激光加工技术的应用与发展
激光加工技术的研究进展与应用前景
激光加工技术的研究进展与应用前景激光加工技术是一种高新技术,具有高精度、高速度、高效率等优点,在制造、材料加工、医疗等领域有着广泛的应用前景。
本文将从激光加工技术的研究进展及其应用前景方面进行探讨。
一、激光加工技术的研究进展自从激光加工技术出现以来,其快速发展已有50多年的历史。
激光加工技术的研究重点包括激光加工光学系统、激光加工控制系统、激光加工数控技术等内容。
激光加工光学系统包括激光器、光纤、反射镜、平台等组件。
随着激光技术的不断发展,激光器的功率越来越高,光纤的传输损失也越来越小,反射镜和平台的准确度也得到了极大地提高,从而使得激光加工的高精度和高效率得到保证。
激光加工控制系统是激光加工技术中的关键环节,它涉及到激光加工过程中的位置控制、速度控制、功率控制等方面。
在这个领域,计算机的应用以及软硬件的提高,为激光加工技术的精度和效率提供了坚实的支撑。
激光加工数控技术是指数字化控制技术在激光加工领域的应用。
数控技术使得激光加工技术变得更加智能化,为精密加工提供了良好的手段。
目前,数控技术已广泛应用于激光加工领域,成为激光加工的主要手段之一。
二、激光加工技术的应用前景1. 制造领域在制造领域,激光加工技术可以用于各种各样的精密加工,如微细孔加工、激光切割、激光打标、激光焊接等处理过程。
激光加工技术可以实现高精度、高效率的加工,使得制造业实现了从传统的手工制造向智能化、数字化等方向的转型,从而在产品品质、生产效率等方面实现了质的飞跃。
2. 材料加工领域在材料加工领域,激光加工技术可以进行复杂的材料加工,如激光精密切割、激光打孔等。
激光加工技术对材料的切割、打孔等操作可以达到无损伤效果,避免了机械切割方式中可能产生的热变形、剪切毛刺等问题,同时也可以使材料加工速度快速的提高,从而为材料加工领域的进一步发展提供了重要的技术支撑。
3. 医疗领域在医疗领域,激光加工技术也得到了广泛的应用。
如激光治疗、激光切割等。
激光制造技术的应用与发展趋势
激光制造技术的应用与发展趋势激光制造技术是一项重要的现代制造技术。
它的应用范围广泛,可以用于制造各种高精度、高质量的零部件、元件和产品。
激光制造技术的发展趋势也非常明显,未来它将继续向着高效、高精度、智能化和多功能化的方向发展。
一、激光制造技术的应用激光制造技术主要包括激光切割、激光焊接、激光打标、激光烧结、激光雕刻和激光清洗等方面。
这些应用领域很广,可以应用到机械加工、电子、光学、医药、军事等领域。
下面就来详细介绍一下激光制造技术的主要应用。
1、激光切割激光切割是利用高能激光束对材料进行熔化、蒸发和燃烧,将材料切割成所需形状的加工技术。
激光切割技术具有高速、高精度、无残余、无变形等特点,广泛应用于金属材料、非金属材料和合金材料的切割加工。
激光切割已经成为大批量、高效的加工方式,例如在汽车零部件、电子设备、建筑材料等行业中广泛应用。
2、激光焊接激光焊接是利用激光束对金属材料进行加热和熔化,将两种或多种材料焊接在一起的一种加工方式。
激光焊接具有焊缝小、结构均匀、强度高等优点,被广泛应用在汽车、电子、航空航天、电力、医疗等工业领域中,尤其是在汽车制造和电子器件制造领域的应用更为广泛。
3、激光打标激光打标是利用激光束在材料表面进行刻印、打标的一种加工方式。
激光打标技术具有速度快、精度高、清晰度好等特点,在电子、航空、汽车、医疗等工业领域的标志、条形码、名称、编号等标识标记方面实现了生产自动化和信息化管理的目标。
4、激光烧结激光烧结是利用激光束对多层金属材料或复合材料进行加热和融合的一种加工方式。
这种加工方式可以用于制造各种高精度零部件和几何形态复杂的零部件,例如汽车发动机活塞、刀具等。
5、激光雕刻激光雕刻是利用激光束将图案、文字、图像等深度割刻在材料表面的一种加工方式。
激光雕刻技术广泛应用在商标、礼品、纪念品等的制造中。
6、激光清洗激光清洗是利用激光束对材料表面进行清洗、去污的一种加工方式。
激光清洗技术能够在金属表面清除氧化层、锈蚀、涂层、尘土等,使表面光洁度提高,广泛应用于汽车、机械、建筑材料等领域。
激光加工技术的应用及未来发展趋势
激光加工技术的应用及未来发展趋势激光加工技术是目前应用最广泛的高精度、高效率加工技术之一,在诸多领域发挥着重要的作用。
本文将从激光加工技术的应用、现状及未来发展趋势等方面展开分析讨论。
一、激光加工技术的应用激光加工技术的应用范围非常广泛,主要涵盖以下几个方面:1. 材料切割。
激光切割技术被广泛应用于金属、非金属材料的加工中,如通过对金属板材进行激光切割,可以高效地完成各种金属零件的制作。
2. 焊接。
激光焊接技术被广泛应用于汽车、机械、电子、航空等诸多领域,可以完成各种材料的高精度焊接,提高了产品的质量和生产效率。
3. 雕刻。
激光雕刻技术是目前应用最广泛的激光加工技术之一,被广泛应用于玉石、皮革、木材、彩金等材料的加工。
4. 理疗医疗。
激光技术在医疗领域应用的最为广泛的领域是激光治疗、激光手术、激光检测等。
二、激光加工技术的现状当前,激光加工技术已经成为了高精度、高效率的加工方法之一。
随着工业加工需求的不断增长,激光加工技术的应用范围也在不断扩大,其应用领域和发展方向也更加多样化。
目前,激光加工技术在中国的应用也非常广泛,尤其在汽车、航空、机械、电子、建筑等领域,激光加工技术的应用已经成为一种趋势。
虽然激光加工技术已经有了广泛的应用,但目前激光加工技术面临的问题也不容忽视。
例如,激光加工过程中的废气处理和粉尘处理问题、激光加工机器的成本昂贵等问题。
三、激光加工技术的未来发展趋势随着科技的不断进步,激光加工技术的应用前景也越来越广阔。
未来,激光加工技术的应用领域还将不断拓展,同时优化激光加工设备也将成为厂家竞争的重点。
未来激光加工技术的发展趋势主要体现在以下几个方面:1. 优化设备、成本更低。
未来的激光加工机将更加高效、便捷,操作起来更加人性化。
同时,通过技术革新和成本的降低,未来激光加工设备的成本会不断被压缩,这对于提高激光加工技术的普及和应用来说非常重要。
2. 更加精细化和智能化。
未来激光加工技术将更加智能化,加工精度将得到更大的提高。
激光加工技术的发展和应用
激光加工技术的发展和应用激光加工技术是一种高精度、高效率的加工方式,随着科学技术的不断进步,激光加工技术在工业制造、医疗、通信等领域得到广泛应用。
本文将从发展历程、工艺特点、应用领域几个方面来探讨激光加工技术的发展和应用。
一、发展历程激光加工技术起源于20世纪60年代,当时我们还没有现在所熟知的连续激光器,只有脉冲激光器。
脉冲激光器能够产生高能量密度的光束,用于切割、打孔等加工操作。
激光加工技术的发展主要依赖于光学、电子等各方面技术的发展,随着科技的进步,激光器出现了许多新的形态,如CO2激光器、光纤激光器、半导体激光器等。
同时,激光加工技术也不断发掘新的加工方法,如激光刻蚀、激光沉积、激光转移等。
二、工艺特点激光加工技术与传统加工技术的主要区别在于:激光加工是利用光束将工件表面局部加热,使其融化、气化或发生化学反应,实现加工形状的改变。
这一特点使激光加工具有以下几个突出的优点:1.高精度:激光加工可精确控制激光束的能量密度和加工轨迹,从而获得高精度的加工结果。
2.高效率:激光加工速度快,工艺质量好,且节省能源和材料。
3.灵活性:激光加工不受材料硬度、形状等限制,可对各种材料进行加工,且加工形式多样,如切割、打孔、雕刻、焊接等。
4.环保:激光加工没有污染、噪音和振动,可以实现工艺无废。
三、应用领域激光加工技术在众多领域得到了广泛应用,主要包括以下几个方面:1.工业制造激光加工技术在工业制造中几乎涵盖了所有的制造行业,例如,汽车制造、手机制造、空调制造、家电制造等。
激光加工技术可以用于零部件的切割、作标、打孔等操作,还可以用于三维打印、表面改性等方面。
2.医疗激光加工技术在医疗领域也有很多应用,例如,激光美容、激光治疗、激光手术等。
其中,激光手术是激光加工技术在医疗领域的重要应用之一。
激光手术与传统手术相比,具有切口小、止血快、恢复快等优势。
3.通信现代通信技术中,激光光纤通信技术是一项十分重要的技术。
激光制造技术的应用现状和展望
激光制造技术的应用现状和展望激光制造技术是一种应用广泛且高效的工艺技术,它通过激光束的加工、切割、焊接、打标等方式,可以以高精度和高速度对各类材料进行加工。
激光制造技术已经在许多领域得到了广泛应用,如汽车制造、航空航天、电子产品制造等,取得了显著的成果,并且展望未来仍有巨大的发展潜力。
目前,激光制造技术在汽车制造领域的应用非常广泛。
例如,在汽车制造过程中,激光焊接技术可以用于焊接汽车车身和车桥,具有高质量和高效率的优势。
激光切割技术可以用于切割汽车车门和汽车车顶等零部件,其高精度和高速度可以大大提高生产效率。
此外,激光打标技术可以应用于汽车发动机和车身上,用来进行产品标识和追踪,提高产品质量和溯源能力。
在航空航天领域,激光制造技术也发挥着重要作用。
航空航天器结构通常要求轻、强、刚性好,而通过激光焊接、激光切割和激光打孔等技术可以制造出形状复杂、高质量的航空航天器部件。
激光金属沉积技术可以用于修复和加固航空发动机叶片等关键部件,在提高航空器安全性的同时也降低了维修成本。
在电子产品制造领域,激光制造技术也被广泛应用。
激光切割技术可以用于切割手机屏幕、平板电脑和电视屏幕等薄膜材料,具有高效率和高精度的特点。
激光焊接技术可以用于连接电子元器件,不仅提高了连接质量,还可以在不破坏其他元器件的情况下实现无接触连接。
此外,激光打标技术可以用于电子产品的标识和唯一编码,提高了产品的溯源能力和防伪能力。
展望未来,激光制造技术仍有很大的发展潜力。
随着激光技术的不断进步和降低成本,激光加工设备的普及将越来越广泛,应用也将进一步扩大。
例如,在医疗领域,激光制造技术可以用于制造医疗器械和人工器官,为医疗行业的发展提供更多的可能性。
在能源领域,激光制造技术可以用于制造太阳能电池板和核能设备等,为可再生能源和清洁能源的发展做出贡献。
总的来说,激光制造技术在各个领域的应用现状非常广泛,并且展望未来仍具有巨大的发展潜力。
随着技术的不断进步和创新,激光制造技术将为各个行业带来更多的机会和挑战,成为推动产业升级和经济发展的重要力量。
激光加工技术的发展及应用研究
激光加工技术的发展及应用研究激光加工技术相信大家已经不会陌生了。
它是一种以激光束为工具进行加工的技术,由于具有高精度、高效率、无损伤、无污染、无接触等优点,激光加工技术在领域中被广泛应用,它有望成为未来工业制造的主流技术之一。
一、激光加工技术的历史与发展激光加工技术的历史可以追溯到20世纪60年代。
1965年,美国一位科学家发明了被称作激光的新型光源,由于其单色性、相干性和高亮度,很快就引起了工业界的关注。
1982年,德国的魏德梅尔(Karl-Otto Mende)博士首次将激光应用于金属加工中。
当时的激光能量仅为几十瓦,但其加工效率已经超过传统的加工方法。
随着激光技术的发展,其在工业制造中的应用也越来越广泛。
特别是现在的高功率激光技术,使得激光加工效率得到了大幅提升。
目前,激光加工技术已经被广泛应用于金属、非金属和复合材料的加工中,成为了现代制造业的一项重要技术。
二、激光加工技术的分类根据激光加工的模式和处理特点,激光加工可以分为以下几类:1. 激光切割技术:主要应用于金属材料的切割,具有高效、高精度、无接触且无热影响等优点,可以在制造过程中减少材料的浪费。
2. 激光钻孔技术:主要应用于金属材料的开孔、钻孔和放电加工,具有高精度、高效率、非接触性等优点,可以实现对规则和不规则形状的孔洞加工。
3. 激光焊接技术:主要应用于金属材料的焊接,具有高强度、高可靠性、无杂质、无变形等优点,可以实现对不同材料与不同厚度的焊接。
4. 激光刻蚀技术:主要应用于半导体微机电系统、热敏电路、4G手机行业等领域,具有高精度、无刻蚀液、无腐蚀残留等优点,可以实现对非接触性的刻蚀加工。
三、激光加工技术的应用1. 机械制造业激光加工技术在机械制造业中的应用领域很广,如金属零部件、工业机器人、汽车和航空零部件等制造中。
从机械加工的角度,激光加工的加工速度比传统加工快,精度高,能够研究制造一些新颖、微小、薄肉、复杂、高精度的工件,具有无可比拟的优势。
激光加工技术在航空制造中的应用
激光加工技术在航空制造中的应用一、激光加工技术概述激光加工是指通过激光切割、雕刻、焊接等方式对材料进行加工的技术。
激光加工技术具有高精度、高效率、无损伤等优点,广泛应用于工业制造、医疗、通讯等领域。
同时,激光加工技术也承载着航空制造领域中的关键任务,为航空制造提供了重要的支持。
二、激光加工技术在航空制造中的应用1. 激光切割激光切割是指利用激光束对金属板材等材料进行切割,其具有高精度、高效率、不产生毛刺等特点。
在航空制造中,激光切割技术可以用于制作飞机构件、内饰装配件等。
例如,利用激光切割技术可以制作出飞机座椅的金属骨架和塑料零件,使座椅具有更好的舒适度和寿命。
2. 激光雕刻激光雕刻是指利用激光束对材料表面进行刻划,从而形成图案、字体等。
在航空制造中,激光雕刻技术可以用于标记飞机构件的编号、零部件的名称等。
利用激光雕刻技术可以大大提高飞机零部件的识别和管理,从而提高航空制造的效率。
3. 激光焊接激光焊接是指利用激光束对材料进行加热、熔化,从而将材料焊接在一起的技术。
在航空制造中,激光焊接技术可以用于制作飞机外壳、内部结构等。
例如,利用激光焊接技术可以将飞机外壳的不同部分焊接在一起,保证外壳的密封性和可靠性。
4. 激光打标激光打标是指利用激光束对材料表面进行刻印,从而形成文字、图案等的技术。
在航空制造中,激光打标技术可以用于标记零部件的重要信息、检修周期等。
利用激光打标技术可以确保飞机零部件的可溯性,从而提高飞机的安全性和可靠性。
三、激光加工技术面临的挑战和发展方向虽然激光加工技术在航空制造领域中有着广泛的应用,但是还面临着一些挑战。
例如,激光加工技术的设备成本较高、需要经过专业培训的人才比较稀缺等。
因此,发展出一套高效、低成本、易操作的激光加工技术将成为未来的一个发展方向。
同时,将激光加工技术与人工智能、大数据等技术相结合,实现智能化和自动化生产,也是激光加工技术未来的发展趋势。
四、结论综上所述,激光加工技术在航空制造中的应用具有广泛的前景和重要的意义。
激光加工技术在工程机械制造中的应用
激光加工技术在工程机械制造中的应用激光加工技术是一种现代高精密加工技术,利用激光束对工件进行切割、焊接、打孔等加工。
随着工程机械行业的不断发展和技术的进步,激光加工技术在工程机械制造中的应用越来越广泛。
本文将从激光加工技术的优势、在工程机械制造中的应用以及未来发展趋势等方面进行探讨。
一、激光加工技术的优势1. 高精度激光加工技术能够实现微米级甚至纳米级的加工精度,可以满足工程机械制造中对零部件精度要求的提高。
2. 高效率激光加工技术可以实现高速加工,提高了生产效率,缩短了加工周期,符合工程机械制造中对生产效率和产能的要求。
3. 无接触加工激光加工过程中不需要与工件发生接触,可以避免因接触而导致的变形和损伤,适用于对工件表面质量要求高的工程机械零部件加工。
4. 灵活性激光加工技术可以实现对各种材料的加工,涵盖了工程机械制造中常用的金属材料和非金属材料。
5. 可实现复杂几何形状加工激光加工技术可以实现对复杂几何形状的工件进行精密加工,满足了工程机械零部件加工中对复杂零件的加工要求。
1. 材料切割工程机械的制造需要对各种金属材料进行切割,传统的切割方法需要借助锯切、剪切等工具,工艺复杂且效率低。
而激光切割技术可以实现对各种材料的快速精密切割,提高了生产效率和切割质量。
2. 焊接激光焊接技术在工程机械制造中得到了广泛应用,可以对各种金属材料进行高品质的焊接,实现了对工件的精密连接,提高了工程机械的零部件质量和可靠性。
3. 孔加工工程机械零部件中常常需要进行孔加工,传统的孔加工方法需要借助钻、锉等工具,工艺繁琐且加工质量难以保障。
而激光孔加工技术可以实现对各种材料的快速精密孔加工,提高了加工质量和孔位精度。
4. 表面处理工程机械零部件需要经常进行表面处理,传统的表面处理方法存在着磨损大、工艺复杂等问题。
而激光表面处理技术可以实现对工件表面的高温熔化,使表面快速冷却,形成致密的涂层,提高了工件的耐磨性和抗腐蚀性。
激光加工发展的趋势
激光加工发展的趋势
激光加工是一种高精度、高效率的加工方式,在各个领域都有广泛的应用。
未来激光加工的发展趋势主要体现在以下几个方面:
1. 高功率激光技术:随着激光器技术的不断发展,高功率激光器的应用越来越广泛。
高功率激光器可以提供更强的能量密度,使得激光加工的速度更快、效率更高,适用于加工更大尺寸、更高强度材料。
2. 光纤激光技术:光纤激光器由于其小巧、灵活、易于集成等特点,在激光加工领域得到了广泛应用。
未来光纤激光技术将继续进一步发展,提高功率、提高光束质量,以满足越来越高的加工要求。
3. 聚焦技术:激光加工的关键在于对激光光束的精确控制和聚焦。
未来将继续改进聚焦技术,提高光束质量,实现更精确、更高效的加工。
4. 激光微加工技术:激光微加工是将激光技术应用于微米尺度的加工领域,可以实现微米级的精确控制和加工。
未来激光微加工技术将进一步发展,应用于微电子、生物医学等领域。
5. 激光成形技术:激光成形技术是一种将激光器作为热源,通过加热、冷却等方式来实现材料的变形和成型。
未来激光成形技术将进一步发展,应用于快速制造、复杂结构等领域。
总体来说,未来激光加工技术将朝着高功率、高效率、高精度、高集成度的方向发展,并在各个领域得到更广泛的应用。
新型激光加工技术研究与应用展望
新型激光加工技术研究与应用展望激光加工是一种利用激光束对材料进行加工的技术。
激光加工技术已经广泛应用于不同领域,例如汽车工业,微电子学,医学和航空航天等。
新型激光加工技术研究和应用的发展趋势是探究如何提高精度和效率,减少加工变形和损伤等问题。
本文将分析新型激光加工技术的研究和发展,以及它们在不同领域的应用展望。
一、激光成形技术激光成形技术可以通过激光束在材料表面熔化和烧蚀,使它进一步固化和成型。
这种技术可以有效地减少加工和后处理时间,同时提高精度和制造质量。
激光成形技术已经广泛应用于航空航天、能源和制造业等领域。
实验研究表明,激光成形技术可以制造出复杂的3D形状,如零件、模具、螺栓等。
二、激光微纳加工技术激光微纳加工技术是通过控制激光束的位置和强度,进行微米或纳米尺度的加工。
激光微纳加工技术可以实现高精度、高速和无损的加工效果,并且可以应用于制造微型元件、表面处理和纳米结构制造等领域。
例如,激光微纳加工技术已经应用于微电子学中的CMOS器件制造、纳米光电和MEMS制造等领域。
虽然激光微纳加工技术中存在一些难点问题,例如加工精度和加工速度等,但是未来将进一步提高技术的可靠性和应用性。
三、激光表面改性技术激光表面改性技术是将激光束聚焦在材料表面,通过在表面形成不同的熔化、汽化和重熔化区,从而改变材料的表面性质。
这种技术可以有效地提高材料的耐蚀性、防护性、引燃性和磨损性能。
激光表面改性技术已经广泛应用于航空航天、电子、机械制造和医疗器械等领域。
例如,激光表面改性可以使机械零件具有更好的磨损和腐蚀性能,从而延长零件的使用寿命。
未来,激光表面改性技术将进一步优化材料表面结构和性能,以满足不同领域的需要。
四、激光增材制造技术激光增材制造技术是一种通过控制激光束来进行立体加工的制造技术。
这种技术可以通过不断添加材料层,形成复杂的三维物体。
激光增材制造技术已经应用于航空航天、医疗器械、能源和制造业等领域。
例如,激光增材制造技术可以制造出各种复杂的结构件,如发动机叶片、立体模型和骨骼支撑器等。
激光技术与应用发展的趋势
激光技术与应用发展的趋势激光技术是一种高精度、高效率、高质量、高速度的现代化技术,被广泛应用于医疗、通讯、材料加工、环境保护、军事等领域。
本文将从激光技术的基础、发展、应用以及未来趋势等多个方面进行探讨。
一、激光技术的基础激光技术是基于激光器产生的激光束进行的一种技术。
激光器的产生需要三个条件:增益介质、激发源和光反馈。
其中增益介质是激光光子数密度的一个增加器,而激发源可以是电子束、放电器、化学反应或其他方式。
光反馈是保持激光行为的重要条件。
激光器按照其产生激光的基本涵盖物质可以分为固体激光器、气体激光器、半导体激光器和液体激光器。
其中采用掺杂的固体激光器因其长寿命、高能量、高功率而备受推崇。
二、激光技术的发展随着科技的不断发展,激光技术也得到了广泛的应用和发展。
在材料加工方面,钻孔、切割和焊接等工艺都得以大幅提升。
在通讯领域,光纤激光器已逐渐取代了旧式氩离子激光器。
在医学上,激光技术可以用于眼科、牙科等方面。
在环境保护领域,激光器也正在发挥着越来越重要的作用。
三、激光技术的应用1.材料加工:激光技术可以用于高精度加工,如钻孔、切割和焊接等工艺。
此外,激光技术还可以用于制造零部件、切割纸张、制作多孔陶瓷等。
2.通讯:激光技术在通讯领域中的应用正在快速发展。
激光光纤通讯系统已经陆续取代了传统的氩离子激光器。
3.医疗:激光技术在医学上的应用越来越广泛。
在眼科方面,激光技术可以治疗白内障、近视等疾病。
在牙科上,激光器可以用于治疗牙周病、切除肿瘤等。
4.环境保护:激光技术在环保领域中也有很大的应用前景。
激光扫描器可以用于监测空气质量、精准测量环保设备的污染物排放等。
四、激光技术的未来趋势未来,激光技术的发展将会集中在以下方面:1.激光技术的高效化:未来的激光系统将更加高效、精确和可控,从而在工业生产和材料处理领域中得到更加广泛的应用。
2.超快激光技术的发展:未来超快激光技术的发展将会涉及到材料科学、计算机科学、医疗和环保等领域。
激光加工技术及其应用
激光加工技术及其应用激光加工作为一种高端加工技术,广泛应用于航天、武器、汽车、电子、医疗等领域。
它是利用激光束的高强度和高可控性进行材料加工的一种技术,可以用于切割、刻蚀、打孔、焊接等多种加工作业。
本文将探讨激光加工技术及其应用领域。
一、激光加工技术简介激光加工技术是指利用激光能量对材料进行切割、刻蚀、钻孔、打孔、焊接等加工作业的技术。
它的原理是利用激光束的高聚焦能力,将激光束集中在小的区域内,使材料局部受热,从而蒸发或熔化。
因为激光束的特殊性质,激光加工具有高精度、高效率、高速度、低损伤、无接触等优点,并且可以加工几乎所有材料。
激光加工技术主要分为激光切割、激光刻蚀、激光钻孔、激光打孔、激光表面处理等几大类。
其中,激光切割是最常见的加工类型之一,它可以用于金属、非金属、纺织品、玻璃等材料的高精度切割。
二、激光加工应用领域(一)、汽车制造随着汽车制造行业的不断发展,对于汽车零部件的制造要求也越来越高。
激光加工技术在汽车制造领域的应用越来越广泛,它可以用于汽车发动机、底盘、车身等各个方面的制造。
例如,在发动机制造中,激光焊接技术可以用于活塞、缸套的制造,其加工速度和质量远远超过传统的加工方法;在车身制造中,激光切割技术可以用于汽车门、车身板等的精细加工,其加工速度和精细度也较高。
(二)、电子制造在电子制造领域,激光加工技术同样发挥着重要作用。
以手机制造为例,激光加工技术可以用于手机屏幕、摄像头制造过程中的精细加工,能够实现高效率、高精度的制造,提高制造的品质和效率。
此外,激光加工技术还可以用于半导体器件、电路板等电子元器件的制造和加工,它比传统的机械加工和化学加工更加高效。
(三)、航空制造在航空制造方面,激光加工技术也有着广泛的应用。
在航空发动机制造中,激光加工技术可以用于制造复杂的叶轮和涡轮叶片,其加工精细度和速度较高,性能更加优良。
此外,激光加工技术还可以用于制造航空器件和机身等各个方面的加工,在提高航空器件的质量和安全性方面发挥了重要作用。
激光在材料制造中的应用及发展
激光在材料制造中的应用及发展人类在现代科技发展的历程中,不断探究化学、物理、工程等多个领域,从而诞生了许多革命性的新技术,其中激光技术一直备受推崇。
激光以其独特的性能和成像方式,在制造、医疗、通信等领域都有广泛的应用。
在材料领域,激光技术的应用更是深刻和丰富,实现了材料加工和制造的高精度、高质量、高效率等特点。
随着激光技术的不断完善和发展,它必定会在各个领域持续发挥着大力的作用。
一、激光在材料加工中的应用1. 激光切割技术激光切割技术是指使用激光束来熔化工件表面,再利用气流将其吹掉,从而达到切割材料的目的。
激光切割技术具有切割精度高、自动化程度高、处理速度快等优点,应用广泛。
在金属板材、玻璃、陶瓷等材料的制造和加工中,激光切割技术尤为重要和普遍。
2. 激光打标技术激光打标技术是指利用激光将材料表面材料氧化或气化,达到打印、刻字、划线等目的。
激光打标技术具有成本低、精度高、印刷速度快等优点,应用广泛。
在食品包装、纸张、汽车、电子等领域都有广泛的应用。
3. 激光焊接技术激光焊接技术是指利用激光束对工件局部高温熔化,而后融合在一起。
相对于传统焊接技术,激光焊接技术具有精度高、焊接质量好、操作稳定等优点,应用广泛。
在汽车、航空、半导体、医疗设备等行业,激光焊接技术都有重要应用。
二、激光在材料制造中的应用1. 激光烧结技术激光烧结技术是将粉末通过高温烧结成具有一定形状和性能的材料。
相对于传统的烧结技术,激光烧结技术具有能量浓度高、加热速度快等优点,可以制造金属材料、陶瓷材料、塑料等多种材料。
2. 激光三维打印技术激光三维打印技术是一种先进的材料制造技术,可以通过添加材料的方式建立三维对象。
激光三维打印技术的优点在于:速度快、精度高、有效减少废料等,应用范围广泛。
在航空、医学、汽车等领域的应用非常广泛。
三、激光技术的未来发展激光技术作为一种与时俱进的科技,未来的发展趋势仍然有着广泛的前景。
目前,激光技术的领域已经开始拓宽,如在太阳电池、LED、生命科学等诸多领域,也有了新的应用。
激光加工技术的现状与发展趋势
激光加工技术的现状与发展趋势前言随着人们对高品质产品的需求日益增长,激光加工技术在现代制造业中的应用越来越广泛。
激光加工技术以其精准、高效、具有自动化特点,成为了重要的制造加工方式之一。
本文将从当前激光加工技术的现状出发,探讨激光加工技术的发展趋势,分析其存在的问题,并对未来的发展进行展望。
一、激光加工技术现状激光加工技术作为现代制造业中的关键技术之一,其应用场合十分广泛。
从金属材料的切割、焊接到非金属材料的打孔、雕刻等都选择了激光加工技术。
目前,国内的激光加工机床的制造和应用已经相对成熟,多种类型、多种功率的激光器得以应用于不同的领域。
同时,激光加工技术的产业链也日益完善,从光学元器件、激光器和加工机床到加工控制系统和加工条件的控制,在该领域的企业层出不穷。
尤其是近年来,随着智能制造的发展,激光加工技术也逐渐实现了自动化生产,减少了人工干预的程度,成为了重要的智能制造方式之一。
二、激光加工技术的发展趋势自从激光技术推出以来,经过几十年的发展,激光加工技术的应用已经面向很多领域,包括工业、医疗、科研等。
未来的激光加工技术将更加专业化和个性化。
在制造业领域内,工业激光加工技术将更加多元化。
未来的研发重点将集中于提高加工效率和降低成本,同时激光加工技术将逐步地发展为高速、精密、定制化、柔性化的加工方式,并逐渐实现与大数据、人工智能等技术的深度融合。
此外,飞秒激光加工技术、超短脉冲激光加工技术、激光3D打印技术和激光切割技术等在未来的发展上也将会有很大的突破。
一方面,将涉及到成像技术、自适应控制技术等一系列技术手段的研究。
另一方面,激光加工制造技术将在更广泛范围内发挥其作用,包括高分子材料、生物医疗、集成光电子系统等。
三、激光加工技术存在的问题在应用激光加工技术的过程中,一些问题仍然需要解决。
首先,激光加工技术的应用范围和技术标准尚未统一,不同厂家之间还存在着技术上的差异,因此激光加工技术的标准化显得非常重要。
激光加工技术论文--
激光加工技术的应用与发展宫梦雷黄山学院安徽黄山 245001摘要:激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。
用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。
激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。
关键词:加工原理、发展前景、强化处理、微细加工、发展前景。
一激光加工的原理及其特点1.激光加工的原理激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。
由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。
由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。
激光加工的特点激光具有的宝贵特性决定了激光在加工领域存在的优势:①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。
②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。
③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。
④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。
因此,其热影响区小,工件热变形小,后续加工量小。
⑤它可以通过透明介质对密闭容器内的工件进行各种加工。
⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。
⑦使用激光加工,生产效率高,质量可靠,经济效益好。
例如:①美国通用电器公司采用板条激光器加工航空发动机上的异形槽,不到4H即可高质量完成,而原来采用电火花加工则需要9H以上。
仅此一项,每台发动机的造价可省5万美元。
②激光切割钢件工效可提高8-20倍,材料可节省15-30%,大幅度降低了生产成本,并且加工精度高,产品质量稳定可靠。
2024年激光加工市场前景分析
2024年激光加工市场前景分析摘要本文主要对激光加工市场进行了深入分析,探讨了其发展趋势和前景。
首先,介绍了激光加工的基本原理和应用领域。
然后,分析了激光加工市场的现状和存在的问题。
接着,根据市场趋势和技术发展,展望了激光加工市场的未来发展。
最后,提出了相关建议,以促进激光加工市场的进一步发展。
1. 引言激光加工是一种基于激光技术的材料加工方法,具有高精度、高效率、非接触等优点。
它广泛应用于制造业的各个领域,如汽车制造、电子设备、航空航天等。
随着制造业的快速发展和技术的不断进步,激光加工市场获得了良好的发展机遇。
2. 激光加工市场现状目前,全球激光加工市场规模巨大,主要集中在发达国家。
激光加工设备的销售额和应用范围持续扩大,市场需求增长迅速。
然而,激光加工市场也存在一些问题,如设备价格昂贵、技术门槛高等,限制了市场的进一步发展。
3. 激光加工市场发展趋势随着科技的进步和人们对加工质量的要求提高,激光加工技术将继续得到广泛应用。
以下是激光加工市场的发展趋势:3.1 技术创新随着激光技术的不断创新,激光加工设备的性能将逐渐提升。
例如,激光功率的提高、激光波长的变化等,都将进一步改善激光加工的效率和质量。
3.2 应用领域拓展激光加工将不断拓展其应用领域,涵盖更广泛的行业。
例如,激光在医疗领域的应用正在逐渐增加,如激光手术和激光治疗等。
这些新的应用领域将进一步推动激光加工市场的发展。
3.3 自动化技术应用随着自动化技术的快速发展,激光加工设备将更加智能化和自动化。
例如,自动化的激光切割系统、激光焊接机器人等,将提高激光加工的效率和准确性。
4. 激光加工市场的未来发展激光加工市场的未来发展前景非常广阔。
以下是对激光加工市场未来发展的展望:4.1 市场规模持续增长随着制造业的不断发展和技术的不断进步,激光加工市场的规模将不断扩大。
预计未来几年,全球激光加工市场的规模将保持高速增长。
4.2 技术水平提升随着技术创新的不断推进,激光加工技术的水平将不断提升。
激光加工技术的发展现状
激光加工技术的发展现状
激光加工技术是以激光为加工源,进行加工加工的技术。
随着科技的不断发展与进步,激光加工技术得到了广泛的应用,其在制造业、光电子、IT等领域也得到了广泛的应用。
作为一种高精度、高效率、高可靠性的加工技术,激光加工技术的发展现状备受关注。
一、激光加工技术的发展历程
激光加工技术自应用于工业领域以来,经历了长达几十年的漫长历程。
在1970年代初期,激光加工技术开始成为工业界关注的热门话题。
然而,当时市场对激光加工技术并不太看好,普及程度也很低。
20世纪80年代中期,激光加工技术开始迅速发展,开始在工业领域大量应用,更多的制造商也开始采用激光加工技术为其产品赋予高附加值。
二、激光加工技术的发展现状
在激光加工技术的发展中,尤其是在国家的政策支持下,其应用范围得到了极大地扩展。
如今,激光加工技术不仅常规应用于
钢材、铝合金、塑料等传统加工领域,还被广泛应用于半导体、光电子、精密仪器等领域。
随着新材料不断涌现,激光加工技术也不断迭代升级,其应用领域和应用范围得到了进一步的扩展。
在医疗、航空航天、原子能等领域,激光加工技术也得到了广泛应用,成为一种重要的加工手段和技术。
三、未来展望及展望
随着世界各地科技工作者的不断追求,激光加工技术也在不断发展。
未来,随着科技的发展和工业领域的需求,激光加工技术将会开展更多的应用。
同时,激光加工技术将会拓展更广阔的应用领域,为人类带来更加便捷的生活和更为高效的生产方式。
激光制造技术及未来发展趋势
激光制造技术及未来发展趋势近年来,激光制造技术已经成为了制造业的热门领域之一。
激光加工技术具有高精度、高效率、绿色环保等优势,被广泛运用于航空航天、汽车、电子、医疗、通讯等领域。
未来,随着技术的不断创新和发展,激光制造技术将会呈现出更加广阔的应用前景和更加多样化的形态。
一、激光制造技术的原理与优势激光制造技术是指利用高能量密度的激光束进行加工的方法。
与传统的机械加工相比,激光制造技术具有以下优势:1、高精度。
因为激光束本身就具有高度的方向性和一致性,所以在加工精度要求高的领域,激光制造技术具有不可替代的优势。
2、高效率。
激光束可以直接作用于材料表面,无需用机械力进行磨削。
因此,激光制造技术在加工速度和效率方面具有很高的优势。
3、绿色环保。
激光制造技术完全是无污染的环保技术,与传统的机械加工相比,减少了对环境的污染。
二、激光制造技术的应用领域1、航空航天。
激光制造技术主要应用于航空航天领域的复合材料加工、零件加工、表面冶金和功能性涂层等方面。
激光加工技术可以帮助飞行器降低重量、提高强度和延长使用寿命。
2、汽车。
激光制造技术在汽车领域主要用于轻量化和高强度材料的制造。
利用激光加工技术可以大幅减少汽车的自重,提高汽车的燃油效率和安全性能。
3、电子。
激光制造技术在电子领域主要应用于微电子元件的制造和加工。
激光加工可以帮助减小电子元器件的尺寸和重量,提高电子元件的工作效率和稳定性。
4、医疗。
激光制造技术在医疗领域主要应用于激光手术、激光诊断和激光治疗方面。
激光手术可以实现微创治疗和快速康复,同时可以减少手术创伤和出血量。
5、通讯。
激光制造技术在通讯领域主要用于光纤制造和激光通讯。
激光通讯可以实现传输距离更远、传输速度更快、信号质量更好的高速数据传输。
三、激光制造技术的未来发展趋势未来,激光制造技术的发展将会呈现出以下几个趋势:1、多功能化。
未来的激光加工机器将会具有多种加工功能,且可以实现多种材料间的精密匹配。
激光加工技术的现状及国内外发展趋势
激光加工技术的现状及国内外发展趋势目前,激光加工技术在国内外都得到了快速发展。
在国内,激光加工领域的研究和应用逐渐增多,涉及的领域包括电子、汽车、航天航空、医疗器械等。
随着高新技术的不断推广和应用,激光加工技术也在向多领域、高价值的方向发展。
在国外,激光加工技术早已发展到一定程度,拥有许多成熟的应用案例。
尤其是在汽车工业和航空航天领域,激光切割和激光焊接等技术已经得到广泛应用。
同时,一些发达国家也对激光加工技术进行了深入研究,投入大量资金用于激光加工设备的研发和创新。
随着激光加工技术的不断发展,国内外的发展趋势也逐渐清晰。
首先,激光加工技术将实现高速化和高精度化。
通过提高激光功率、优化激光光束质量和加工参数等手段,实现激光加工速度的提升和加工精度的提高。
其次,激光加工技术将越来越多地应用于大型工件和复杂结构的加工。
通过引入机器人、自动化设备和在线测量系统等,解决大型工件加工难题,提高生产效率和质量。
同时,激光加工技术也将拓展到新材料和特殊材料的加工领域,如复合材料、高温合金等。
最后,激光加工技术将更加注重绿色环保和能源节约。
通过改进激光加工工艺,提高能源利用率和降低废料产生,实现绿色环保的加工方式。
在国内,政府将进一步加大对激光加工技术的支持力度,加大对激光科研机构的投入和培养激光加工人才的力度。
同时,国内一些大型企业也会加大对激光加工设备的研发和引进力度,提高自主创新能力。
国外方面,一些发达国家将加强对激光加工技术的研究和应用,进一步提高激光加工设备的性能和质量。
总的来说,激光加工技术在国内外都有着广阔的发展前景。
未来,激光加工技术将继续向高速、高精度、多功能的方向发展,为各个行业提供更加高效、绿色、智能的加工解决方案。
激光加工技术的发展与应用
激光加工技术的发展与应用随着科学技术的发展,激光技术也得到了快速的发展和应用。
激光加工技术是利用激光束在物体表面进行切割、焊接、打孔等加工过程的一种现代高科技加工方式。
本文将围绕激光加工技术的发展趋势和应用领域进行探讨。
一、激光加工技术的发展历程激光加工技术可追溯到20世纪60年代初,当时激光还只是一种新技术,但已有人发现它可以用于加工材料。
当时,人们通过钨丝炸毁,把激光照射在结晶硅上,切割了一道直径为25微米的小孔,标志着激光加工技术的诞生。
自此以后,加工时钟、半导体芯片等高精密零件、轻质化航空构件、复杂几何结构零部件,都应用了激光加工技术,尤其是在汽车、航空、电子电器等领域的应用越来越广泛。
随着激光技术的不断发展,激光加工技术的发展也取得了显著的进展。
绿色激光、紫外激光、红外激光以及连续波、脉冲波激光等高精度加工技术,逐渐代替了传统的加工工艺,成为一种更为便捷快速、高效精准的加工方式。
同时,机器人激光焊接技术、3D打印激光烧结技术也不断涌现,进一步推进了激光加工技术的发展。
二、激光加工技术的应用领域1.汽车制造业激光加工技术在汽车制造行业的应用很广泛。
比如说,利用激光切割车身板件,能够实现高精度加工的同时,也可减少人工操作,提高工作效率。
同时,激光制造技术可以用于汽车零部件制造,如发动机火花塞、离合器片等等,大大降低了生产成本,助力汽车行业的发展。
2.电子电器行业激光加工技术在电子电器行业中的应用也颇为广泛。
例如,在手机制造、电子元器件、半导体材料等领域,激光加工技术可以实现精细的切边,排除微形变形、气泡、层间剥离,提高了产品的可靠性。
同时,激光加工技术在电器元器件的制造中也有很好的应用,如曲面激光加工技术、激光雕刻技术等等。
3.航空航天制造业激光加工技术在航空航天制造业中同样起到了不可或缺的作用。
例如,在飞机发动机的制造中,通过激光冲孔、激光切割、激光而成型等加工技术,可以实现对高温合金的加工,提高了零件的高温抗氧化性能和耐磨性能,为航空航天行业的发展贡献了巨大的力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光加工技术的应用与发展
摘要:激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工等的一门技术。
激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。
关键词:加工原理、发展前景、强化处理、发展前景。
一激光加工的原理及其特点
1.激光加工的原理
激光加工利用高功率密度的激光束照射工件,使材料熔化气化而进行穿孔、切割和焊接等的特种加工。
早期的激光加工由于功率较小,大多用于打小孔和微型焊接。
数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。
各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。
激光具有的宝贵特性决定了激光在加工领域存在的优势:
①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。
②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。
③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。
④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。
因此,其热影响区小,工件热变形小,后续加工量小。
⑤它可以通过透明介质对密闭容器内的工件进行各种加工。
⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。
⑦使用激光加工,生产效率高,质量可靠,经济效益好。
虽然激光加工拥有许多优点,但不足之处也是很明显的。
二激光技术
用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。
激光加工有许多优点:①激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等)也可用激光加工;②激光头与工件不接触,不存在加工工具磨损问题;③工件不受应力,不易污染;④可以对运动的工件或密封在玻璃壳内的材料加工;⑤激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工;⑥激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度;⑦在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。
激光打孔
采用脉冲激光器可进行打孔,脉冲宽度为0.1~1毫秒,特别适于打微孔和异形孔,孔径约为0.005~1毫米。
激光打孔已广泛用于钟表和仪表的宝石轴承、金刚石拉丝模、化纤喷丝头等工件的加工。
激光切割、划片与刻字
在造船、汽车制造等工业中,常使用百瓦至万瓦级的连续CO2激光器对大工件进行切割,既能保证精确的空间曲线形状,又有较高的加工效率。
对小工件的切割常用中、小功率固体激光器或CO2激光器。
在微电子学中,常用激光切划硅片或切窄缝,速度快、热影响区小。
用激光可对流水线上的工件刻字或打标记,并不影响流水线的速度,刻划出的字符可永久保持。
激光微调
采用中、小功率激光器除去电子元器件上的部分材料,以达到改变电参数(如电阻值、电容量和谐振频率等)的目的。
激光微调精度高、速度快,适于大规模生产。
利用类似原理可以修复有缺陷的集成电路的掩模,修补集成电路存储器以提高成品率,还可以对陀螺进行精确的动平衡调节。
激光焊接
激光焊接强度高、热变形小、密封性好,可以焊接尺寸和性质悬殊,以及熔点很高(如陶瓷)和易氧化的材料。
激光焊接的心脏起搏器,其密封性好、寿命长,而且体积小。
激光热处理用激光照射材料,选择适当的波长和控制照射时间、功率密度,可使材料表面熔化和再
结晶,达到淬火或退火的目的。
激光热处理的优点是可以控制热处理的深度,可以选择和控制热处理部位,工件变形小,可处理形状复杂的零件和部件,可对盲孔和深孔的内壁进行处理。
例如,气缸活塞经激光热处理后可延长寿命;用激光热处理可恢复离子轰击所引起损伤的硅材料。
强化处理
激光表面强化技术基于激光束的高能量密度加热和工件快速自冷却两个过程,在金属材料激光表面强化中,当激光束能量密度处于低端时可用于金属材料的表面相变强化,当激光束能连密度处于高端时,工件表面光斑出相当与一个移动的坩埚,可完成一系列的冶金过程,包括表面重熔、表层增碳、表层合金化和表层熔覆。
这些功能在实际应用中引发的材料替代技术,将给制造业带来巨大的经济效益。
光束可以通过光路导向,因而可以处理零件特殊位置和形状复杂的表面。
综合激光技术的优点及以被广泛应用的技术的缺点,把激光技术应用于刀具材料表面强化处理,将是提高刀具耐磨性及其使用寿命的重要途径之一,尤其对于陶瓷、硬质合金刀具这种高硬度、耐热性好等优点,有利于提高加工效率和加工精度,并能对难加工材料如淬火钢在不利的加工条件下进行切削加工。
由于它们强度相对较低,韧性较差,严重地限制了它们的应用范围,因此把激光表面强化技术应用于陶瓷、硬质合金刀具具有深刻的研究意义和广阔的应用前景。
三激光加工的发展前景
激光加工用于再制造业和应用于其他制造业一样,有其不可替代的优点,并优于其它加工技术。
激光加工用于再制造业是由相变硬化发展到激光表面合金化和激光熔覆,由激光合金涂层发展到复合涂层及陶瓷涂层,从而使得激光表面加工技术成为再制造的一项重要手段。
它主要是采用5KW~10KWCO2高功率激光器及其系统。
与国际上激光加工系统相比,我国的激光加工系统差距甚大,仅占全球销售额的4%左右。
主要表现为:高档激光加工系统很少,甚至没有;主力激光器不过关;微细激光加工装备缺口较大;而这些领域我国的生产加工企业正在积蓄力量稳步进入,国内应用市场有很大发展空间。
国内各类制造业接受了激光加工技术,它可使他们的产品增加技术含量,加快产品更新换代,为适应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。
目前正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特征的激光,尤其是能适应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。
参考文献:
【1】·张辽远,现代加工技术。
北京:机械工业出版社
【2】·宋威廉,激光加工技术的发展.机械工业出版社
【3】·曾智江朱三根,微细技工技术的研究。
高等教育出版社【4】·孟永刚,激光加工技术。
北京:国防工业出版社。