TA7376组成的耳机放大电路
6SA7(6N5P)阴极输出耳放的制作
6SA7(6N5P)阴极输出耳放的制作在95年的audio&techniek杂志上看到了一篇Rudy Van Stratum先生发表的一个电子管的耳机放大器电路,不过,Stratum先生也没有实作过,仅仅是一个电路,这个电路引起了我的注意,因为我发现他具有以下特点:1。
电路简洁,两个声道一个只需要2只双三极管,这个是我见到最简单的耳机放大器电路。
2。
可以驱动低阻耳机。
3。
两级放大之间使用直接偶合电路。
4。
无大环路负反馈。
5。
单端甲类输出。
我按照这个电路实作了一台,经过这段时间的试听(超过三个月时间,使用CD、磁带等不同信号源)我可以告诉大家,这是一台非常好的耳机放大器。
经过我略微修正的电路如图1所示,它第一级使用双三极管ECC88中的一个作共阴极放大,第二级使用双三极管6AS7G中的一个作阴极输出,两级之间直接藕合,在原来电路图上我加了一个音量电位器和ECC88的栅漏电阻,输出电容也由100uF增加到200uF,增加电容容量的原因很简单,一个是我要使用低阻抗的32-60欧的耳机,另外我手中也恰好有这种电容,经过测试,使用60欧耳机,-3db的下降点在12Hz,使用32欧耳机,-3db的下降点在22Hz。
这台机器的外观处理很简单,我的第一台原型机使用了装饰用的宝丽板作机壳,我几乎是立刻就喜欢上了它,他的声音细节非常精确,可以听出更多的细节和空气感,本来阴极输出器有声音暗淡的名声,令人厌烦不敢恭维,但是这个电路改变了我的认识,呈现一种与之完全相反的并能紧紧抓住你注意力的声音,弱音之间的区别变得非常明显,举个例子,你可以听出不同大提琴之间音色的区别,我的晶体管耳机放大器与之比较,就显得声音发硬,呆滞,高频有毛刺感,结像力不足,我想这是因为这台电子管耳放电路简洁,并且没有大环路负反馈的结果,当然本机为单端输出,而那台晶体管机器电路为推挽也是原因之一。
通过一段时间的试听,我非常满意这种声音风格,最后我使用了一个4*8*1英寸的铝合金壳子作为我这台机器的机壳,制作我使用了搭棚焊接,没有使用商品机常见的PCB电路板形式,经过搭配使用森海塞尔HD465,HD580,AKG K240,松下EAH-S30试听,低阻抗耳机的表现要比高阻耳机好,说明本电路适合搭配低阻耳机使用。
收音机原理
收音机原理第二代二次变频收音机。
该款收音机重量轻(仅重15g)、体积小(115mm×75mm×29mm),可方便地放进衣服口袋,俗称“小短波王”。
该机设有1个MW中波波段、7个短波波段(SW1~SW7,5.90~18.10MHz)、1个FM调频波段共9个波段。
与第一代机型R-9700相比,该机内瓷片电容、电阻采用了贴片元件和贴片工艺(SMT)生产,并用双稳态电路取代了由逻辑译码集成电路74HC138组成的波段选择电路,取消了电视伴音和易受外界干扰的4.65~5.15MHz波段和电台极少的21.4O~21.85MHz两个SW波段,且FM波段改为单声道接收。
该机电路主要由FM/AM转换电路、FM电路、AM电路(包括中波电路以及短波电路两部分)、功放电路等组成。
下面介绍其工作原理。
一、FM/AM转换电路德生R9701收音机的主电路如图1所示(图中元件符号同原厂图纸)。
由图1可以看出,该机FM/AM转换电路与以往的9700电路有很大差别:以往的9700FM/AM 转换电路采用了电子开关电路74HC138,而该机FM/AM转换电路则采用了由Q6、Q7等分立元件组成的双稳态电子波段切换开关。
开启电源开关引,整机电源被接通。
在开机的瞬间,C10两端的电压不能突变,C10上端(即Q7基极)为低电平,Q7截止,+3V电源电压通过R13、R17、R9,使Q6的基极为高电平,于是Q6导通。
由于Q6的导通,其集电极上的低电平一方面使Q4(9015)导通,IC1的⒁脚输入高电平,集成电路内部AM/FM电子切换开关使IC1工作在FM状态。
另一方面,Q6集电极的低电平使Q7保持截止状态。
与此同时,Q6集电极的低电平使绿色指示灯LED2(FM LED)点亮,指示收音机当前处于调频接收状态。
在FM状态按动电子波段选择开关“AM”时,即相当于给Q6基极一个人为的低电平,于是Q6截止。
Q6集电极的高电平使LED2(FM LED)熄灭,同时其高电平也使Q4截止,IC1的⒁脚为低电平,集成电路内部FM/AM转换电子开关电路启动,IC1自动工作在调幅波段。
6SA7(6N5P)阴极输出耳放的制作
6SA7(6N5P)阴极输出耳放的制作在95年的audio&techniek杂志上看到了一篇Rudy Van Stratum先生发表的一个电子管的耳机放大器电路,不过,Stratum先生也没有实作过,仅仅是一个电路,这个电路引起了我的注意,因为我发现他具有以下特点:1。
电路简洁,两个声道一个只需要2只双三极管,这个是我见到最简单的耳机放大器电路。
2。
可以驱动低阻耳机。
3。
两级放大之间使用直接偶合电路。
4。
无大环路负反馈。
5。
单端甲类输出。
我按照这个电路实作了一台,经过这段时间的试听(超过三个月时间,使用CD、磁带等不同信号源)我可以告诉大家,这是一台非常好的耳机放大器。
经过我略微修正的电路如图1所示,它第一级使用双三极管ECC88中的一个作共阴极放大,第二级使用双三极管6AS7G中的一个作阴极输出,两级之间直接藕合,在原来电路图上我加了一个音量电位器和ECC88的栅漏电阻,输出电容也由100uF增加到200uF,增加电容容量的原因很简单,一个是我要使用低阻抗的32-60欧的耳机,另外我手中也恰好有这种电容,经过测试,使用60欧耳机,-3db的下降点在12Hz,使用32欧耳机,-3db的下降点在22Hz。
这台机器的外观处理很简单,我的第一台原型机使用了装饰用的宝丽板作机壳,我几乎是立刻就喜欢上了它,他的声音细节非常精确,可以听出更多的细节和空气感,本来阴极输出器有声音暗淡的名声,令人厌烦不敢恭维,但是这个电路改变了我的认识,呈现一种与之完全相反的并能紧紧抓住你注意力的声音,弱音之间的区别变得非常明显,举个例子,你可以听出不同大提琴之间音色的区别,我的晶体管耳机放大器与之比较,就显得声音发硬,呆滞,高频有毛刺感,结像力不足,我想这是因为这台电子管耳放电路简洁,并且没有大环路负反馈的结果,当然本机为单端输出,而那台晶体管机器电路为推挽也是原因之一。
通过一段时间的试听,我非常满意这种声音风格,最后我使用了一个4*8*1英寸的铝合金壳子作为我这台机器的机壳,制作我使用了搭棚焊接,没有使用商品机常见的PCB电路板形式,经过搭配使用森海塞尔HD465,HD580,AKG K240,松下EAH-S30试听,低阻抗耳机的表现要比高阻耳机好,说明本电路适合搭配低阻耳机使用。
简单易制的十六管耳机放大电路
简单易制的十六管耳机放大电路现在高音质耳机大量普及,但大多数耳机在耳放驱动下会表现更好,通常会好于便携播放器的直接驱动下的表现。
耳放通常以较大功率功放简单的电路进行较小的电压提升和具有低输出内阻的电流输出能力。
最易制的耳放大多采用集成电路如功放或运放来制作,它的音质由选用芯片和具体电路来定。
因集成电路是一个较复杂的完整放大电路,所以不同的芯片有各自的声音特点,在方便用家得到想要的声音时也极大地对音频信号进行了改变产生了失真。
在使用分立元件的晶体管制作的耳放因电路简单并且对信号的失真较小,所以保真度较高,但通常制作难度较大,还需管的配对和调试,要求制作者有相应的知识和技术。
在这里介绍一款电路简单、无需调试的易制、音质好的十六管耳放制作放法。
晶体三极管作发射极跟随器时有最优的保真度和最强的电流放大能力。
本电路完全让所有晶体三极管都作发射极跟随器使用,由普通四个相互补的两对晶体管电路改进而来,采用四对互补的大小不同的晶体对管组成一放大电流能力很强的菱形缓冲器电路。
它虽没有电压放大能力,但高达正负十五伏的供电电压可让CD机二伏或解码器及优质前置放大器的高于二伏的输出电压通过它增强电流输出能力,然后以输入的电压幅度高保真地驱动耳机发音。
把十六个晶体管配成八个复合管,再按普通菱形缓冲器电路以复合管替代菱形缓冲器的单个晶体管。
于是这样的菱形缓冲器有更强的电流放大能力,强大到可直接放大通过五十千欧电位器调整幅度的音频信号电流将其变成输出能驱动耳机的功率电流。
电路如图所示,制作方法讲解如下:R6,C1与R7,C2组成放大电路的小信号部分的供电RC滤波电路,防止Q5,Q6和Q7,Q8的功率输出信号干扰前面的弱信号放大部份。
所有三极管放大倍数最好五十以上到一百左右。
图中所用三极管可用但并非唯一,可灵活使用。
但有一经验教训,我曾用,口碑很好的飞利浦C546B/C556B高频高放大倍数的小功率管。
实测放大倍数三百以上,在代替Q1,Q2,Q3,Q4,Q5,Q7时即使只用一对也会发生严重的自激。
德生收音机图纸
1.德生R-202T型两波段收音机电路图2. “德生”二次变频收音机R9701电路分析接收机二次变频技木早先主要用于军事通信领域,以后逐渐用于民用通讯设备,如对讲机、移动电话、收信机等。
国内将此技术移植于收音机中的德生公司第一家。
第一代“短波王”R9700的推出,曾畅销大江南北,此后,又先后推出R970l、R9702等功能更优异,使用更方便的机型。
二次变频技术与传统的超外差式收音机的电路结构比较,见图1所示。
可以看出,二次变频的应用,使收音机的接收灵敏度和选择性等指标大大提高。
下面将承前启后的R9701机作一典型介绍:图2是德生R970l AM/FM前级电路图,图3为其功放电路与操作功能显示电路。
K1为电源开关。
图2中的Q6、Q7等元件组成双稳态电子波段切换开关。
由于开机瞬间,C10上的电压不能突变,Q7截止,电源电压E+通过R13、R9使Q6导通,其集电极上的低电平使Q4导通,Icl 14脚输入高电平,于是ICl工作在FM状态。
与此同时,Q6集电极外接的FM LED点亮。
拉杆天线ANT接收到的高频信号经CO、F3、c5耦合至Icl①脚。
Icl是一片低电压AM/FM收音机专用集成电路,内含AM/FM本振,混频及检波电路,内部结构如图4所示,引脚功能及实测数据如表1所示。
Icl①脚输入的FM信号经内部高频放大从15脚输出,再由PVC2、C8、L4选频后与PVC2同步调谐的本振信号(PvC3、L5、C24、ICl③脚内部元件组成)一起送入混频器。
混频后从③脚输出的10.7MHz中频信号再经FM选频并送入ICl⑧脚,经内部中频放大,FM鉴频后通过电子开关选通,从11脚输出鉴频后的音频信号。
TuN LED为电台强场指示灯(见图3)。
按动电子波段开关AM时,即相当于给Q6基极一个人为的低电平.Q6截止,FM LED熄灭。
同时Q4也因高电平而截止,ICl工作在调幅波段。
Q6集电极的高电平又使Q7由截止转为导通,AMLED点亮。
德生收音机图纸
1.德生R-202T型两波段收音机电路图2. “德生”二次变频收音机R9701电路分析接收机二次变频技木早先主要用于军事通信领域,以后逐渐用于民用通讯设备,如对讲机、移动电话、收信机等。
国内将此技术移植于收音机中的德生公司第一家。
第一代“短波王”R9700的推出,曾畅销大江南北,此后,又先后推出R970l、R9702等功能更优异,使用更方便的机型。
二次变频技术与传统的超外差式收音机的电路结构比较,见图1所示。
可以看出,二次变频的应用,使收音机的接收灵敏度和选择性等指标大大提高。
下面将承前启后的R9701机作一典型介绍:图2是德生R970l AM/FM前级电路图,图3为其功放电路与操作功能显示电路。
K1为电源开关。
图2中的Q6、Q7等元件组成双稳态电子波段切换开关。
由于开机瞬间,C10上的电压不能突变,Q7截止,电源电压E+通过R13、R9使Q6导通,其集电极上的低电平使Q4导通,Icl 14脚输入高电平,于是ICl工作在FM状态。
与此同时,Q6集电极外接的FM LED点亮。
拉杆天线ANT接收到的高频信号经CO、F3、c5耦合至Icl①脚。
Icl是一片低电压AM/FM收音机专用集成电路,内含AM/FM本振,混频及检波电路,内部结构如图4所示,引脚功能及实测数据如表1所示。
Icl①脚输入的FM信号经内部高频放大从15脚输出,再由PVC2、C8、L4选频后与PVC2同步调谐的本振信号(PvC3、L5、C24、ICl③脚内部元件组成)一起送入混频器。
混频后从③脚输出的10.7MHz中频信号再经FM选频并送入ICl⑧脚,经内部中频放大,FM鉴频后通过电子开关选通,从11脚输出鉴频后的音频信号。
TuN LED为电台强场指示灯(见图3)。
按动电子波段开关AM时,即相当于给Q6基极一个人为的低电平.Q6截止,FM LED熄灭。
同时Q4也因高电平而截止,ICl工作在调幅波段。
Q6集电极的高电平又使Q7由截止转为导通,AMLED点亮。
TA7232P双音频功率放大集成电路图
TA7232P双音频功率放大集成电路图技术来源:电子市场发布时间:2008-2-27 5:33:22TA7232P是日本东芝公司生产的双声道音频功率放大集成电路,多应用于立体声收放机、组合音响等电路中作功率放大。
1.TA7232P内电路方框图及引脚功能TA7232P集成块内电路主要由两路功能相同的音频功率放大电路为主构成,其集成块的内电路方框图及组成双声道的典型应用电路如图1所示。
该IC采用单列12脚直插式封装,其集成电路的引脚功能及数据见表1所列。
表1TA7232P集成电路的引脚功能及数据2.TA7232P主要电参数TA7232P集成电路工作电源电压范围为3.5-12V,典型工作电压为6V或9V。
(1)极限使用条件。
T a=25℃时,电源电压Vccc=l6V;输出电流Io=2A(单信道);允许功耗PD=l2.5W。
(2)主要电参数。
在Vcc=9V,RL=4Ω,Rg=600Ω,f=1KHz,T a=25℃条件下,有以下电参数。
静态电流I(CQ) 最大值为45mA,典型值为22mA。
电压增益GV 当Rf=l5OΩ时的最大值为46.5dB,最小值为42.5皿,典型值为44。
5dB。
输出功率Po 当THD=l0%时,最小值为1.8W,典型值为2.2W;BTL时的典型值为5.5W。
谐波失真THD 当Po=lW时的最大值为0.1%,典型值为0.2%。
输入阻抗Zi 典型值为20KΩ。
输出噪声V(NO) 当Rg=10KΩ,BW=5OHz~2OKHz也时的最大值为0.8mV,典型值为03mV。
3.TA7232P典型应用电路TA7232P集成电路具有外接元件少,电源电压范围宽、纹波抑制能力强等特点,可组成双声道或BTL 电路。
其集成块组成双声道时的典型应用电路如图1所示,组成BTT时的典型应用电路如图2所示。
4.电路工作过程以图1电路为例,左、右声道音频信号从⑤、⑧脚送入两路功放电路信号输入端,经功率放大后的信号从②、(11)脚输出,经输出耦合电容耦合后去推动扬声器发声。
德生(TECSUN)系列收音机由东莞市德生通用电器制造有限...
德生(TECSUN)系列收音机由东莞市德生通用电器制造有限公司生产,其价格适中,体积小巧,外观漂亮,性能优良。
由于德生系列收音机品种繁多,难以面面俱到,全面点评。
我们可以将其分为全数字调谐收音机,二次变频高灵敏度收音机和机械调谐式袖珍收音机三大类。
一、数字调谐收音机德生公司推出最早的数字调谐收音机是PL737。
该机性能出色,有口皆碑。
其核心器件采用了东芝公司成熟芯片TC9307-010,这是一枚高品质锁相环DTS专用芯片,它具有FM、SW、MW三个波段,可预置15个电台频率。
PL737外壳采用高强度工程塑料,前面板采用铝合金材料。
PL737FM高放采用了韩国产LAP722优质集成电路,该芯片实际上与经典的TA7358内部结构完全一样,可以互换。
中放与立体声鉴频采用的是东芝公司TA8132集成电路,立体声分高度指标较高。
音频功放电路PL737选用了SONY公司的CXA1622双声道功放IC。
耳机收听,呈立体声状志,用机内扬声器收听,功放工作在BTL状态。
当然PL737也存在一些缺点,最主要表现为耗电偏大,存台偏少,夜间使用不方便等。
针对这种现象,德生公司又推出了改进版本PL747。
PL747外观采用流行的流沙银色,实物尺寸为140 X 85 X 3Omm,略大于737。
其内部电路与PL737大同小异,部分电路做了优化,耗电更省,灵敏度更高,制作工艺更精致。
它具有FM、MW、SW1、SW2四个阶段,可预置20个电台频率,另具手动快速搜索功能和自动插台功能。
并具有夜间照明功能。
PL747与PL757一样同样具有时钟显示和定时开/关机及l-90分钟的睡眠自动关机功能。
PL757目前是德生数字调谐收音机中最豪华,最优秀的一种,无论是外观工艺,还是制作水准都代表了国产收音机最高水平,整机尺寸比747略大一点,体积为145x 90x30mm。
其核心器件采用东芝公司专用数字调谐芯片TC9316F,最诱人的可能是直接输入电台频率的先进功能。
收音机电路原理
收音机原理收音机原理就是把从天线接收到的高频信号经检波(解调)还原成音频信号,送到耳机变成音波。
由于广播事业发展,天空中有了很多不同频率的无线电波。
如果把这许多电波全都接收下来,音频信号就会象处于闹市之中一样,许多声音混杂在一起,结果什么也听不清了。
为了设法选择所需要的节目,在接收天线后,有一个选择性电路,它的作用是把所需的信号(电台)挑选出来,并把不要的信号“滤掉”,以免产生干扰,这就是我们收听广播时,所使用的“选台”按钮。
选择性电路的输出是选出某个电台的高频调幅信号,利用它直接推动耳机(电声器)是不行的,还必须把它恢复成原来的音频信号,这种还原电路称为解调,把解调的音频信号送到耳机,就可以收到广播。
上面所讲的是最简单收音机称为直接检波机,但从接收天线得到的高频天线电信号一般非常微弱,直接把它送到检波器不太合适,最好在选择电路和检波器之间插入一个高频放大器,把高频信号放大。
即使已经增加高频放大器,检波输出的功率通常也只有几毫瓦,用耳机听还可以,但要用扬声器就嫌太小,因此在检波输出后增加音频放大器来推动扬声器。
高放式收音机比直接检波式收音机灵敏度高、功率大,但是选择性还较差,调谐也比较复杂。
把从天线接收到的高频信号放大几百甚至几万倍,一般要有几级的高频放大,每一级电路都有一个谐振回路,当被接收的频率改变时,谐振电路都要重新调整,而且每次调整后的选择性和通带很难保证完全一样,为了克服这些缺点,现在的收音机几乎都采用超外差式电路。
超外差的特点是:被选择的高频信号的载波频率,变为较低的固定不变的中频(465KHz),再利用中频放大器放大,满足检波的要求,然后才进行检波。
在超外差接收机中,为了产生变频作用,还要有一个外加的正弦信号,这个信号通常叫外差信号,产生外差信号的电路,习惯叫本地振荡。
在收音机本振频率和被接收信号的频率相差一个中频,因此在混频器之前的选择电路,和本振采用统一调谐线,如用同轴的双联电容器(PVC)进行调谐,使之差保持固定的中频数值。
常用集成电路
KD167 音乐电路234
KD253 音乐电路(双音叮咚)234
KD253B 音乐电路(余音叮咚)235
KD254 多种合成音乐电路236
KD482 音乐电路(12首名曲)236
BA532 58W音频功率放大电路45
BA536 48W×2音频功率放大电路46
BA656 LED电平显示驱动电路47
BA1102F 杜比B型降噪处理电路48
BA1106F 杜比B型降噪处理电路49
BA1332/BA1332L 锁相环调频立体声解码电路50
BA1356 锁相环调频立体声解码电路52
CXA1821M CD唱机射频信号放大电路139
CXA8008P 单片放音电路140
CXD1135QZ CD唱机数字信号处理电路141
CXD1167Q CD唱机数字信号处理电路144
CXD1186C-Q CD-ROM译码电路147
CXD2500AQ CD唱机数字信号处理电路150
AN115 锁相环调频立体声解码电路1
AN260 FM中频放大及AM高、中频放大电路2
AN262 音频前置放大电路3
AN278 FM中频放大电路4
AN360 低噪声音频前置放大电路5
AN362/AN362L 锁相环调频立体声解码电路6
AN366/AN366P FM/AM中频及AM高频放大电路8
BL3207 电荷耦合延时电路93
BU9252F MIC音频信号延时电路94
BU9253FS 音频信号混响延迟电路95
CD3161CS 双声道前置放大电路95
CD7640CP FM/AM中频放大电路96
利用TEA5767收音模块DIY调频立体声FM收音机
= CHANNEL_MIN; = STATE_SEARCH;
// 开关健(PD7)
#define POWER_ON() #define POWER_OFF()
SET_BIT(DDRD,DDD7);CLR_BIT(PORTD,PD7);
// 闪烁控制变量的最大值 #define BLINK_COUNTER_MAX 10
可能好多朋友说一个买收音机也就几块钱,何必花这么大精力鼓捣这个烂玩意,如果真有这个想法的朋友请打住,不要在往下面看了。之前也一直认为 TEA5767 较差, 实际中发觉选择大厂的模块出来的音频经放大器推动后还是很有震撼力,大大超出我的预期。不过前提是使用好模块,而不是现在满淘宝卖的那种 5-7 块左右的那种简装 版咯。
{ ulong pll = (ulong)(((Freq-225)*4000)/32768); return pll;
}
// 由 PLL 计算频率(频率单位为 KHZ)
ulong TEA5767_GetFreqFromPLL(ulong Pll) {
ulong Freq = (ulong)(((float)Pll)*((float)8.192)+225); return Freq; }
// 初始化 TEA5767(频率单位为 KHZ) void TEA5767_Init(ulong Freq,uchar Mono);
// 调整频率、声道 void TEA5767_Adjust(ulong Freq,uchar Mono,uchar MuteControl);
// 信号强度 uchar TEA5767_GetLevel();
TWI_MasterSendBytes(TEA5767_TWI_ADDR,5,data);
德生收音机图纸
1 / 522. “德生”二次变频收音机R9701电路分析接收机二次变频技木早先主要用于军事通信领域,以后逐渐用于民用通讯设备,如对讲机、移动电话、收信机等。
国内将此技术移植于收音机中的德生公司第一家。
第一代“短波王”R9700的推出,曾畅销大江南北,此后,又先后推出R970l、R9702等功能更优异,使用更方便的机型。
二次变频技术与传统的超外差式收音机的电路结构比较,见图1所示。
可以看出,二次变频的应用,使收音机的接收灵敏度和选择性等指标大大提高。
下面将承前启后的R9701机作一典型介绍:2 / 523 / 52图2是德生R970l AM/FM前级电路图,图3为其功放电路与操作功能显示电路。
K1为电源开关。
图2中的Q6、Q7等元件组成双稳态电子波段切换开关。
由于开机瞬间,C10上的电压不能突变,Q7截止,电源电压E+通过R13、R9使Q6导通,其集电极上的低电平使Q4导通,Icl 14脚输入高电平,于是ICl工作在FM状态。
与此同时,Q6集电极外接的FM LED点亮。
拉杆天线ANT接收到的高频信号经CO、F3、c5耦合至Icl①脚。
Icl是一片低电压AM/FM收音机专用集成电路,内含AM/FM本振,混频及检波电路,内部结构如图4所示,引脚功能及实测数据如表1所示。
Icl①脚输入的FM信号经内部高频放大从15脚输出,再由PVC2、C8、L4选频后与PVC2同步调谐的本振信号(PvC3、L5、C24、ICl③脚内部元件组成)一起送入混频器。
混频后从③脚输出的10.7MHz中频信号再经FM选频并送入ICl⑧脚,经内部中频放大,FM鉴频后通过电子开关选通,从11脚输出鉴频后的音频信号。
TuN LED为电台强4 / 52场指示灯(见图3)。
按动电子波段开关AM时,即相当于给Q6基极一个人为的低电平.Q6截止,FM LED熄灭。
同时Q4也因高电平而截止,ICl工作在调幅波段。
Q6集电极的高电平又使Q7由截止转为导通,AMLED点亮。
TDA7266双路音频立体声放大器电路图
TDA7266双路音频立体声放大器电路图
TDA7266是双路音频立体声放大器,以MULTIWATT形式封装,专门为音乐设备和彩色电视机的高质量音频放大电路而设计。
一、特点
1、宽供电电压范围(3-18V)
2、短路保护
3、热保护
4、待机特性
5、静音功能
6、开关机静噪
7、外围元件少
二、内部框图
引脚符号功能
1 LO+ 左声道声音正极输出
2 LO- 左声道声音负极输出
3 VCC1 +16V供电
4 RIN 右声道声音输入
5 NC 空脚
6 MUTE 静音
7 ST-BY 待机
8 P-GND 地
9 S-GND 地
10 NC 空脚
11 NC 空脚
12 LIN 左声道声音输出
13 VCC2 +16V供电
14 RO- 右声道声音正极输出
15 RO+ 右声道声音负极输出。
耳机功放电路图原理介绍
一.耳机功率放大器耳放耳机功率放大器,因为比较大的耳机阻抗很高,小的随身听是带不起来,推不动,就要耳放,有源的,接在音源和耳机中间。
耳放这个词也是很多烧友经常谈论的词汇,耳放是放耳机的箱子嘛?当然不是,耳放是耳机功率放大器的简称,链接在耳机与音源之间,起到发挥耳机实力作用。
在高端的耳机中分为两类,一种是高阻抗、低灵敏度的耳机,这类的耳机普通设备的耳机输出很难驱动。
还有一类的耳机采用的低阻抗、高灵敏度的设计,这样的耳机对于电流输出的稳定性要求很高。
针对这种情况,需要耳放来改善音源的耳机输出,来发挥耳机的效果。
从体积上来分,耳放可以分为台式耳放,这种耳放一般体积较大,适合在家庭中使用。
还有一种为便携耳放,体积小巧,可以和随身设备搭配。
从使用的主要元器件,也可以分为胆机(电子管)和石机(晶体管)两种,声音趋向各不相同。
在实际的使用中,根据自己的耳机耳塞添加合适的耳放设备,效果提升是十分明显的。
二.耳机功放电路图原理介绍(1). 图1为耳机控制功能工作示意图,当没有耳机插头接入插孔时,R1-R2分压电阻使提供到HP-IN管脚(16脚)的电压近似为50mV,驱动Amp1B和Amp2B处于工作状态,使HWD2163工作于桥式模式。
输出耦合电容隔离半供给直流电压,起到保护耳机的作用。
输入HP-IN管脚的电压为4V。
当HWD2163工作于桥式模式时,实质上负载两端的电压为0V。
因此甚至为理想状态下,难以引发放大器处于单终端输出的工作模式。
耳机接入耳机插孔使得耳机插孔与-OUTA分离并使R1上接HP管脚的电压至VDD。
这样耳机关断功能把Amp2A和Amp2B给关断且桥式连接的扬声器就不工作了,放大器便驱动输出耦合阻抗为R2和R3的耳机,当耳机阻抗为典型值32Ω时,输出耦合阻抗R2、R3对HWD2163输出驱动能力的影响可忽略不计。
图2也是耳机插孔的电性连接关系示意图,插孔为一组三线插头的设计,尖端和环分别为立体双声道的一个信号输出,然而最外端的环为地。
三管耳机放大器的设计以及制作
三管耳机放大器的设计以及制作
笔者本着少花钱的原则和发扬自己动手的DIY精神,设计制作了这个三管耳机放大器。
整个电路的设计原则是用尽量少的元件,达到简洁而又音色迷人的效果。
电路原理如图1。
采用6N3共阴放大和6N6x2WCP方式输出,6N3采用J级的拆机管,6N6采用新的T级管。
电解电容采用日本EL31A高速补品电容,无极性电容用汤坶逊MKP电容,电阻用五色环金属膜电阻,电位器是ALPS的,接插件全部采用优质镀金插座。
180V阳极电压及6.3V灯丝电压均经过稳压,原先6.3V是采用LM317直接输出,后来发现LM317根本吃不消,开机不到2分钟,立即发烫进入保护状态,后来加了一个大功率管扩展电流输出,并加装了一个不小的散热器,开机半个小时后散热器温度大约40℃左右。
因电源部分(电子报)以前多有论述,故在此不再赘述。
整机采用电源和放大器分体式设计,机壳采用废旧光驱外壳,内部采用搭棚焊接。
6N6本身发热比较厉害,故比较烫手亦属正常。
制成后外观如图2。
整个电路失真比较低,用RMAA5和创新CT4700测得的总谐波失真为0.006%,频率响应平坦。
由于采用电子管作放大器件,所以实际试听感觉音色温暖,中高频华丽、顺畅,低频力度稍差(相对中高频而言),但也算满意了,对低阻抗耳机实力的发挥比较到位,这也是WCF接。
ta7176做FM接收
前注:此篇原文系《无线电》2004.4潘云中先生的文章,潘先生致力于FM接收机模块的设计分析,仔细阅读潘先生的文章,他的设计思想是我们大家学习的榜样。
今将此篇扫描下来,写在CR-100电视伴音收音机即将发售之际,仅供德生收音机论坛网友以及德生电视伴音后继发展方向:用专业的电视广播调频头设计伴音收音机作参考。
请大家不要在其他网站转载。
谢谢.全频段FM接收机的制作全频段FM接收机的制作在很多文章中均有介绍,但大多缺少FM立体声解码和视频信号输出。
为此,笔者设计制作了一种具有FM立体声和视频信号输出的全频FM立体声、,rV接收机。
可接收到全频段带增补频道电视节目和45一870MHz频段的附广播。
本机设置立体声解码电路后,具有双声道输出,能够良好地再现接收的立体声电台的音质。
特设的视频输出端子可以把接收机作为一个带全增补频道的选台器,故该机可作为一个TV单独听使用。
工作原理该机电路原理如附图所示:高频头将接收到的FM或TV信号进行放大、混频等处理后,在IF端输出38MHz全电视中频信号和31. 5MHz的伴音中频信号。
其中31 .5MHz伴音中频信号分为两路:一路由集成电路TDA7021等组成的F M/ TV伴音处理电路进行二次变频,并将变频产生的76kHz第二中频信号进行放大、鉴频等处理后得到的音频信号由⑩脚输出,经由晶体管如14等组成的音频放大器放大到一定幅度后,送人立体声解码电路。
立体声解码电路由集成电路TA7343等组成,将输人的复合立体声信号解调,分离左、右两路信号,并由⑧、⑨脚输出。
经音量电位器送入双声道功率放大器。
双声道音频功率放大器由TDA2822等组成。
经放大后的音频信号由立体声插座输出。
其中有一路经立体声插座后送人本机扬声器监听;与此同时,高频头输出的38MHz全电视中频信号及31 .5MHz的伴音中频信号,由TA7607等组成的图像通道电路进行放大、检波等处理,在其⑩脚输出复合全电视视频信号和6 .5MHz伴音中频信号。
基于TA7376高保真蓝牙耳机的设计
Keywords:Bluetooth;High-Fidelity Headphone;BC358329;TA7376
蓝牙技术包括数据传输和语音通信两种数据传输 规范, 使用不同的信道来分别传输数据和语音, 可以同 时支持1个全双工语音信道在线。 载频使用全球公用频 段 2.4 GHz ISM (Industrial,Scientific & Medical)开放性 频段, 其收发信机采用调频扩谱技术, 以% .4 GHm 为中心 频率最多可以通过扩谱得到79个 1 MHz带 宽 的 信 道 。 蓝 牙通信传输距离一般在0.1!10 / 范围内。 相比较于 Wi-Fi 网络 技 术 , 蓝牙通信在语音传输时, 滞后的语音数据封 包将不被接收, 因 此, 蓝牙会滤掉小封包, 并在扩谱的79 个频 道 中 穿 梭 。 而 Wi- Fi无线通信采用采用三次握手的 方式建立连接, 噪声数据比较多。 蓝牙技术作为极具性 价比的一种低成本近距离无线语音传输方案, 近来得到
第 35卷 第 28期 Vol.35 No.28
企 业 技 术 开 发
TECHNOLOGICAL DEVELOPMENT OF ENTERPRISE
2016年 10月 Oct.2016
基 于 TA 7 3 7 6 高 保 真 蓋 牙 耳 ) 的设计
全敏绮
(湖南省长沙市雅礼中学, 湖 南 长 沙 410007)
1
总体设计
蓝牙耳机的系统框图, 如图2所 示 。 该系统包含3个
关键硬件电路模块, 分别为电池充电管理及过充过放过 温等安全保护模块、 蓝牙无线语音通信模块、 数字信号 解码及音频功放模块。
蓝牙无线语音通信模块使用 BroadCom公司提供的 BC358239A集成电路, 该芯片频率范围为2.402~2.48GHz, 内置8位 DAC, 可自动调整发射功率。 外围电路较简单, 支
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TA7376组成的耳机放大电路
用头戴式耳机,尤其是小型耳机听音乐,总感到音乐味不够足,在低频段的效果更差。
因此用本机增强耳机的低频特性,并采用立体声反相合成的办法,加上内藏简易矩阵环绕声电路,能获得强劲的低音和在较宽的范围内展宽音域。
本机称为超级广场效果。
这种扣人心弦的力量,不亚于实况立体声。
电路原理
本机电路大致可分为下面三部分:
1.由电阻电容组成的低频增强电路。
2.利用功率放大器IC的反馈输入,组成立体声反相合成电路。
3.利用功率放大器IC,组成头戴耳机的驱动电路。
从输入端IC之间的电阻电容起到增强低频特性的作用,因为加有电位器,低频部分的增强量可在0--10倍之间连续可调。
立体声反相合成电路IC 2脚和8脚的直流耦合电容之后,由0.47UF和50K的电位器组成。
在此电路中,把立体声的广场效果成分中的高音部分左右分别反相后合成,起到增强效果的作用。
用东芝TA7376P推动头戴式耳机。
这种IC内藏两个通道,外接元件少,可在低电压下工作。
负载阻抗较低时,可重放出动人效果的低频声音。
电源若改用5#电池,用四只串联,电压为6V,可直接驱动高输出的扬声器。
若将三个200UF/10V的电容增加到1000UF左右,可获得更好的效果。
元件
所有元件没有什么特殊的。
电阻均为1/8W。
0.1UF和0.47UF的电容用独石电容,其它的用电解电容。
电位器中,20K为双连电位器,50K用带开关电位器。
插头用立体声插头。
制作
制作极其简单,即使是初学者,有一天的时间就足够了。
要留心IC的脚和电解电容的极性。
电位器的接线比较凌乱,不要搞错了。
若没有接线错误和焊接不良,一定会马到成功。
接入头戴式立体声耳机或普通耳机,装入电池,打开开关。
若两个旋钮配合得好,收听音乐可得到极其感人的效果,。
根据聆听的音乐和音源适当的调整,这就是本机的使用方法要点。
不用说,和小型音响,电视,CD相连会得到更佳的效果。
说明:电路原理图中,W1为双联电位器,用于低音增强,W2为调节混响效果。
印刷电路板图中,A1,A2为左右声道输入。
电位器W1和W2都固定在盒子的边缘,其中W2为带开关的电位器。
非常好我支持^.^
(0) 0.00%不好我反对
(0) 0.00%分享到:分享此文章到新浪微博分享此文章到开心网分享此文章到人人网分享此文章到豆瓣网分享此文章到腾讯微博加入收藏(1) + 推荐给朋友+ 挑错
相关阅读:
[耳机电路图] 立体声耳机放大电路(带有关断功能) 2011-04-16 [功放技术] MAX97220 DirectDrive线路驱动器/耳机放大器2011-03-22 [音响技术] MAX97200 H类DirectDrive耳机放大器2011-03-18 [新品快讯] 首款集成G类耳机放大器模拟子系统PowerWise LM492 2011-02-25 [新品快讯] TI推出集成型低功耗G类耳机放大器2011-01-29 [功率放大器电路图]
键控音量耳机放大器电路图2010-12-25 [功率放大器电路图] 耳机放大专用集成功放LM4880 2010-12-22 [音频电路] 耳机放大器电路原理图2010-12-17。