)b 、按对Fe-Fe 3C 相图各区的影响不同分为:(1)扩大F 区元素(固溶态):Cr 、Mo 、W 、V 、Nb 、Ti 、Al 、Si (提高A 1、A 3,使S 、E 点左上移)。

(2)扩大A 区元素:Ni 、Cu 、Mn 、C 、N (使使S 、E 点左下移)。

2、碳化物(c’)形成元素的性质a 、愈强的碳化物形成元素,形成的碳化物愈稳定。

b 、愈强的碳化物形成元素,总是优先与C 形成C’。

c 、C’中可溶其他合金元素(Me ),当溶入的Me 与C 的结合力大于原C’中的元素与C 的结合力时,溶入后所形成的新C’的稳定性增加,反之亦然。

d 、过剩型C’的强化效果低于沉淀型的C’的强化效果。

三、钢的几种强化机理(1)提高强度阻止位错运动氏气团小尺寸溶质钉扎位错柯滑移面歪扭溶质产生晶格畸变固溶强化→→⎭⎬⎫⎩⎨⎧→:(2)第二相强化:弥散均匀在基体中分布的第二相颗位阻止位错运动,提高强度。

材料工程基础课件第三章优秀课件

材料工程基础课件第三章优秀课件

tddydz2tdxddydz
x
x2 2
t 1 t dx 2 x
d dx
o’
x
流出A´B´C´D´面的热量:
dQ dx x td dydz x 2t2d 2 xd dydz
x轴向净流入量为:
dQx0dQ dx x2t2dxdydzd
同理:
dQy0dQdy y2t2dxdydzd
dQz0dQdz z2t2dxdydzd
固体 金属: 自由电子扩散
气体: 依靠分子的紊乱运动 (碰撞) (纯粹的分子运动)
液体: 介于固气之间, 类似于非导电固体.
对流 指依靠流体质点的宏观运动而发生的能量传递. 特点是
流体处于运动状态, 且只出现在流体中.
分自然对流和强制对流二种.
热辐射 因核外电子跃迁而引发的以电磁波的形式传播的能量.
即: q r
n
W/mK
指单位温度梯度作用下, 单位时间内通过单位面积的导
热量. 物性参数, 由实验测定.
2.2.3 影响 k 的因素
影响因素: 种类、φ、p、t、γ、结构等.
k的数值表现的规律: 金 属 非 金 属 l g 通常把室温下 0.22N /m K的材料称为隔热保温材料.
与温度的关系: 0 b t或 0 1 t
材料工程基础课件第三章
§1. 传热学概述
1.1 传热学 传热学是研究热量传递规律及其应用的科学. 热量是因温度差别而转移的能量.
动力 f
传递规律的两个要素: 方向
1.2 传热方式
按传热过程中物质本质的区别,分为: 导热、对流和辐射.
导热 指温度不同的各部分物质仅仅由于直接接触,没有相对宏
观运动时所发生的热量传递现象, 特点是介质处于静止状态. 非金属: 晶格结构(分子 原子)振动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程材料第三章金属材料一、名词解释。

合金钢为了提高钢的性能,在铁碳合金中特意加入合金元素所获得的钢。

回火稳定性淬火钢在回火时,抵抗强度、硬度下降的能力称为回火稳定性。

二次硬化某些铁碳合金(如高速钢)须经多次回火后,才进一步提高其硬度。

这种硬化现象,称为二次硬化,它是由于特殊碳化物析出和(或)由于与奥氏体转变为马氏体或贝氏体所致。

回火脆性250-400和450-650两个温度区间回火后,钢的冲击韧性明显下降。

铸铁碳的质量分数在2.11%以上的铁碳合金青铜含铝,硅,铅,鈹,锰等的铜基合金黄铜以锌为主要合金元素的铜合金。

二、填空题。

1、一些含有合金元素Ni 、Cr 和Mn 的钢容易产生第二类回火脆性,为了消除第二类回火脆性,可采用同时含有合金元素Mo和W的钢。

2、合金元素中,碳化物形成元素有Fe 、Mn、Cr 、Mo等。

3、除Co、Al外,几乎所有的合金元素都使Ms、Mf点下降,因此淬火后相同碳质量分数的合金钢比碳钢残余奥氏体少,使钢的硬度变大。

4、促进晶粒长大的元素有Mn、P 等。

5、按钢中合金元素含量,可将合金钢分为低合金钢、中合金钢和高合金钢三类。

6、合金钢中常用来提高淬透性的合金元素有Cr 、Mn 、Ni 、Si和B五种,其中作用最大的是Cr 。

7、20钢是优质碳素结构钢,可以制造冲压件及焊接件。

8、20CrMnTi钢是中淬透性合金渗透钢,可以制造汽车、拖拉机上的重要零件。

9、9SiCr是冷作模具钢,可以制造冷作模具。

10、CrWMn是冷作模具钢,可以制造冷作模具。

11、5CrMnMo是热作模具钢,可以制造热锻模钢。

12、Cr12MoV是冷作模具钢,可以制造冷作模具。

13、T12是碳素工具钢,可以制造锉刀、挂刀等刃具。

14、16Mn是低合金高强度结构钢,可以制造桥梁、船舶、车辆等结构钢。

15、40Cr是低淬透性合金调质钢,可以制造一般尺寸的重要零件。

16、60Si2Mn是合金弹簧钢,可以制造汽车、拖拉机上的板簧和螺旋弹簧。

17、GCr15钢铬弹簧钢,可以制造冷冲模、量具、丝锥等。

18、1Cr13是马氏体不锈钢,可以制造韧性要求较高的紧固件、叶片等。

19、1Cr18Ni9Ti是奥氏体不锈钢,可以制造耐酸容器、抗磁仪表、医疗器械。

20、ZGMn13是高锰钢,可以制造车履带、铁轨分道叉。

21、20CrMnTi是中淬透性合金渗透钢,Cr、Mn的主要作用是提高淬透性,Ti 的主要作用是阻碍渗碳时奥氏体晶粒长大;增加渗碳层,提高研磨性,热处理的工艺是渗碳后直接淬火,再低温回火。

22、W18Cr4V是高速钢,碳质量分数是0.73%~0.83%,W的主要作用是提高热硬性,Cr的主要作用是提高淬透性,V的主要作用是形成VC,阻止奥氏体晶粒长大。

热处理工艺是球化退火→淬火→回火。

最后组织是回火马氏体+碳化物+少量残余奥氏体。

23、0Cr18Ni9Ti是奥氏体钢,Cr、Ni和Ti的作用分别是提高钢的耐蚀性、形成稳定碳化物和防止晶间腐蚀。

24、灰口铸铁中碳主要以石墨的形式存在,可用来制造机床床身、柴油机汽缸。

25、可锻铸铁中石墨的形态为团絮状,可用来制造制造形状复杂、承受冲击和振动载荷的零件,如汽车拖拉机的后桥外壳、管接头、低压阀门等。

26、球墨铸铁中石墨的形态为球状,可用来制造曲轴、连杆、凸轮轴。

27、蠕墨铸铁中石墨的形态为蠕虫状,可用来制造高层建筑中高压热交换器、内燃机汽缸和缸盖、汽缸套、钢锭模、液压阀等铸件。

28、影响石墨化的主要因素是温度和冷却速度和合金元素。

29、球墨铸铁的强度、塑性和韧性均较普通灰口铸铁高,这是因为球墨铸铁通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性。

30、HT200牌号中“HT”表示灰口铸铁,数字“200”表示最低抗拉强度。

31、生产球墨铸铁选用稀土镁作为球化剂。

32、铸铁按石墨形态可以分为灰口铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁,其中球墨铸铁强度最高。

四、是非题。

1、调质钢的合金化主要是考虑提高其红硬性。

✗2、T8钢比T12和40钢有更好的淬透性和淬硬性。

✗3、奥氏体型不锈钢可采用加工硬化提高强度。

✓4、高速钢需要反复锻造是因为硬度高不易成形。

✓5、T8钢与20MnVB相比,淬硬性和淬透性都较低。

✗6、18-4-1高速钢采用很高温度淬火,其目的是使碳化物尽可能多地溶入奥氏体中,从而提高钢的红硬性。

✓7、奥氏体不锈钢的热处理工艺是淬火后低温回火处理。

✗只能以提高钢的耐腐蚀性能进行热处理:8、铸铁可以经过热处理改变基体组织和石墨形态。

✗只组织不形态9、可锻铸铁在高温时可以进行锻造加工。

✗铁都不可锻,脆10、石墨化的第三阶段不易进行。

✓11、可以通过球化退火使普通灰口铸铁变成球墨铸铁。

✗12、球墨铸铁可通过调质处理和等温淬火工艺提高其机械性能。

✓13、5CrMnMo和W6Mo5Cr4V2钢中Mo的作用相同。

✗14、5CrNiMo和W18Cr4V钢中Cr的作用相同。

✓五、综合题。

1、说出Q235A、15、45、65、T8、T12等钢的种类、碳的碳质量分数,各举出一个应用实例。

2、为什么低合金高强钢用锰作为主要的合金元素?3、试述渗碳钢和调质钢的合金化及热处理特点。

4、有两种高强螺栓,一种直径为10㎜,另一种直径为30㎜,都要求有较高的综合机械性能: b≥800MP a,a k≥600kj/㎡。

试问应选择什么材料及热处理工艺?5、为什么合金弹簧钢以硅为重要的合金元素?为什么要进行中温回火?6、轴承钢为什么要用铬钢?为什么对非金属夹杂限制特别严格?7、简述高速钢的成分、热处理和性能特点,并分析合金元素的作用。

成分特定:a.高碳b加入Cr、Wo、V等合金元素合金元素的作用 :Cr 能提高淬透性;W、Mo保证高的热硬性;V能形成VC,硬度极高且颗粒细小、分布均匀,能大大提高钢的硬度和耐磨性。

热处理特点:球化退火→机加工→淬火→低温回火性能特点:a.高强度b.高耐磨性c.高热硬性d.足够的塑性和韧性8、W18Cr4V钢的Ac1+(30~50)℃的常规方法来确定其淬火温度是多少?1220~1280℃9、不锈钢的固溶处理与稳定化处理的目的各是什么?固溶处理:获得单相奥氏体组织提高耐蚀性;稳定化处理:消除晶界贫铬,避免了晶间腐蚀的产生。

10、试分析20CrMnTi钢和1Cr18Ni9Ti钢中的Ti的作用。

20CrMnTi钢:Ti的作用是阻碍奥氏体晶粒长大;1Cr18Ni9Ti钢:Ti的作用是防止晶间腐蚀。

11、试分析合金元素Cr在40Cr、GCr15、CrWMn、1Cr18Ni9Ti、4Cr9Si2等钢中的作用。

40Cr:提高淬透性GCr15:提高淬透性;形成合金渗碳体(Fe,Cr)3C,呈细密、均匀分布,提高钢的耐磨性,特别是提高钢的疲劳强度。

CrWMn:形成难溶碳化合物,提高耐磨性。

1Cr18Ni9Ti:铬在氧化性介质(如水蒸气、大气、海水、氧化性酸)中极易钝化,生成致密的氧化膜,使钢的耐蚀性大大提高。

4Cr9Si2(耐热钢):形成致密和稳定的尖晶石类型结构的氧化膜。

12、试就下列四个钢号:20CrMnTi、65、T8、40Cr讨论如下问题:(1)在加热温度相同的情况下,比较其淬透性和淬硬性,并说明理由;(2)各种钢的用途、热处理工艺、最终的组织。

13、要使球墨铸铁的基本组织为铁素体、珠光体或下贝氏体,工艺上应如何控制?通过热处理:退火、正火14、有一灰口铸铁铸件,经检查发现石墨化不完全,尚有渗碳体存在,试分析其原因,并提出使这一铸件完全石墨化的方法。

原因:化学成分控制不当,Mn过多阻碍石墨化,Mn溶于铁素体和渗碳体中。

方法:添加促进石墨化的元素P15、述石墨形态对铸铁性能的影响。

石墨形态对应力集中十分敏感,片状石墨引起严重应力集中。

16、试比较各类铸铁之间性能的优劣顺序,与钢相比较铸铁性能有什么优缺点?石墨形态对应力集中十分敏感,片状石墨引起严重应力集中。

因此灰铸铁的抗拉强度最低,可锻铸铁的抗拉强度较高,球墨铸铁的抗拉强度最高。

17、为什么一般机器的支架、机床的床身常用灰口铸铁制造?1.工艺问题:这些零件形状复杂,除铸造用其他方法难以得到毛坯,而灰口铸铁具有十分优秀的铸造性能.而钢的铸造性很差.2.价格问题:便宜18、铝硅合金为什么要采用变质处理?19、指出下列铜合金的类别、用途:H80、H62、HPb63-3、HNi65-5、QSn6.5-0.1、QBe2。

20、定下列钢件的退火方法,并指出退火的目的及退火后的组织。

(1)经冷却后的15钢板,要求降低硬度;(2)ZG35的铸造齿轮;(3)锻造过热的60钢锻坯;(4)改善T12钢的切削加工性能;21、出下列工件的淬火及回火温度并说明回火后获得的组织:(1)45钢小轴;(2)60钢弹簧;(3)T12钢刀;22、甲、乙两厂生产同一种零件,均选用45钢,硬度要求220HB~250HB,甲厂采用正火,乙厂采用调质处理,均能达到硬度要求,试分析甲、乙两厂产品的组织和性能差别。

23、画出共析、亚共析、过共析钢的C曲线。

相关文档
最新文档