氧化铝陶瓷及其金属化技术共20页
氧化铝陶瓷及其金属化技术
相对难于金属化,与金属 结合好,瓷体密度、强度 高,气密性非常好,性能 集中
强度
备注
国内封40外接0M实平P均用a强,化但度和较高配分,散方大采于用的封40氧接0M平化P均铝a强,陶且度较配高均方,匀体大系于有两封30种接0:M平1.P均美a强,、但度苏拉中力,集大中于
配方我体国系放电;管2.通德用日配配方方体体系我;国3真.韩空国管、配磁方控体管系通
MoMn层结构 晶粒范围0.5-10um,平 晶粒范围0.5-5um,平 晶粒范围0.3-3um,平均
均晶粒3-5um,玻璃相、 均晶粒2-3um,玻璃相、 粒1-1.5um,玻璃相、气
气孔率占25%左右; 气孔率占20%左右
率占25%左右;MoMn层
MoMn层厚度20-
MoMn层厚度15-
厚度15-20um;完整、
精度要求较高,密 度要求较高的产品; 对产品精度、密度
度较好的中小型产 对于异形产品成型 等性能要求不高的
品
后还要进行坯体加 中小型产品。
工。
产品质量、 尺寸精度高、一致 密度高,产品质量 尺寸精度差、较分
性能
性好、良率高。产 决定于后加工水平 散、密度低,有微
成型分干品各压密方、度面高性等、能静强较压度佳、等热压铸三种成型方法,气对孔比。见合下格表率较低
与陶瓷结合好,断裂面 与陶瓷结合好,结合层致
为陶瓷金属层,气密性 密,断裂面为金属层,气
好、. 拉力较集中
密性非常好,性能集中
附件3:金属粉SEM分析
金属粉 纯度
SEM照片
Mo粉
99.5%, 晶 粒 大 小 3-10um , 片 状为主
Mn粉
99.5%, 晶 粒 大 小1-2um,球形 为主。
氧化铝陶瓷表面金属化工艺
氧化铝陶瓷表面金属化工艺
氧化铝陶瓷表面金属化是一种将金属材料镀覆在氧化铝陶瓷表
面的工艺。
该工艺通常应用于氧化铝陶瓷制品的表面处理,以提高其耐磨性、耐腐蚀性、导电性等性能。
金属化工艺可以选择多种金属材料,如铬、铜、银、金等,选择不同的金属材料可以改变氧化铝陶瓷的表面性质。
金属化工艺通常包括表面清洁、表面预处理、金属沉积和后处理等步骤。
表面清洁是准备金属化处理的重要步骤,可以使用溶液清洗、喷洒冲洗等方法。
表面预处理主要是为了提高金属沉积的附着力,通常采用化学处理或机械处理。
金属沉积可以采用电镀、化学镀、物理气相沉积等方法。
后处理通常包括清洗、干燥、烘烤等步骤,以确保金属化氧化铝陶瓷表面的质量和耐久性。
氧化铝陶瓷表面金属化工艺的应用非常广泛,如汽车、航空航天、电子、医疗等领域。
在汽车领域,金属化氧化铝陶瓷表面可以提高汽车发动机部件的耐磨性和耐腐蚀性。
在航空航天领域,金属化氧化铝陶瓷表面可以提高飞机零部件的耐高温性能。
在电子领域,金属化氧化铝陶瓷表面可以提高电子元器件的导电性能。
在医疗领域,金属化氧化铝陶瓷表面可以提高医疗器械的耐腐蚀性和生物相容性。
总之,氧化铝陶瓷表面金属化工艺是一种重要的表面处理技术,具有广泛的应用前景。
- 1 -。
氧化铝陶瓷介绍,氧化铝陶瓷制作工艺
氧化铝陶瓷介绍,氧化铝陶瓷制作工艺氧化铝陶瓷介绍氧化铝陶瓷是一种以氧化铝(AL2O3)为主体的材料,用于厚膜集成电路。
氧化铝陶瓷有较好的传导性、机械强度和耐高温性。
需要注意的是需用超声波进行洗涤。
氧化铝陶瓷是一种用途广泛的陶瓷。
因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。
氧化铝陶瓷制作工艺粉体制备将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。
粉体粒度在1μm微米以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。
采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,一般为重量比在10-30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150-200温度下均匀混合,以利于成型操作。
采用热压工艺成型的粉体原料则不需加入粘结剂。
若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。
此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂,如硬脂酸,及粘结剂PV A。
欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。
近年来上海某研究所开发一种水溶性石蜡用作Al203喷雾造粒的粘结剂,在加热情况下有很好的流动性。
喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。
颗粒级配比理想等条件,以获得较大素坯密度。
成型方法氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。
近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。
不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。
摘其常用成型介绍:1、干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长度与直径之比不大于4∶1的物件。
成型方法有单轴向或双向。
结构陶瓷ch之透明氧化铝陶瓷PPT课件
透明陶瓷的种类
透明陶瓷
氧化物
氧化铝 氧化钇 钇铝石榴石:
(Y3Al5O12) 氧氮化铝
非氧化物
AlN ZnS ZnSe MgF2
PLZT电光陶 瓷
CaF2
MgO,CaO
43
第43页/共59页
YA G
• 钇铝石榴石(Yttrium Aluminum Garnet)
价带
半导体吸收光产生 自由电子示意图
4
第4页/共59页
能级 • 能级理论是一种解释原子核外电子运动轨道的
一种理论。它认为电子只能在特定的、分立的 轨道上运动,各个轨道上的电子具有分立的能 量,这些能量值即为能级。
布:
6
第6页/共59页
能 带? • 量子力学计算表明,固体中若有N个原子,由于
9
第9页/共59页
有关能带被占据情况的几个名词:
价带( 满带:排满电子,简写EV ) 价带(非满带:能带中一部分能级排满电子, 亦称导带,
一般出现在金属中。)
空带(未排电子) 亦称导带,简写EC 禁带(不能排电子)
E 空带
导带
Eg 禁带
导带
Eg 禁带
价带 (非满带)
•• •
价带 (满带)
•••••
27
第27页/共59页
4.陶瓷材料的透光性的主要影响因素
• 气孔率 • 晶界结构 • 原料与添加剂 • 烧成气氛 • 表面加工光洁度
28
第28页/共59页
①气孔率
• 对透明陶瓷透光性能影响最大的因素是气孔率。 充分致密、无气孔的陶瓷是具有良的好透光性 的必要条件。
• 普通的陶瓷即使具有较高的致密度,往往也不 是透明的,这是因为其中有很多封闭的气孔。
氧化铝陶瓷金属化
氧化铝陶瓷金属化
氧化铝陶瓷金属化是一种将金属材料与氧化铝陶瓷结合的技术,通常用于提高氧化铝陶瓷的导电、导热、耐磨等性能。
氧化铝陶瓷金属化的方法有很多种,其中比较常见的是采用真空镀膜、热喷涂、化学镀等技术。
这些方法的基本原理都是在氧化铝陶瓷表面形成一层金属薄膜,从而提高其导电、导热等性能。
真空镀膜是将金属蒸发成蒸汽,然后在氧化铝陶瓷表面沉积形成金属薄膜的方法。
这种方法可以形成均匀、致密的金属薄膜,但需要高真空环境和复杂的设备。
热喷涂是将金属粉末加热到熔融状态,然后通过高速气流将其喷涂在氧化铝陶瓷表面形成金属薄膜的方法。
这种方法可以形成较厚的金属薄膜,但金属粉末的粒度和分布会影响金属薄膜的质量。
化学镀是将金属离子通过化学反应在氧化铝陶瓷表面还原成金属的方法。
这种方法可以形成均匀、致密的金属薄膜,但需要控制好反应条件和镀液的组成。
氧化铝陶瓷金属化可以提高氧化铝陶瓷的性能,使其在电子、航空航天、化工等领域得到广泛应用。
《氧化铝陶瓷》课件
REPORTING
目 录
氧化铝陶瓷简介氧化铝陶瓷的制备方法氧化铝陶瓷的性能氧化铝陶瓷的应用案例氧化铝陶瓷的未来发展与挑战
PART
01
氧化铝陶瓷简介
REPORTING
定义
氧化铝陶瓷是一种以氧化铝(Al2O3)为主要成分的陶瓷材料。
特性
具有高硬度、高耐磨性、高耐腐蚀性、高绝缘性等优点,同时具有较好的热稳定性和化学稳定性。
导航系统
电子封装
氧化铝陶瓷因其高导热性、绝缘性和化学稳定性等特点,被用于制造电子封装材料,保护和支撑集成电路和其他电子元件。
高压电容器
氧化铝陶瓷具有高介电常数和低损耗等特点,被用于制造高压电容器,用于电力系统和电子设备中。
传感器和执行器
氧化铝陶瓷因其敏感性和稳定性等特点,被用于制造传感器和执行器等电子器件,如气敏传感器、压力传感器等。
表面处理技术
表面处理技术是提高氧化铝陶瓷性能的重要手段之一。目前,氧化铝陶瓷的表面处理技术还存在一些问题,如涂层附着力差、耐磨性差等。因此,需要加强表面处理技术的研究和开发,提高氧化铝陶瓷的表面性能。
增材制造技术
增材制造技术是一种新型的制造技术,具有个性化、高效、低成本等优点。氧化铝陶瓷在未来发展中可以与增材制造技术相结合,实现快速、精确、低成本的制造,拓展其应用领域。
机械工业
用于制造各种轴承、密封件、泵件等机械零件,具有高耐磨、耐腐蚀的特性。
电子工业
用于制造电子元件、集成电路封装、电子器件等,具有高绝缘、耐高温的特性。
航空航天
用于制造飞机发动机部件、航天器结构件等,具有高强度、轻质、耐高温的特性。
化学工业
用于制造各种耐腐蚀、耐磨损的管道、阀门、反应器等化工设备。
多层氧化铝陶瓷金属化工艺技术的研究的开题报告
多层氧化铝陶瓷金属化工艺技术的研究的开题报告题目:多层氧化铝陶瓷金属化工艺技术的研究一、研究背景随着工业化的不断发展,对材料的要求也越来越高。
其中,陶瓷金属化技术是一项非常重要的技术。
它可以使陶瓷材料具有金属的导电性、导热性和机械性能,从而扩大了陶瓷材料的应用范围和市场。
在陶瓷材料的金属化技术中,多层氧化铝陶瓷金属化技术具有重要的地位。
二、研究目的本论文的主要目的是研究多层氧化铝陶瓷金属化工艺技术。
通过分析多层氧化铝陶瓷金属化技术的原理和特点,探究其在实际应用中的优缺点,并对其进行有效实现的工艺技术进行研究,为多层氧化铝陶瓷金属化技术的发展提供参考和指导。
三、研究内容1.多层氧化铝陶瓷金属化技术的基本原理和特点的分析;2.多层氧化铝陶瓷金属化技术在实际应用中的优缺点的评估;3.多层氧化铝陶瓷金属化技术的工艺技术研究,包括金属化剂的选择、金属化工艺参数的控制等;4.多层氧化铝陶瓷金属化技术的应用实例。
四、研究方法本论文采用文献资料法和实验研究法相结合的方法进行研究。
在理论研究方面,通过查阅相关文献资料,深入分析多层氧化铝陶瓷金属化技术的原理和特点。
在实验研究方面,通过设计实验进行多层氧化铝陶瓷的金属化工艺技术实现和应用实例的研究。
五、预期结果本论文预期将通过对多层氧化铝陶瓷金属化技术的研究,深入探究其在实际应用中的优缺点,为其在工业应用中的发展提供理论支持和技术指导。
同时,预计能够对多层氧化铝陶瓷的金属化工艺技术进行研究,提出一套可行的多层氧化铝陶瓷金属化工艺技术,为多层氧化铝陶瓷材料的金属化应用提供理论和实践支持。
氧化铝陶瓷及其金属化技术
Mn粉
99.5%, 晶 粒 大 小1-2um,球形 为主。
a
7
粉料+烧结助剂→研磨→造粒→干压→烧结→端面研磨 或热压铸工艺生产
→清洗→白瓷检验→印刷MoMn浆料→干燥→保护气氛 烧结→活化→镀Ni→成品检验→包装
备注:
1.粉料应选用低钠0.05%以下,原晶2-3um,转化率大 于96%的氧化铝粉。Mo粉粒度应选用2-3um较均匀 球形粉(国内Mo粉达不到此要求)。
不均匀
较均匀
匀
性能
与陶瓷表面匹配性好, 断裂面为陶瓷层;气密 性差、拉力分散。
与陶瓷结合好,断裂面 与陶瓷结合好,结合层致
为陶瓷金属层,气密性 密,断裂面为金属层,气
好、a 拉力较集中
密性非常好,性能集6中
附件3:金属粉SEM分析
金属粉 纯度
SEM照片
Mo粉
99.5%, 晶 粒 大 小 3-10um , 片 状为主
度较好的中小型产 对于异形产品成型 等性能要求不高的
品
后还要进行坯体加 中小型产品。
工。
尺寸精度高、一致 性好、良率高。产 品密度高、强度等 各方面性能较佳
密度高,产品质量 决定于后加工水平
尺寸精度差、较分 散、密度低,有微 气孔。合格率较低
成本
压机模具投资大, 设备投资大,效率
但效率高,可一次 低,不适合规模化
压力式造粒料特点:颗粒粗100-300um(50-150目);颗粒苹果 形,分布范围较宽;流动性差70-75S,适合于压制大型产品。
离心式造粒料特点:颗粒细80-180um(80-200目);颗粒球形, 分布范围窄;流动性好60-65S,适合于压制小型产品。
均混:为确保压制密度及收缩的一致性,造粒料需要分级和均 混,均混过程中加入一定量的脱膜剂,防止粘膜。
氧化铝陶瓷与金属的自蔓延焊接
氧化铝陶瓷与金属的自蔓延焊接近年来,随着先进制造技术的发展,氧化铝陶瓷与金属的焊接技术备受关注。
自蔓延焊接作为一种新型的焊接方法,具有高效、低成本、环保等优点,得到了广泛的研究和应用。
本文将从氧化铝陶瓷与金属的特性、自蔓延焊接原理、影响因素和应用前景等方面进行探讨。
一、氧化铝陶瓷与金属的特性氧化铝陶瓷具有高硬度、抗腐蚀、耐磨损等优良性能,广泛应用于航空航天、电子通讯、医疗器械等领域。
而金属材料具有导电、导热、可塑性好等特点,是工程制造中不可或缺的材料。
由于两者性质的差异,传统的焊接方法往往难以实现氧化铝陶瓷与金属的牢固连接,这就需要一种新的焊接技术来解决这一难题。
二、自蔓延焊接原理自蔓延焊接是一种燃烧合成技术,利用金属化合物在高温下与基体金属发生化学反应,形成金属间化合物,从而实现焊接的过程。
在自蔓延焊接过程中,金属化合物的传播速度快,能够在短时间内覆盖整个焊接界面,形成均匀、致密的连接。
这种焊接方法不需要外加压力和保护气氛,使得焊接过程更加简单和节能。
三、自蔓延焊接影响因素1. 温度:焊接温度是自蔓延焊接的重要参数,过高或过低的温度都会影响焊接质量,需要在一定的温度范围内进行控制。
2. 压力:焊接压力能够促进金属化合物在焊接界面上的扩散和扩展,对焊接质量有着重要的影响。
3. 化合物选择:合适的金属化合物能够提高焊接界面的反应活性和扩散速度,从而影响焊接质量。
四、自蔓延焊接在氧化铝陶瓷与金属的应用前景自蔓延焊接技术已经在航空航天、电子通讯、医疗器械等领域得到了广泛的应用。
在航空航天领域,氧化铝陶瓷与金属的连接是关键的技术难题,自蔓延焊接技术的出现填补了这一空白,为航空航天器件的制造提供了新的可能性。
在电子通讯领域,自蔓延焊接技术能够实现高频导电器件和射频微波器件的可靠连接,提高了器件的性能和稳定性。
在医疗器械领域,自蔓延焊接技术能够实现生物陶瓷与金属的高强度连接,为医疗器械的制造提供了更多的选择。
氧化铝陶瓷金卤灯技术资料
Ⅰ引言陶瓷金卤灯是当前各类光源中功能最为完善,性能最为优越的灯种,其光效可达110lm/W,甚至更高,即使小功率灯亦可达85lm/W以上;其显色性通常不低于85,并且很容易达到95以上;目前最好的灯的寿命能达到15000小时,即使常规产品也不难达12000小时;灯功率范围则多在20W ~400W之间。
由于此种灯目前只在欧美市场大面积推广,按用户需要色温多在4000°K以下,通常不会超过5000K,如在亚洲得到普及,亚洲人种可能更喜爱较高色温,那时色温范围可能扩展为3000K~6000K。
陶瓷金卤灯是在高压钠灯和石英金卤灯的基础上发展起来的,然而其用途已远超二者。
其高显色性使之可以大量取代白炽灯和卤素灯,特别是小功率类型如20W、35W(39W)、50W、70W等亦已广泛用于室内甚至家庭照明。
而中功率灯种由于其高显色性、高光效和长寿命,虽成本较高但亦已较广泛用于室内外,举如机场、车站、商场、旅店大堂、餐厅等,在欧洲处处可以看到陶瓷金卤灯的使用。
目前陶瓷金卤灯的生产和使用主要集中在欧洲及北美洲,世界陶瓷金卤灯产量正以每年30%以上的速度增加,但仍有供不应求之势。
由于技术难度很大,加以知识产权问题,目前仍然只是GE、Philips和Osram 三大公司生产。
我国多处都在研发但均未成功,研发此种光源所面临的不只是很难攻克的材料和技术关键,还有更难处理的知识产权问题,目前我国政府正在大力整顿和保护知识产权,这使陶瓷金卤灯的专利问题变得更为复杂而困难。
Ⅱ陶瓷金卤灯的研发20世纪60年代中期GE首先研发出半透明陶瓷管,并成功用于高压钠灯生产,当时虽然金卤灯的研发尚未完成,但已有人试图将这种半透明陶瓷用之于早期的金卤灯研发。
80年代初期,金卤灯已经成熟,很多研究者也已发现石英金卤灯电弧管壳的诸多缺点并试图以半透明陶瓷管代替,从而改进金卤灯性能,因此加紧了陶瓷金卤灯的研发。
石英玻壳金卤灯的主要缺点是:1、钠的渗漏造成的色温和光效漂移。
氧化铝陶瓷概述
氧化铝陶瓷的特性
高硬度
氧化铝陶瓷具有很高的硬度,其莫氏硬 度约为8-9,仅次于金刚石和碳化硅。
高绝缘性
氧化铝陶瓷具有很高的绝缘性能,其 电阻率高达1014Ω·cm以上,可用于
制造高压、高温绝缘器件。
高熔点
氧化铝陶瓷的熔点高达2050℃,使其 在高温环境下仍能保持稳定的物理和 化学性能。
低热膨胀系数
制备工艺对性能的影响
粉体制备
采用不同的合成方法,如 固相法、溶胶-凝胶法等, 得到不同粒度和形貌的粉 体,影响陶瓷的性能。
成型工艺
采用不同的成型方法,如 干压成型、等静压成型等, 影响陶瓷的致密度和强度。
烧成制度
烧成温度、气氛、时间等 因素影响陶瓷的显微结构 和性能。
表面处理与改性
表面涂层
表面粗糙度
电子工业领域
由于其优良的绝缘性能和稳定的物理化学性能,氧化铝陶 瓷在电子工业中广泛应用于制造电子元件、电子器件封装 、集成电路基片等。
其他领域
氧化铝陶瓷还广泛应用于化工、石油、纺织等领域的耐腐 蚀、耐磨损部件,以及作为高温炉管、高温发热元件等。
02
氧化铝陶瓷的生产工艺
原料选择与处理
原料选择
选择高纯度、高结晶度的氧化铝 粉体作为主要原料,以确保陶瓷 的性能和品质。
VS
拓展应用领域
利用多功能氧化铝陶瓷的特点,开发其在 新能源、生物医学、环保等领域的应用, 满足社会发展的多样化需求。
感谢观看
THANKS
后处理
进行表面处理、涂层、金属化等后处理,以提高氧化铝陶瓷的耐腐蚀性、导电性 等性能。
03
氧化铝陶瓷的性能优化
添加物对性能的影响Leabharlann 010203
5.1氧化铝陶瓷
(3) 烧结气氛的影响
气氛对Al2O3 陶瓷烧结影响很大,合适的气氛有助于致 密化。
一般来说,气氛中的氧离子分压越低,越有利于氧化铝 的烧结。在氢气气氛下烧结,由于氢原子半径很小、易 于扩散而有利于消除封闭气孔,可得到近于理论密度的 烧结体。 CO-H2气氛可以使氧化铝晶格中的氧离子较易 失去,形成空位,加速阳离子扩散,从而有效促进烧结, 并获得很好的致密度,比氢气气氛更容易烧结。
(2) β-Al2O3
β-Al2O3实际上不是氧化铝的变体,而是一种含碱金属(或 碱土金属)的铝酸盐(其通式为 R2O· 11Al2O3,或 RO· 6Al2O3)。 β-Al2O3是一种不稳定的化合物,加热时,会分解生成 Na2O(或RO)和α-Al2O3,Na2O则挥发逸出,其分解温度 取决于高温锻烧时的气氛和压力。在空气或氢气中1200℃ 便开始分解,超过1 650℃则剧烈挥发。 由于β-Al2O3的结构具有明显的离子导电能力和松弛极化现 象,介质损耗大,电绝缘性能差,在制造无线电陶瓷时不 允许β-Al2O3的存在。
2.影响预烧质量的因素:
1)工业中预烧氧化铝时,通常要加入适量的添加物,如 H3BO4,NH4F,AlF3等,加入量一般为0.3%~3%。添 加物可以降低预烧温度、促进晶型转化、排除Na2O等杂 质。硼酸盐除碱效果好,氟化物可促进晶型转变,且收缩 大、活性好。
2)预烧质量与预烧温度有关。预烧温度偏低,则不能完全 转变成α-Al2O3 ,且电性能降低;若预烧温度过高,则粉 料发生烧结,不易粉碎,且活性降低。一般情况下, Al2O3 粉体煅烧温度控制在1400~1450 ℃ 。
(4) 添加剂的影响
由于Al2O3陶瓷坯体熔点高,较难烧结,若加入某种添加剂,则可 以改善烧结性能,促进烧结。就添加剂来说,大致可分为以下两 大类:一类是与Al2O3生成固溶体,一类是能生成液相。