七年级数学上册2_15用计算器进行计算用计算器进行数的混合运算时的运算顺序是什么素材新版华东师大版
北师大版七年级上册数学《用计算器进行运算》有理数及其运算PPT教学课件

个 3
n 个3
( +1 )个 1
个 5
( 3 )3333334×3333334=11111115555556.
-24-
第二章
2.12 用计算器进行运算
知识要点基础练
综合能力提升练
拓展探究突破练
-25-
11.用计算器探索规律:任选1,2,3,…,9中的一个数字,将这个数字乘7,再将结果乘15873,你发
则上面操作程序中所按的第三个键和第四个键应分别是
+
、
1
.
-23-
第二章
2.12 用计算器进行运算
知识要点基础练
综合能力提升练
拓展探究突破练
10.用计算器探索:
( 1 )用计算器计算下列各式:34×34,334×334,3334×3334,33334×33334.
( 2 )根据( 1 )的计算结果,你发现了什么规律?
人口总数约为 13.7 亿.
二是在测量时, 受测量工具和技术的限制,一般只能得到近似数。
例如,测量同一片树叶的长度,用最小单位为厘米的直尺测量结果
为 6.8 cm,用最小单位为毫米的直尺测量结果为6.78 cm,得到的
数据都是近似数。
近似数
三是在计算中,有时只能得到一个近似数,如 10 ÷ 3 得到商
几支这样的圆珠笔?由 3.9 ÷ 1.5 = 2.6,此时,要用“去尾法”来
取近似数,即可买2支这样的圆珠笔。
常用的计算器功能键
知识
注意运算时的按键顺序
考点
计算器的运算顺序
用计算器进行运算
第二章
2.12 用计算器进行运算
2.3.1乘方(第2课时混合运算)(课件)七年级数学上册(人教版2024)

解:(1)(-2)※4=(-2)4+(-2)×4-4=16-8-4=4; (2)(-1)※[(-5)※2] =(-1)※[(-5)2+(-5)×2-2] =(-1)※13 =(-1)13+(-1)×13-13=-27.
(2)原式=×(-2)-(3-9) =-18-(-6) =-18+6 =-12;
1.计算:
(1)(-1)3-3÷(-4)×1;
2
3
(2)(-3)2×(1-3)-(3-32);
(3)(-4)×[(-3)2+2]-(-3)3÷(-2).
(3)解:原式=(-4)×(9+2)-(-27)÷(-2) =(-4)×11-13.5 =-44-13.5 =-57.5.
例2 观察下列三行数:
-2, 4,-8, 16,-32, 64,…;
①
0, 6,-6, 18,-30, 66,…;
②
-1, 2,-4, 8,-16, 32,….
③
(1) 第①行数按什么规律排列? (1) -2,(-2)2,(-2)3,(-2)4,…
(2) 第②③行数与第①行数分别有什么关系?
(3) 取每行数的第10个数,计算这三个数的和?
解: (2) -2+2,(-2)2+2,(-2)3+2,(-2)4+2,… -2×12 ,(-2)2×12 ,(-2)3×12 ,(-2)4×12 ,…
例2 观察下列三行数:
-2, 4,-8, 16,-32, 64,…;
①
0, 6,-6, 18,-30, 66,…;
②
-1, 2,-4, 8,-16, 32,….
93
(4)(-4)3-22-|-1|×(-8)2;
安化县第九中学七年级数学上册 第2章 有理数2.15 用计算器进行运算课件 新版华东师大版

结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油!奥利给~
6 有理数的加减法混合运算
第1课时 有理数的加减混合运算
有理数加法法那 么
1.同号两数相加 , 取相同的符号 , 并把绝 対值相加.
2.异号两数相加 , 绝対值相等时和为 0 ; 绝対值不等时 , 取绝対值较大的数的符号 , 并用较大的绝対值减去较小的绝対值.
3.一个数同 0 相加 , 仍得这个数.
3.一个数同 0 相加 , 仍得这个数.
例1 计算以下各题 :
〔1〕180 + ( - 10 ) ; 〔2〕( - 10 ) + ( - 1 ) ; 〔3〕5 + ( - 5 ) ; 〔4〕0 + ( - 2 ) .
解 : 〔1〕180 + ( - 10 ) 异号两数相加
= + ( 180 - 10 ) = 170.
有理数减法法那 么
减去一个数 , 等于加上这个数的相反数.
有理数减法法那么也可以表示为
a-b=a+ (-b)
请按以下规那么做游戏 : 〔1〕每人每次抽取 4 张卡片. 如果抽到白色卡片 ,
那么加上卡片上的数字 ; 如果抽到红色卡片 , 那么减 去卡片上的数字.
〔2〕比较两人所抽 4 张卡片的计算结果 , 结果大 的为胜者.
2019秋北师大版七年级数学上册教案:2.12用计算器进行运算

(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《用计算器进行运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要进行复杂计算的情况?”(如购物找零、计算成绩等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索计算器运算的奥秘。
五、教学反思
在今天的教学过程中,我发现学生们对于计算器的使用表现出很大的兴趣。他们对于新事物的接受能力让我感到欣慰。然而,通过观察和互动,我也发现了一些需要改进的地方。
首先,我在讲授计算器的基本操作时,尽量使用简单明了的语言进行解释,并通过实际操作演示。大多数学生能够迅速掌握,但也有部分学生显得有些迷茫。我意识到,对于这部分学生,可能需要更多的个别辅导和耐心指导,以确保他们能够跟上课程进度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“计算器在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2019秋北师大版七年级数学上册教案:2.12用计算器进行运算
一、教学内容
本节课选自2019秋北师大版七年级数学上册教材第二章第12节:“用计算器进行运算”。教学内容主要包括以下三个方面:
1.计算器的基本功能与按键:介绍计算器的各个按键及其功能,如数字键、运算符号键、等于键、清除键等。
2.使用计算器进行四则运算:引导学生通过计算器解决整数、小数的加减乘除运算,以及混合运算。
泉州市七年级数学上册第一单元《有理数》-解答题专项复习题(答案解析)

一、解答题1.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<.【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.2.计算:(1)5721()()129336--÷-(2)22115()(3)(12)23-+÷-⨯---⨯解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)15282437 1293--⨯-=-++=.(2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|3|-,5-,12,0, 2.5-,22-,(1)--.解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5.【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1-- 如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 4.计算(1)18()5(0.25)4+---- (2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】(1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可. 【详解】解:(1)18()5(0.25)4+---- =118544--+ =3; (2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦=2﹣(﹣36+7﹣6),=2﹣(﹣35) =37; (3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26 =﹣236; (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦=341(92)149--⨯-⨯-÷ =912-+ =72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.5.(1)在图所示的数轴上标出以下各数:52- ,-5.5,-2,+5, 132(2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9.【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案; (3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案. 【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数: 所以按从小到大排列各数为:5.5-<52-<2-<132<+5(3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为:()13 5.5 3.5 5.599.2AB =--=+==【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.6.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级 1班2班 3班 4班 实际购买量(本)a 33c21实际购买量与计划购买量的差值(本)12+ b8-9-a =c =(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元? 解析:(1)42,+3,22;(2)118本;(3)3120元. 【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整; (2)把每班实际数量相加即可; (3)根据已知求出总费用即可. 【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本. 故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元).. 【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 7.计算题:(1)()()121876---+-+; (2)()231513221428⎫⎛---⨯-+⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4 【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题. 【详解】解:(1)|-12|-(-18)+(-7)+6 =12+18+(-7)+6 =30+(-7)+6 =23+6 =29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯=-1+24-80+52 =-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.计算: (1)113623⎛⎫-⨯-⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21. 【分析】(1)根据有理数的混合运算法则即可求解; (2)根据有理数的混合运算法则即可求解. 【详解】 解:(1)113623⎛⎫-⨯- ⎪⎝⎭ =1136623-⨯+⨯ =332-+ =2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+ =1244--+ =-21. 【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则. 9.计算: (1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-. 【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值. 【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭4535571271212=-⨯-⨯+43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯0=;(2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+ 1=-. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 10.某超市对2020年下半年每月的利润用下表作了记录:(2)计算该商场下半年6个月的总利润额. 解析:(1)填表见解析;(2)40万元. 【分析】(1)根据“盈利记为正,则亏损就记为负”直接写出答案即可; (2)把该商场下半年6个月的利润相加即可. 【详解】解:(1)盈利记为正,亏损就记为负,填表如下:=36-10+14 =40(万元)∴该商场下半年6个月的总利润额为40万元.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.同时 还考查了有理数的加法运算. 11.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可. 【详解】原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键. 12.计算:(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭解析:(1)12- ;(2)0 【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可 (2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可 【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102-- =-12(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭=()()2386154-⨯---⨯- =243660--+ =0 【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.13.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ; (2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁. 【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长; (2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可. 【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22; (3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日32- 26+ 23- 16- m42+ 21-若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m=88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.A B C,回答下列问题:15.如图,在数轴上有三个点,,(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到,A C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E 表示的数.-(2)0.5(3)3-或7-解析:(1)1【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上,则点E表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.16.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?解析:(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.17.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 解析:(1)﹣8;(2)13. 【分析】 (1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 18.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 19.计算:(1)157(36)2612⎛⎫--⨯- ⎪⎝⎭ (2)2138(2)3⎛⎫⨯-+÷- ⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33;(2)原式= -1+2=1.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库)+25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?解析:(1)减少了34吨;(2)314吨;(3)770元【分析】(1)求出6天的数据的和即可判断;(2)根据(1)中结果计算即可;(3)求出数据的绝对值的和,再乘5即可;【详解】解:(1)25−22−14+35−38−20=−34<0,答:经过6天,粮库里的粮食减少了34吨;(2)280+34=314(吨),答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元),答:这6天要付出770元装卸费.【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键.21.计算:(1)117483612⎛⎫-+-⨯⎪⎝⎭;(2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)11748 3612⎛⎫-+-⨯ ⎪⎝⎭1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.22.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.计算:(1)31113+(0.25)(4)3444---+--(2)31(2)93--÷ (3)1125100466()46311-⨯-⨯-⨯ 解析:(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+- =183+=21(2)31(2)93--÷ =893--⨯=827--=35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+--- =392-【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯.解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12 =6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.25.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.26.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭. 解析:(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.【详解】(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.27.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷=1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=- 即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-.【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.29.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A和点B表示的数;(2)写出在点B左侧,并与点B距离为9.5厘米的直尺左端点C表示的数;(3)若直尺长度为a厘米,移动直尺,使得直尺的长边CD的中点与数轴上的点A重合,求此时左端点C表示的数.解析:(1)点A表示的数是-3,点B表示的数是3;(2)点C表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A和点B表示的数是互为相反数,即可得到结果;(2)利用点B表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a个单位计算即可.【详解】(1)∵AB=8-2=6,点A和点B表示的数是互为相反数,∴点A表示的数是-3,点B表示的数是3;(2)点C表示的数是:3-9.5=-6.5;(3)∵直尺长度为a厘米,直尺中点表示的数是-3,∴直尺此时左端点C表示的数-3-0.5a.【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.。
2.1.2 有理数的减法(第2课时 有理数加减混合运算)(课件)七年级数学上册(人教版2024)

1 5 2 1
(2)- + + - ;
4 6 3 2
(4)4.7-(-8.9)-7.5+(-6);
7
1
1
1
(5)(-4 )-(-5 )+(-4 )-(+3 );
8
2
4
8
2
1
5
1
(6)(- )+|0-5 |+|-4 |+(-9 ).
3
6
6
3
3
解:(1)原式 = 3.1.(2)原式 = . (3)原式 = 8.
写为:
可以读作
(-20) + (+3) -(-5) -(+7)
“负20、正3、正5、负7的和” =-20+3 +5-7
=-20-7+3 +5
或读作
=-27+8
“负20加3加5减7”.
=-19
概念归纳
有理数的加减混合运算可以统一为 加法
即a+b-c= a+b+(-c) .
运算,
1.加减混合运算的一般步骤:
哪一种书写更
简洁?运算理
方便呢?
=1.3+1.1-1.4
=2.4-1.4
=1
有理数加
减混合运算如
何进行呢?
例1. 计算:(-20)+(+3)-(+5)-(+7)
运用减法
法则,将减法
转化为加法
解: (-20)+(+3)-(-5)-(+7)
=( 20) ( 3) ( 5) ( 7)
=[(-20)+(-7)]+[(+5)+(+3)]
②策略:同号的加数一起加,同分母(易通分)的加数一起加,和
2.3 有理数的乘方第2课时 有理数的混合运算 课件 人教版(2024)数学七年级上册

第③行数是第①行相应的数除以2,即
(3)取每行数的第10个数,计算这三个数的和.
解:(3)每行数中的第10个数的和是
做一做
观察下列各式:
若n是正整数,则
当堂练习
当堂反馈
即学即用
B
第二章 有理数
2.3 有理数的乘方
2.3.1 乘 方第2课时 有理数的混合运算
目录页
讲授新课
当堂练习
课堂小结
新课导入
新课导入
教学目标
教学重点
1.进一步掌握有理数的运算法则和运算律.2.熟练地按有理数运算顺序进行混合运算.(重点、难点)
情境引入
喜羊羊之种花篇
圆形花坛的半径为3m,中间雕塑的底面是边长为1 m的正方形
估计每平方米种9株花,我要买几株花呀?
羊村的花坛里的花都快枯萎了,我们重新种上吧!
小意思,我会算!
讲授新课
典例精讲
归纳总结
有理数的混合运算
思考:上式含有哪几种运算?先算什么,后算什么?
第一级运算
第三级运算
第二级运算
合作探究
要点归纳
1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、 中括号、大括号依次进行.
C
D
B
-25
5.计算:
答案:(1)-54;(2) ;(3)-90;(4) .
课堂小结
归纳总结
构建脉络
2.数字规律探究.
1.乘方与加、减、乘、除的混合运算, 运算顺序是:先乘方,再乘除,最后加减;
THANKS
=-8+42+4.5
=38.5
练一练
华东师大版七年级数学上册第2章第13节《有理数的混合运算》课后同步练习题(附答案)

2.13 有理数的混合运算第1课时 有理数混合运算的顺序1. 熟练掌握有理数混合运算的法则.2. 能熟练地进行有理数加、减、乘、除、乘方的混合运算.1. 加法和减法叫做第________级运算;乘法和除法叫做第________级运算;乘方和开方(今后将会学到)叫做第________级运算.2. 有理数混合运算的运算顺序规定如下:(1)先算________,再算________,最后算________; (2)同级运算,按照________的顺序进行;(3)如果有括号,就先算________里的,再算________里的,最后算________里的. 3. 进行分数的乘除运算,一般要把带分数化为________,把除法转化为________. 4. 计算:(-4×2.5)3的结果为( ). A. 1000 B. -1000 C. 30 D. -305. 计算:-2×52-(-2×52)的结果为( ). A. 0 B. -100 C. 100 D. -406. 计算:15×(-5)÷(-15)×5的结果为( ).A. 1B. 25C. -5D. 35 7. 计算:(1)(-21)-(-13)-|+5|+|-9|; (2)(-7)×(-6)-54÷(-6).8.计算:-24÷(-2)2的结果是( ).A. 4B. -4C. 2D. -2 9. 如果||a -1=0,2008(b+3)=1,那么ba-1的值是( ).A. -4B. -5C. -6D. 2 10. 计算:-102+(-10)2-103÷(-10)3=________. 11. 计算:(1)-2-23×⎝⎛⎭⎫123;(2)-22÷⎝⎛⎭⎫-152×||-5×(-0.1)3; (3)32-(-5)2×⎝⎛⎭⎫-252-23; (4)15-2×42+(-2×4)2.12. (1)在玩“24点”游戏时,“3、3、7、7”列式并计算为:7×(3+37)=7×3+3=24 是依据运算律 . (2)小明抽到以下4张牌:请你帮他写出运算结果为24的一个算式: . (3)如果、表示正,、表示负,请你用(2)中的4张牌表示的数写出运算结果为24的一个算式: .13. 如图,在宽为30m ,长为40m 的矩形地面上修建两条都是1m 的道路,余下部分种植花草,那么,种植花草的面积为 m 2.14. (2011•绍兴县)欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2℃,用了退烧药后,以每15分钟下降0.2℃的速度退烧,则两小时后,欢欢的体温是 ℃.A 、-1.1B 、-1.8C 、-3.2D 、-3.9第2课时 有理数的混合运算1. 进一步掌握有理数的混合运算.2. 在运算过程中,能合理使用运算律简化运算.1. 计算-23-()-23+()+32-()-32-()32的结果是( ). A. 27 B. 9C. -27D. -92. 以下四个有理数运算的式子中:①(2+3)+4=2+(3+4);②(2-3)-4=2-(3-4);③(2×3)×4=2×(3×4);④2÷3÷4=2÷(3÷4).正确的运算式子有( ) A 、1个 B 、2个 C 、3个 D 、4个3. 已知四个式子:(1)|7453|--;(2)|74||53|---;(3)|74|53---;(4))74(53---,它们的值从小到大的顺序是( )A.(4)<(3)<(2)<(1)B.(3)<(4)<(2)<(1) B.(2)<(4)<(3)<(1) D.(3)<(2)<(4)<(1)4. 计算:-32÷(-3)2+3×(-6)=_____________.5. 已知|a +1|+(b -2)2=0,则(a +b )2 008+a 57=________.6. 计算:(1)(-1.5)+414+2.75+⎝⎛⎭⎫-512; (2)4-5×⎝⎛⎭⎫-123; (3)(-10)2÷5×⎝⎛⎭⎫-25; (4)5×(-6)-(-4)2÷(-8).7. 计算:(注意使用简便方法)(1)⎣⎡⎦⎤(+49)-⎝⎛⎭⎫-136÷⎝⎛⎭⎫-172; (2)13×23+0.34×27+13×13+57×0.34;(3)⎝⎛⎭⎫-2467÷6; (4)⎝⎛⎭⎫79-56+736×36-5.45×6+1.45×6.8. 自然数中有许多奇妙而有趣的现象,很多秘密等着我们取探索!比如:对任意一个3的倍数的正整数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数上的数字再立方,求和,多次重复这种操作运算,运算结果最终会得到一个固定不变的数Q ,它会掉入一个数字“陷阱”.永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数Q 等于 .9. 小丽家要买节能灯,于是到家电商场做调查,得到如下数据:这三种节能灯的照明效果相当.如果仅考虑费用(节能灯费用与耗电费用之和,用电度数=功率(W )×时间(h )÷1000,假设电费为0.60元/度)支出,小丽应选( ) A 、节能灯3 B 、节能灯2 C 、节能灯1 D 、任一种10.如图是一个流程图,图中“结束”处的计算结果是 .11.从集合-3,-2,-1,4,5中取出三个不同的数,可能得到的最大乘积填在□中,可-能得到的最小乘积填在〇中并将下式计算的结果写在等号右边的横线上.-(□)÷〇= .12.如图,是一个数值转换机.若输入数3,则输出数是 .13.14.某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于 .2.13 有理数的混合运算第1课时1. 一 二 三2. (1)乘方 乘除 加减 (2)从左至右 (3)小括号 中括号 大括号3. 假分数 乘法4. B5. A6. B7. (1)-4 (2)51 (3)19 (4)-80 8. B 9. A 10. 111. (1)-3 (2)0.5 (3)-3 (4)47 12. 解:(1)分配律;(2)⎪⎭⎫ ⎝⎛-⨯7447;(3)⎪⎭⎫⎝⎛---⨯-4747. 13. 解析:由题意知:种植花草的面积为30×40-1×30-1×40+1×1=1131m 2.14. 解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6. 故答案为:37.6℃. 15.C第2课时1. B2. B3. D4. D5. -196. 07. (1)-18 (2)-15 (3)0 (4)-23 (5)458(6)3115 (7)-8 (8)-288.153 9. B. 解析:节能灯1的总费用为:100×1000÷1000×0.6+1.5=61.5元;节能灯2的总费用为:30×1000÷1000×0.6+14=32元;节能灯3的总费用为:20×5000÷1000×0.6+25=85元.故选B . 10. -32 11. 21-12. 65. 13.314. 解析:因为向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率是(1065.6-1000)÷1000×100%=6.56%,则年利率高于6.56%.。
2.5 有理数的混合运算(第2课时 用计算器进行运算)(课件)-七年级数学上册(北师大版2024)

4
解:不正确,错误原因是没按照运算顺序进行运算,乘除混合运
算应按照从左到右的顺序进行.
正确解法:
3
4
15 ( 4) 15 ( 4) 80
4
3
4.与同伴玩“24点”游戏,并将你在游戏中积累的经验写成小短文。
解:(2)由(1)知原轴的范围是2.595 m≤ x <2.605 m,2.56与
2.62均不在此范围内,故我认为小王加工的车轴不合格.
课堂小结
计算器的按键方法
1. 用计算器进行计算
用计算器计算
2. 近似数
在许多情况下,很难
取得_______,或者
准确数
不必使用________,
准确数
而可以使用______
1cm3,并将你的结果与商标上的数据进行比较。
以330 mL的易拉罐为例,
底面半径约为3.3 cm,高约为11.5 cm。
列算式为 π×3.32×11.5,计算结果为 393.237 9cm3,
约等于393 mL。
计算所得结果大于330 mL。
(2)近似数的产生大致有哪些情形?
①使用测量工具测量所得的数据;
AC 键的功能是(
C )
A. 开启计算器
B. 关闭计算器
C. 清除全部内容或清除刚输入的内容
D. 计算乘方
知识点2
用计算器进行计算
2. [2024烟台期中]用计算器求0.25×12,按键正确的是
(
A
)
A.
0
.
2
5
×
1
2
B.
2
.
5
×
1
2
(必考题)七年级数学上册第一单元《有理数》-解答题专项经典习题(培优练)

一、解答题1.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】 (1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 3.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 4.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-.③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.5.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.6.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.7.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式.(可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.8.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减.(2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 9.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.10.计算下列各式的值:(1)1243 3.55-+- (2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯-=488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.11.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.12.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.13.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-.【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案; (2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.15.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦,121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-; 【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.16.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒. 【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果. 【详解】 解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒. 【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.17.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ;(3)若脐橙按4.5元/kg出售,且小明需为买家支付运费(平均0.5元/kg),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.18.计算(1)(-1)2019+0.25×(-2)3+4÷2 3(2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12 931212323-÷+⨯-⨯+=-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.19.计算:-32+2×(-1)3-(-9)÷213⎛⎫⎪⎝⎭解析:70 【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案. 【详解】解:原式=92(1)(9)9-+⨯---⨯ =9281--+ =70. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题. 20.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=; 在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______; 数轴上表示数x 和3的两点之间的距离表示为_______; 数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4. 【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可; (2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论. 【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3; 数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|; 故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5; ②当x >3时,x−3+x +2=7, 解得:x=4,当x <−2时,3−x−x−2=7. 解得x=−3, ∴x=−3或x=4. 故答案为:5;−3或4. 【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.21.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上); ①21a =(0)a ≠;②对于任何正整数n ,11n =; ③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数. 应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式)试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________;(4)计算:3341()(2)2(8)24-÷--+-⨯-. 解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可; (2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案;(4)按照有理数的运算法则进行计算即可. 【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确; 故答案为:①②④;(3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯-=16×(-18)-8+(-8)×2 =-2-8-16 =−26. 【点睛】本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 22.计算:(﹣1)2014+15×(﹣5)+8 解析:8 【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可. 【详解】 原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.23.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库) +25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费? 解析:(1)减少了34吨;(2)314吨;(3)770元 【分析】(1)求出6天的数据的和即可判断; (2)根据(1)中结果计算即可; (3)求出数据的绝对值的和,再乘5即可; 【详解】解:(1)25−22−14+35−38−20=−34<0, 答:经过6天,粮库里的粮食减少了34吨; (2)280+34=314(吨), 答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元), 答:这6天要付出770元装卸费. 【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键. 24.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法; (2)先计算乘方和绝对值,再计算乘除法,最后计算加减法. 【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+ =23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1=116(8)123122÷--+⨯⨯+=33121 44--++=-11.【点睛】此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键.25.将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.26.计算:(1)311 13+(0.25)(4)3 444 ---+--(2)31(2)93 --÷(3)1125 100466() 46311 -⨯-⨯-⨯解析:(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减; (3)有理数的混合运算,可以使用乘法分配律使得计算简便. 【详解】 解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+-=183+ =21(2)31(2)93--÷=893--⨯ =827-- =35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+--- =392- 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 27.计算下列各题: (1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]. 解析:(1)13;(2)-38 【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题. 【详解】 解:(1)(14﹣13﹣1)×(﹣12)=14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12 =13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6] =(﹣8)+(﹣3)×(16﹣6) =(﹣8)+(﹣3)×10 =(﹣8)+(﹣30) =﹣38. 【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.28.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案. 【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.29.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++;②0,0a b <<,==11=2a b a ba b a b+-----; ③0ab <,=1+1=0a ba b+-, 综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.30.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克 【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.。
2.5 有理数的混合运算(5大题型提分练)(原卷版)

题型三 含乘方的新定义运算问题
解题技巧提炼
新定义运算问题主要是运用题目中所给的新定义的运算方式进行计算即可,注意计算时的运算顺序,也是对有理数的混合运算的考查.
1.(2024•泸县二模)从n个不同元素中取出m个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 表示.已知“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24…,若公式 (n≥m,m,n为正整数),则 为( )
7.已知13=1 12×22,13+23=9 22×32,13+23+33=36 32×42,…,按照这个规律完成下列问题:
(1)13+23+33+43+53= 2×2.
(2)猜想:13+23+33+…+n3= .
(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.
A.21B.35C.42D.70
2.(2024•甘肃)定义一种新运算*,规定运算法则为:m*n=mn﹣mn(m,n均为整数,且m≠0).例:2*3=23﹣2×3=2,则(﹣2)*2=.
3.(2024•杭锦后旗模拟)我们规定:x⊗y=(x+2)2﹣y,例如:3⊗5=(3+2)2﹣5=20,则1⊗(﹣2)的值为( )
A.2B.3C.4D.5
2.(2023秋•宁远县期中)“算24点”的游戏规则是:用“+﹣×÷”四种运算符号把给出的4个数字连接起来进行计算,要求最终算出的结果是24.例如,给出2,2,2,8这四个数,可以列式(2÷2+2)×8=24.以下的4个数用“+﹣×÷”四种运算符号不能算出结果为24的是( )
2.2.2 课时2 有理数加减乘除混合运算 课件 2024—2025学年人教版数学七年级上册

+ −
+ −
3
4
+ ×2
3
4
3
4
÷(−0.5)
÷(−0.5)
新课讲解
1
例 3. 计算: 1 24 −
3
1
3
+ −
8
6
4
× 24 ÷ 5.
分析:第(3)小题有小括号、中括号,则应先小括号、后中括号.在同一个括号内,应先
乘除、后加减. 能利用加法与乘法运算律的,应利用运算律.
1 3 1 3
解:1 24 8 6 4 24 5
括号
先算________内的.
新课讲解
知识点1
有理数的乘除混合运算
例 1. 计算:
1
5
(2) (− ) × ÷(−0.25)
1
5
(2) (− ) × ÷(−0.25)
(1) (−12)÷(−4)÷(−1 )
解: (1) (−12)÷(−4)÷(−1 )
=−12÷4÷
=−3×
5
2
=− .
5
6
6
5
2
3
D
为下列式子是否成立(a、b是有理数,b≠0)?从它们可以总结什么规律?
(1)
−
=
−
=−
(2)
−
−
=
解:−2,−2,2.
(1)(2)均成立.
规律:两数相除,同号得正,异号得负,或者说分子、分母以及分
数这三者的符号,改变其中两个,分数的值不变.
(2)
5
−2.5÷
8
1
×(− ).
2024秋七年级数学上册第二章有理数2.15用计算器进行计算教案(新版)华东师大版

教学反思
在刚刚结束的“用计算器进行计算”这节课中,我发现学生们对计算器的操作表现出极大的兴趣,他们兴奋地尝试着各种按键,认真地观察着屏幕上数字的变化。这让我意识到,计算器不仅仅是一个计算工具,它还能激发学生的学习热情。
-计算器结果的理解:学生需要学会如何从计算器读取结果,特别是对于较大的数或科学记数法表示的结果,理解其含义并进行适当的转换。
-计算器使用的限制:难点在于让学生明白计算器虽然方便,但在某些情况下(如需要估算、简化表达式等)不能完全依赖它,需要发展自身的数学解题能力。
教学方法与手段
1.教学方法:
-讲授法:通过讲解和示范,使学生掌握计算器的操作方法和有理数的计算规则。
监控预习进度:通过在线平台跟踪学生的预习情况,及时给予指导和反馈。
-学生活动:
自主阅读预习资料:学生按照预习指南,自学计算器的基本操作。
思考预习问题:学生尝试回答预习问题,记录疑问。
提交预习成果:学生将预习笔记和问题通过平台提交。
-教学方法/手段/资源:
自主学习法:鼓励学生自主探索,提前接触新知识。
3.课后拓展应用
-教师活动:
布置作业:根据课堂内容,布置相关的计算练习,巩固计算技能。
提供拓展资源:推荐一些高级计算器的使用教程和有理数运算的进阶题目。
反馈作业情况:及时批改作业,给予学生个性化反馈。
-学生活动:
完成作业:学生独立完成计算练习,巩固学习成果。
拓展学习:利用拓展资源,自主提高计算能力和解题技巧。
信息技术手段:利用在线平台进行资源分享和进度监控。
-作用与目的:
让学生提前熟悉计算器操作,为课堂学习打下基础。
1.14 用计算器计算 课件 2024-2025学年华东师大版数学七年级上册

解:用计算器求 6.35 ,可以使用乘方的专用键 ,
按键顺序是
6. 3
5 EXE
显示结果为 9 924.365 43,所以 6.35= 9 924.365 43.
新知讲解
做一做: 2.用计算器求本节开头所提问题中圆柱的体积.( 精确到1cm3)
π×2.322×7.06 (π 取3.14)
3 . 1 4×2. 3 2
课堂练习
【知识技能类作业】必做题: 4.用计算器计算: (1)29-105+37.5; (2)-125÷5-15×(-3); (3)-1.32+1.24.
解:(1)-38.5;(2)20;(3)0.3836.
课堂练习
【知识技能类作业】选做题:
5.计算器上数字键6坏了,如果用计算器计算724-296,下面的
解:用计算器求 (-29.4)×2÷4.2÷(-7) 的值的按键顺序是:
(-) 2 9 . 4 × 2 ÷ 4 . 2 ÷ (-) 7
>
EXE
EXE
显示结果是 2, 所以,(-29.4)×2÷4.2÷(-7)=2.
新知讲解
任务三:利用计算器进行乘方运算
例4 用计算器求2.73的值.
解:用计算器求2.73的值,可以使用乘方的专用键
课堂总结
(1) ON 是开启计算器键;
(2) DEL 是清除键;
(3) + 是运算键;
(4) EXE 的功能是完成运算或执行指令;
(5) OFF 是关闭计算器键;
(6) 是第二功能键;
(7)
的功能是使录入的数据或计算的结果取负值;
(8) ■ □ 是乘方键 .
课堂总结
2.使用计算器进行简单运算的步骤与方法: (1) 开机:按开机键 ON ; (2) 输入:按照算式的书写顺序输入数据,即从左往右依次输入, 最后按 EXE 键显示计算结果; (3) 关机:按 OFF 键,关闭计算器 .
冀教版七年级数学上册1.12 计算器的使用(课件)【新版】

A. (-3)2+5
B. -32+5
C. -(32+5)
D. -(3+5)2
知2-讲
例 3 用计算器计算:
(1) 3.2 4.5 32 2 ;
5
(2)
1 4
5 8
1
7 8
.
解:(1) 3.2 4.5 32 2,A,B两种型号计算器的按键顺序
B. 1 7 ab/c 5
C. 1 ab/c 5 ab/c 7
D. 1 5 ab/c 7
知2-练
3 用计算器求-26的按键顺序正确的是( A ) A. (-) 2 yx 6 = B. 2 yx 6 (-) = C. 2 (-) yx 6 = D. 2 yx 6 = (-)
知2-练
知2-练
4 用计算器按顺序 “ (-) 3 x2 + 5 ” 输入,表示 的计算是( B )
8=
A型计算器显示的结果为1」5,B型计算器显示的结
果为 1「5,所以
1 4
5 8
1
7 8
=
1 5
.
算出
1 4
5 8
1
7 8
=
1 5
后 ,如果继续按
ab/c
键,
就将分数转化成了小数的表示形式.
知2-练
1 用计算器计算: (1)(-6.25)+(-3.41)-31.7; (2)- 1 ÷ 2 ;(3)1-26÷5. 23
解:(1)-125÷5-15×(-3),A,B两种型号计算器的按 键顺序为 (-) 1 2 5 ÷ 5 - 15 × (-) 3 = 显示器显示的结果为20, 所以-125÷5-15×(-3) =20.
1.5.1有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

有理数的乘方(第二课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第二课时),内容包括:有理数加、减、乘、除、乘方混合运算.2.内容解析有理数的混合运算是在学生学习并掌握了有理数的加、减、乘、除、乘方运算的基础上提出的,它涵盖了有理数一章的主要内容,是对前面所学的运算的小结.教材在前面学习有理数加、减、乘、除法运算时,就已经适时介绍过加减法混合、乘除法混合和加减乘除混合运算的内容在此加入乘方与前面四种运算的混合,构成了三级混合运算(加减法是第一级运算;乘除法是第二级运算;乘方以及以后将学习的开方是第三级运算)以期进一步培养学生的运算能力进行有理数的混合运算的关键是熟练地掌握有理数的加、减、乘、除、乘方的运算法则、运算律和运算顺序.基于以上分析,确定本节课的教学重点为:有理数的混合运算顺序、运算法则和运算律的应用.二、目标和目标解析1.目标(1)知道有理数加、减、乘、除、乘方混合运算的运算顺序.(2)会进行有理数的混合运算.(运算能力)2.目标解析在有理数的加、减、乘、除和乘方混合运算中,加减法叫做第一级运算;乘除法叫做第二级运算;乘方和开方(以后再学)叫做第三级运算.一个式子里如果含有几级运算,应先算高级运算,再算低一级运算,即先乘方,再乘除,后加减;同一级运算按从左到右的顺序进行;如果有括号,先算小括号,再算中括号,最后算大括号里的运算;如果有绝对值,就先算绝对值.进行有理数的混合运算,首先要看清算式的层次如括号、运算层级等,确定运算顺序,再根据各种运算法则,先确定每一种运算结果的符号,再计算其结果的绝对值.能够使用加法与乘法运算律的,应使用运算律来提高运算的速度与准确率.三、教学问题诊断分析在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识.由于七年级的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、纳等数学活动,总结发现理数的加、减、乘、除和乘方混合运算规律.基于以上学情分析,确定本节课的教学难点为:应用有理数的混合运算解决规律探究和实际应用问题.四、教学过程设计(一)复习回顾乘方的定义这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.乘方的符号法则:(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(二)自学导航问题:我们学习了有理数的哪些运算?加法,减法,乘法,除法,乘方.一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.思考:有理数的混合运算顺序是什么?思考下列问题:(1)2÷(2×3)与2÷2×3有什么不同?(2)2÷(12-2)与2÷12-2有什么不同? (3)6÷(-3)2与6÷(-32)有什么不同?思考:下面的算式含有哪几种运算?先算什么,后算什么?【运算顺序】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(三)考点解析例1.计算:(1)(-1)3-32÷(-4)×13; (2)(-3)2×(1-3)-(3-32); (3)(-4)×[(-3)2+2]-(-3)3÷(-2). 解:(1)原式=-1+32×14×13=-1+18=-78(2)原式=×(-2)-(3-9)=-18-(-6)=-18+6=-12;(3)原式=(-4)×(9+2)-(-27)÷(-2)=(-4)×11-13.5=-44-13.5=-57.5.【迁移应用】计算:(1)-14-(-12)÷3×|-2|; (2)-23÷49×(-23)2; (3)9+5×(-3)-(-2)2÷4; (4)(-4)3-22-|-12|×(-8)2; (5)-32+[1-(-1)3]×2÷12; (6)-53+[(-4)2-(1-62)×3]. 解:(1)原式=-1-(-12)×13×2=-1+13=-23;(2)原式=-8÷49×49=-8×94×49=-8;(3)原式=9+(-15)-4÷4=9-15-1=-7;(4)原式=-64-4-12×64=-64-4-32=-100; (5)原式=-9+(1+1)×2×2=-9+2×2×2=-9+8=-1 ;(6)原式=-125+[16-(1-36)×3]=-125+16+105=-4.例2.计算:(1)-43÷916×(-34)2-(1-32)×2; (2)-14-(2-112)×13×[5+(-2)3];(3)-24÷[1-(-3)2]+(23-35)×(-15); (4)-32-|(-5)3|×(-25)2-18+|-(-3)2|. 解:(1)原式=-64×169×+8×2=-64+16=-48; (2)原式=-1-12×13×(5-8)=-1-12×13×(-3)=-1+12=-12;(3)原式=-16+(1-9)+(-23×15+35×15) =-16÷(-8)+(-10+9)=2-1=1;(4)原式=-9-125×425-18÷9=-9-20-2=-31.【迁移应用】计算:(1)-(-2)2+22-(-1)9×(13-12)+16-8; (2)112×[3×(-23)2-1]-14÷(-4)2;(3)(58-23)×24+14÷(-12)3+|-22|; (4)|-57|×(45-13)÷(-23)2-(12)2; (5)-23÷[214×(-113)2]×(-0.25)2; (6)|-1+89|÷(59-34+112)-32×(-34)3.解:(1)原式=-4+4+1×(-16)-8=-8;(2)原式=32×(3×49-1)-14÷16=32×13-164=3164; (3)原式=58×24-23×24+14×(-8)+22=15-16-2+22=19; (4)原式=57×715÷49-14=13×94-14=12; (5)原式=-8÷(94×169)×116=-8×14×116=-18;(6)原式=19÷(−19)-32×(-2764)=-1+272=1212. 例3.观察下面三行数:-2, 4, -8, 16, -32, 64,…;①0, 6, -6, 18, -30, 66,…; ①-1, 2, -4, 8, -16, 32,…. ①(1)第①行数按什么规律排列?分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,…(2)第①①行数与第①行数分别有什么关系?(2)第①行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…第①行数是第①行相应的数除以2,即-2÷2,(-2)2÷2,(-2)3÷2,(-2)4÷2,…(3)取每行数的第10个数,计算这三个数的和.(3)每行数中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×0.5=1024+(1024+2)+1024×0.5=1024+024+512=2562.【迁移应用】(1)计算:①2-1=___;①22-2-1=___; ①23-22-2-1=___; ①24-23-22-2-1 =___; ①25-24-23-22-2-1=___.(2)根据上面的计算结果猜想:22020-22019-22018-…-22-2-1的值为____;2n-2n-l-2n-2-.….-22-2-1的值为____.(3)根据上面猜想的结论,求213-212-211-210-29-28-27-26的值.解:由猜想的结论得:213-212-211-210-29-28-27-26-25-24-23-22-2-1=1所以,213-212-211-210-29-28-27-26=1+1+2+22+23+24+25=1+2+4+8+16+32=64例4.小王在电脑上设计了一个有理数的运算程序:输入数a,按“*”键,再输入数b,得到运算:a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b).(1)求(-2)*12;解:(1)(-2)*12=(-2)2-(12)2-{2×[(-2)3-1]-1÷12}÷(-2-12)=-174.(2)小王在运算a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b)中出现无法操作的情况,可能是因为除数或分母中有0的存在.1÷b中如果b=0,那么无意义,无法操作;或者a-b作为除数,如果a-b=0,即a=b,那么无意义,也无法操作.所以有两种可能:输入了b=0或输入了b=a,才使得程序无法操作.【迁移应用】1.如图是计算机程序的计算流程图,若开始输入x=-2,则最后输出的结果是_______.2.如图是一个数值运算程序,当输出的值为-5时,输入的x的值为_______.五、教学反思。
用计算器计算

用计算器计算1. 引言计算器是一种用于执行各种数学运算的便携式设备。
它可以进行基本的加减乘除运算,还可以处理复杂的科学和统计计算。
通过使用计算器,我们可以快速准确地完成各种数学计算,提高工作和学习效率。
本文将介绍如何使用计算器进行常见的数学运算。
2. 基本运算计算器的基本功能之一是进行基本的四则运算:加法、减法、乘法和除法。
以下是一些基本运算的示例:2.1 加法要使用计算器执行加法运算,可以按照以下步骤进行操作:1.打开计算器。
2.输入第一个要相加的数。
3.按下加号(+)键。
4.输入第二个要相加的数。
5.按下等号(=)键。
计算器将显示两个数的和。
2.2 减法要使用计算器执行减法运算,可以按照以下步骤进行操作:1.打开计算器。
2.输入被减数。
3.按下减号(-)键。
4.输入减数。
5.按下等号(=)键。
计算器将显示两个数的差。
2.3 乘法要使用计算器执行乘法运算,可以按照以下步骤进行操作:1.打开计算器。
2.输入第一个要相乘的数。
3.按下乘号(×)键。
4.输入第二个要相乘的数。
5.按下等号(=)键。
计算器将显示两个数的积。
2.4 除法要使用计算器执行除法运算,可以按照以下步骤进行操作:1.打开计算器。
2.输入被除数。
3.按下除号(÷)键。
4.输入除数。
5.按下等号(=)键。
计算器将显示两个数的商。
3. 科学计算除了基本运算外,现代计算器还提供了丰富的科学计算功能。
下面介绍一些常见的科学计算功能:3.1 幂运算通过计算器可以进行幂运算,即求一个数的乘方。
要进行幂运算,可以按照以下步骤进行操作:1.打开计算器。
2.输入底数。
3.按下幂符号(^)键。
4.输入指数。
5.按下等号(=)键。
计算器将显示乘方的结果。
3.2 开方运算通过计算器可以进行开方运算,即求一个数的平方根或其他次方根。
要进行开方运算,可以按照以下步骤进行操作:1.打开计算器。
2.输入要开方的数。
3.按下平方根(√)键。
4.按下等号(=)键。
七年级上册第二章有理数的运算章末核心要点分类整合新版新人教版

4. 与实际非常接近的数,称为近似数,在实际生活中,我
们常会遇到和用到近似数.
5. 绝对值与偶次幂的结果都是非负数,如果几个非负数的
和等于零,那么这几个非负数都等于零.
专 题
1
倒数
例 1 [中考·娄底] 2 023的倒数是(
A. 2 023
B.-2 023
解:2 023的倒数是
15
2
原式=-
5 2 31 9
5 31
2 9
1
1
× × × =(- × )×( × )=- ×1=- ;
31 9 15 2
31 15
9 2
3
3
4 3
5 1
(2)0.7×19 +2 ×(-14)+0.7× + ×(-14);
9
4
9 4
4 5
3 1
原式=0.7×(19 + )-14×(2 + )=0.7×20-14×3=-28;
3
3
原式=-64+8×1+12× =-64+8+18=-38;
2
3
(4)-32×2-[-(1-0.2÷ )×(-3)2].
5
1
2
原式=-9×2-[-(1- )×9 ]=-18-(- ×9)=-18+6=-12.
3
3
2
利用乘法的运算律进行计算:
(1)
5
2
2
1
×(- )×(-2 )×(-4 );
31
9
A. -6或-12
B. -2或-8
C. 2或-2
D. 2或-16
6
已知有理数a,b,c,d,e,且a,b互为倒数,c,d 互为相反
七年级数学上册 2.15 用计算器进行计算例题与讲解 (新版)华东师大版

2.15 用计算器进行计算1.初步了解计算器(1)计算器面板的构造计算器的面板由键盘和显示器两部分构成.显示器的功能是显示输入数据和结果.键盘的每个键都有不同的功能.(2)计算器常用键盘的功能及使用方法介绍功能键:①ON是开启计算器键.按下这个键,计算器就处于开机状态.②DEL是删除键,删除光标所在位置的数字或符号.AC键是清除键,清除全部显示及本次操作内容,与DEL键是有区别的.③SHIFT是第二功能键,如在计算器的面板中,直接按下=键,计算器直接执行第一功能,即完成运算或执行指令;先按SHIFT键,再按=键,执行第二功能.键盘上有些键的上边注明了这个键的第二功能.④SHIFT AC是关闭计算器键,按一下这个键,计算器就处于关闭状态.⑤(键,)键是左右括号键,可以输入左右括号.⑥(-)的功能是使录入的数据或计算的结果取负值.⑦=的功能是完成运算或执行指令.运算键:①+是运算键,按一下这个键,计算器就执行加法运算.与之类似的还有-,×,÷各键.②x2是平方运算键.如输入62,先输入6,再按x2键,最后按=键.③x□键(不同型号的计算器标志不一样):x□键可以执行乘方运算,使用方法是先按底数,再按x□键,最后按指数.例如输入63时,先按底数6,再按x□,最后按指数3.④S⇔D键:S⇔D键的功能是将数值在小数(D)形式与标准(S)形式(分数、π)之间转换.谈重点应用计算器的前提记住键盘上各个键的功能和输入方法,是应用计算器解题的基础.【例1】计算器上的DEL键的功能是( ).A.开启计算器B.关闭计算器C.清除刚输入的内容D.计算乘方解析:DEL归零是清除现有数据重新输入,AC是清除全部数据结果和运算符号.答案:C2.用计算器进行数的简单运算用计算器进行加、减、乘、除、乘方等运算主要有三种形式,一是给出键入的各个键及其顺序,要求填写答案;二是给出较繁杂的计算式子,要求用计算器计算;三是给出简单的算式及几种键入的方案,要求判断正确性.科学计算器能够先乘方、再乘除、最后加减,所以做混合运算时,按键顺序与书写顺序完全一样.输入错误时的改正:用左右方向键将光标移到你要改正的位置,按DEL 键消除目前光标键所在位置的数字,修改后,再按光标键返回原来的位置. 谈重点 使用计算器前要看说明书 不同型号的计算器的显示屏,键盘的形状、键的名称和功能,以及运算的按键方法都不一定相同,要看说明书. 【例2-1】 用计算器计算(-3)2,正确的按键方法是__________. 解析:用计算器计算(-3)2,应当先输入底数,再输入x 2键,最后按=键.答案:( (一) 3 ) x 2 =【例2-2】 用计算器计算:93-7265-54≈__________(精确到0.001). 解析:键入,显示0.095 091 595 58≈0.095.答案:0.095警误区 应用计算器计算最常见的错误 应用计算器计算最常见的错误是漏掉括号,造成运算顺序错乱.对于分数型计算题,当分子或分母含有加减运算时,为了确保分子、分母的整体性及运算的正确顺序,务必对分子、分母添加括号.3.用计算器计算在利用计算器计算时,一定要按照算式的书写顺序输入,即按从左到右的顺序输入,而不能按有理数的运算顺序输入.不同型号的计算器可能会有不同的按键顺序.如输入负数-5,有的计算器是(-) 5或- 5,有的则为5 +/-.对于加、减、乘、除和乘方的混合运算,只要按算式的书写顺序输入,计算器会按要求算出结果.对于小于1的小数,可以省略0,直接从小数点开始输入.平方或立方运算在输入时,有不同的方法,要多加体会.警误区 用计算器计算时不要漏掉括号 用计算器计算时,不要漏掉括号,由于一个括号往往不是同时出现的,所以也不要漏掉括号的某一部分.【例3】 用计算器计算:(1)(-31.2)÷(-0.4);(2)-25×2+15÷0.75;(3)(3.1-4.4)×32-25+(-1.1)2×10. 分析:按从左到右的顺序直接输入,注意括号是成对出现的,要成对的在正确的位置输入.同时要区别负号(-)和减号-的不同.解:(1)按键顺序为(-) 3 1 . 2 ÷ (-) 0 . 4 =,显示:78,所以(-31.2)÷(-0.4)=78.(2)按键顺序为(-) 2 5 × 2 + 1 5 ÷ 0 · 7 5 =,显示结果为-30,所以-25×2+15÷0.75=-30;(3)按键顺序为× 1 0 =,显示结果为0,所以(3.1-4.4)×32-25+(-1.1)2×10=0.4.借助计算器探究规律利用计算器可以解决中考中的一些探究规律的新型题,解题时,一般要通过计算器求几个特殊算式的结果,从而类推得到一个较一般的结论.不仅考查同学们运用计算器的操作能力,还考查同学们的思考、分类和找规律的能力.用计算器进行有理数的规律探究,可以方便快捷地寻找到运算内在的规律,但在解题时,一定要细心观察,同时每按一次键都要注意显示屏上显示的运算符号和结果,以免出现漏按或按不对而出现的运算错误.【例4】 用计算器计算下列各式,将结果填写在横线上. 99 999×11=__________;99 999×12=__________;99 999×13=__________;99 999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99 999×19的结果吗?分析:用计算器计算,得99 999×11=1 099 989;99 999×12=1 199 988;99 999×13=1 299 987;99 999×14=1 399 986.解:1 099 989 1 199 988 1 299 987 1 399 986(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则99 999×n =(n -1)9 998(20-n ),其中(n -1)9 998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9 998.(2)根据以上规律可直接写出:99 999×19=1 899 981.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用计算器进行数的混合运算时的运算顺序是什么
难易度:★★
关键词:有理数
答案:
如果进行加、减、乘、除和乘方的混合运算时,只要按算式的书写顺序输入,计算器就会按要求算出结果.根据计算器的运算程序的特点(先算乘方,后算乘除,最后算加减)来输入.计算器是先做乘方、再做乘除法,最后做加减法的,所以,只要按照算式的书写顺序输入即可.
【举一反三】
典例:下列说法正确的是()
A、用计算器进行混合运算时,应先按键进行乘方运算,再按键进行乘除运算,最后按键进行加减运算
B、输入0.58的按键顺序是
C、输入-5.8的按键顺序是
D、按键能计算出(-3)2×2+(-2)×3的值
思路导引: A、科学记算器能优先计算乘方,再算乘除,最后算加减,错误;B、正确;
C、应最后选择符号,错误;
D、应最后键入“=”号,错误.故本题选B.点评:本题要求同学们能熟练应用计算器,熟悉计算器的各个按键的功能.
标准答案:B。