2021中考数学必刷题 (108)

合集下载

2021中考数学必刷题 (370)

2021中考数学必刷题 (370)

2021中考数学必刷题370一、选择题(每小题3分,共42分)1.(3.00分)﹣的相反数是()A.B.﹣C.﹣2D.22.(3.00分)下列计算正确的是()A.3x2•4x2=12x4B.x3•x5=x15C.x4÷x=x4D.(x5)2=x73.(3.00分)海南已建成瓜菜基地3000000亩,成为全国人民冬季的菜篮子,数据3000000用科学记数法表示为()A.3×106B.0.3×107C.3×107D.30×1054.(3.00分)某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()A.3B.3.5C.4D.55.(3.00分)不等式组的解集是()A.x<2B.0<x<5C.2<x<3D.2<x<56.(3.00分)如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A.B.C.D.7.(3.00分)若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12B.9C.12或9D.9或78.(3.00分)甲、乙、丙、丁四名选手参加200米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第1道的概率是()A.0B.C.D.19.(3.00分)如图,直线a平行b平行c,直角三角板的直角顶点落在直线b上,若∠1=36°,则∠2等于()A.36°B.44°C.54°D.64°10.(3.00分)已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC 关于y轴对称,则点A的对应点A′的坐标是()A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)11.(3.00分)已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b12.(3.00分)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为()A.x(20+x)=64B.x(20﹣x)=64C.x(40+x)=64D.x(40﹣x)=64 13.(3.00分)如图,点A、B、C在⊙O上,∠OBC=18°,则∠A=()A.18°B.36°C.72°D.144°14.(3.00分)如图,将矩形ABCD绕点A旋转至AB′C′D′位置,此时AC′的中点恰好与D的点重合,AB′交CD于点E,若AD=3,则△AEC的面积为()A.12B.4C.3D.6二、填空题(每小4分,共16分)15.(4.00分)分解因式:3m2﹣27=.16.(4.00分)在函数y=中,自变量x的取值范围是.17.(4.00分)如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN的长度为.18.(4.00分)如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为cm.三、解答题(满分62分)19.(10.00分)(1)计算:﹣(﹣2)+(﹣1)0﹣(2)解方程:.20.(8.00分)“六一”儿童节期间海南省某旅游景区的成人票和学生票均对折,李明同学一家(2个成人和1个学生)去了该景区,门票共花费200元,王玲同学一家(3个成人和2个学生)去了该景区,门票共花费320元,则夏雨同学和妈妈去该景区游玩时,门票需要花费多少元?21.(8.00分)“3•15”前夕,为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共瓶;(2)请你在答题卡上补全两幅统计图;(3)求图1中“甲”品牌所对应的扇形圆心角的度数;(4)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?22.(8.00分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).23.(14.00分)如图1,正方形ABCD的边长为a,E为边CD上一动点(点E与点C、D不重合),连接AE交对角线BD于点P,过点P作PF⊥AE交BC于点F.(1)求证:PA=PF;(2)如图2,过点F作FQ⊥BD于Q,在点E的运动过程中,PQ的长度是否发生变化?若不变,求出PQ的长;若变化,请说明变化规律.(3)请写出线段AB、BF、BP之间满足的数量关系,不必说明理由.24.(14.00分)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.(1)求这条抛物线的解析式;(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共42分)1.【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法;49:单项式乘单项式.【分析】直接利用单项式乘以单项式以及同底数幂的乘除运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、3x2•4x2=12x4,故此选项正确;B、x3•x5=x8,故此选项错误;C、x4÷x=x3,故此选项错误;D、(x5)2=x10,故此选项错误.故选:A.【点评】此题主要考查了单项式乘以单项式以及同底数幂的乘除运算、幂的乘方运算等知识,正确掌握运算法则是解题关键.3.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3000000=3×106,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【考点】W5:众数.【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:在这一组数据中3.5出现了3次,次数最多,故众数是3.5.故选:B.【点评】本题考查了众数的定义,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.5.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式>x,得:x>2,解不等式1﹣(x﹣4)>0,得:x<5,则不等式组得解集为2<x<5,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有2个正方形,第二层有2个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.【考点】K6:三角形三边关系;KH:等腰三角形的性质.【分析】利用等腰三角形的性质以及三角形三边关系得出其周长即可.【解答】解:∵一个等腰三角形的两边长分别是2和5,∴当腰长为2,则2+2<5,此时不成立,当腰长为5时,则它的周长为:5+5+2=12.故选:A.【点评】此题主要考查了等腰三角形的性质以及三角形三边关系,正确分类讨论得出是解题关键.8.【考点】X4:概率公式.【分析】由赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.【解答】解:∵赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:;故选:B.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.9.【考点】JA:平行线的性质.【分析】首先根据两直线平行,内错角相等,即可求得∠3的度数,然后求得∠4的度数,然后根据两直线平行,内错角相等,即可求得∠2的度数.【解答】解:∵a∥b,∴∠3=∠1=36°,∴∠4=90°﹣∠3=90°﹣36°=54°.∵b∥c,∴∠2=∠4=54°.故选:C.【点评】本题利用了平行线的性质:两直线平行,内错角相等.10.【考点】P6:坐标与图形变化﹣对称.【分析】让点A的横坐标为原来横坐标的相反数,纵坐标不变可得所求点的坐标.【解答】解:∵A的坐标为(﹣3,2),∴A关于y轴的对应点的坐标为(3,2).故选:B.【点评】考查图形的对称变换;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数.11.【考点】G6:反比例函数图象上点的坐标特征.【分析】利用反比例函数的增减性可判断a和b的大小关系,可求得答案.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选:D.【点评】本题主要考查反比例函数的性质,掌握反比例函数在各象限内的增减性是解题的关键.12.【考点】AC:由实际问题抽象出一元二次方程.【分析】本题可根据长方形的周长可以用x表示宽的值,然后根据面积公式即可列出方程.【解答】解:设长为xcm,∵长方形的周长为40cm,∴宽为=(20﹣x)(cm),得x(20﹣x)=64.故选:B.【点评】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S=ab来解题的方法.13.【考点】M5:圆周角定理.【分析】根据圆周角定理可知∠A=∠BOC,求出∠BOC的度数即可得出答案.【解答】解:∵OB=OC,∴∠BOC=180°﹣2∠OBC=144°,由圆周角定理可知:∠A=∠BOC=72°故选:C.【点评】本题考查圆周角定理,注意圆的半径都相等,这是解本题的关键.14.【考点】LB:矩形的性质;R2:旋转的性质.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,根据正切的概念求出CD,确定出EC的长,即可求出三角形AEC面积.【解答】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵四边形ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=AE=CE,∴CE=2DE,CD=AD=3,∴EC=2,∴△AEC的面积=×EC×AD=3.故选:C.【点评】本题考查了旋转的性质、矩形的性质、特殊角的三角函数,三角形面积计算等知识点,清楚旋转的“不变”特性是解答的关键.二、填空题(每小4分,共16分)15.【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3m2﹣27,=3(m2﹣9),=3(m2﹣32),=3(m+3)(m﹣3).故答案为:3(m+3)(m﹣3).【点评】本题考查了提公因式法和平方差公式分解因式,需要进行二次分解因式,分解因式要彻底.16.【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.【考点】L8:菱形的性质.【分析】由△MAE∽△NAF,推出=,可得=,解方程即可解决问题.【解答】解:设AN=x,∵四边形ABCD是菱形,∴∠MAE=∠NAF,∵∠AEM=∠AFN=90°,∴△MAE∽△NAF,∴=,∴=,∴x=4,∴AN=4,故答案为4.【点评】本题考查菱形的性质、相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.18.【考点】M2:垂径定理.【分析】连接OA,根据垂径定理求出AB=2AM,已知OA、OM,根据勾股定理求出AM即可.【解答】解:连接OA,∵⊙O的直径CD=20cm,∴OA=10cm,在Rt△OAM中,由勾股定理得:AM==8cm,∴由垂径定理得:AB=2AM=16cm.故答案为:16.【点评】本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.三、解答题(满分62分)19.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;B3:解分式方程.【分析】(1)先根据二次根式的性质、去括号法则、零指数幂、负整数指数幂分别求出每部分的值,再代入求出即可;(2)先把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:(1)原式=3+2+1﹣3=3;(2)方程两边都乘以(x+1)(x﹣1)得:2x(x﹣1)﹣3=2(x+1)(x﹣1),解得:x=﹣,检验:当x=﹣时,(x+1)(x﹣1)≠0,所以x=﹣是原方程的解,所以原方程的解为x=﹣.【点评】本题考查了二次根式的性质、去括号法则、零指数幂、负整数指数幂和解分式方程等知识点,能求出各个部分的值是解(1)的关键,能把分式方程转化成整式方程是解(2)的关键.20.【考点】9A:二元一次方程组的应用.【分析】设成人票是x元/张,学生票是y元/张,根据“李凯同学一家(2个成人和1个学生)去了该景区,门票共花费200元,王玲同学一家(3个成人和2个学生)去了该景区,门票共花费320元”列出方程组,求得x、y的值即可.【解答】解:设成人票是x元/张,学生票是y元/张,依题意得:,解得,则x+y=120.即夏雨同学和妈妈去该景区游玩时,门票需要花费120元.【点评】本题考查了二元一次方程组的应用.此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.21.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)根据乙的瓶数40,所占比为20%,即可求出这四个品牌的总瓶数;(2)根据丁品牌饮料的瓶数70,总瓶数是200,即可求出丁所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以总瓶数,即可得出丙的瓶数,从而补全统计图;(3)根据甲所占的百分比,再乘以360°,即可得出答案;(4)用月销售量×(1﹣平均合格率)即可得到四个品牌的不合格饮料的瓶数.【解答】解:(1)四个品牌的总瓶数是:40÷20%=200(瓶);(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙的瓶数是:200×15%=30(瓶);如图:(3)甲所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:200000×(1﹣95%)=10000(瓶).答:这四个品牌的不合格饮料有10000瓶.故答案为:200.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【考点】TB:解直角三角形的应用﹣方向角问题.【分析】作AD⊥BC于D,根据题意求出∠ABD=45°,得到AD=BD=30,求出∠C=60°,根据正切的概念求出CD的长,得到答案.【解答】解:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=30,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=30,则tanC=,∴CD==10,∴BC=30+10.故该船与B港口之间的距离CB的长为30+10海里.【点评】本题考查的是解直角三角形的知识的应用,掌握锐角三角函数的概念、选择正确的三角函数是解题的关键.23.【考点】LO:四边形综合题.【分析】(1)连结PC,由正方形的性质得到AB=BC,∠ABP=∠CBP,然后依据SAS证明△APB≌△CPB,由全等三角形的性质可知PA=PC,∠PCB=∠PAB,接下来利用四边形的内角和为360°可证明∠PFC=∠PCF,于是得到PF=PC,故此可证明PF=PA.(2)连结AC交BD于点O,依据正方形的性质可知△AOB为等腰直角三角形,于是可求得AO的长,接下来,证明△APO≌△PFQ,依据全等三角形的性质可得到PQ=AO;(3)过点P作PM⊥AB,PN⊥BC,垂足分别为M,N,首先证明△PBN为等腰直角三角形于是得到PN+BN=PB,由角平分线的性质可得到PM=PN,然后再依据LH证明△PAM≌△PFN可得到FN=AM,PM=PN,于是将AB+BF=可转化为BN+PN的长.【解答】解:(1)证明:连结PC.∵ABCD为正方形,∴AB=BC,∠ABP=∠CBP.在△APB和△CPB中,,∴△APB≌△CPB.∴PA=PC,∠PCB=∠PAB.∵∠ABF=∠APF=90°,∴∠PAB+∠PFB=180°.∵∠PFC+∠PFB=180°,∴∠PFC=∠PAB.∴∠PFC=∠PCF.∴PF=PC.∴PF=PA.(2)PQ的长不变.理由:连结AC交BD于点O,如图2.∵PF⊥AE,∴∠APO+∠FPQ=90°.∵FQ⊥BD,∴∠PFQ+∠FPQ=90°.∴∠APO=∠PFQ.又∵四边形ABCD为正方形,∴∠AOP=∠PQF=90°,AO=a.在△APO和△PFQ中,,∴△APO≌△PFQ.∴PQ=AO=a.(3)如图3所示:过点P作PM⊥AB,PN⊥BC,垂足分别为M,N.∵四边形ABCD为正方形,∴∠PBN=45°.∵PN⊥BN,∴BN=PN=BP.∴BN+PN=PB.∵BD平分∠ABC,PM⊥AB,PN⊥BC,∴PM=PN.在△PAM和△PFN中,,∴△PAM≌△PFN.∴AM=FN.∵∠MBN=∠BNP=∠BMP=90°,∴MB=PN.∴AB+BF=AM+MB+BF=FN+BF+PN=BN+PN=PB.【点评】本题考查四边形的综合题、全等三角形的性质和判断、正方形的性质、角平分线的性质、特殊锐角三角函数值、矩形的判断等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题.24.【考点】HF:二次函数综合题.【分析】方法一:(1)利用待定系数法即可求得;(2)如答图1,四边形ABPC由△ABC与△PBC组成,△ABC面积固定,则只需要使得△PBC面积最大即可.求出△PBC面积的表达式,然后利用二次函数性质求出最值;(3)如答图2,DE为线段AC的垂直平分线,则点A、C关于直线DE对称.连接AM,与DE交于点G,此时△CMG的周长=CM+CG+MG=CM+AM最小,故点G 为所求.分别求出直线DE、AM的解析式,联立后求出点G的坐标.方法二:(1)略.(2)由于△ABC面积为定值,因此只需△BCP面积最大时,四边形ABPC的面积最大,利用水平底与铅垂高乘积的一半可求出P点坐标.(3)因为点A,C关于直线DE对称,因此直线AM与直线DE的交点即为点G.联立AM与DE的直线方程,可求出G点坐标.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.∴,解得,∴这条抛物线的解析式为:y=﹣x2+x+2.(2)设直线BC的解析式为:y=kx+b,将B(2,0)、C(0,2)代入得:,解得,∴直线BC的解析式为:y=﹣x+2.如答图1,连接BC.四边形ABPC由△ABC与△PBC组成,△ABC面积固定,则只需要使得△PBC面积最大即可.设P(x,﹣x2+x+2),过点P作PF∥y轴,交BC于点F,则F(x,﹣x+2).∴PF=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x.S△PBC=S△PFC+S△PFB=PF(x F﹣x C)+PF(x B﹣x F)=PF(x B﹣x C)=PF=﹣x2+2x=﹣(x﹣1)2+1∴S△PBC∴当x=1时,△PBC面积最大,即四边形ABPC面积最大.此时P(1,2).∴当点P坐标为(1,2)时,四边形ABPC的面积最大.(3)存在.∵∠CAO+∠ACO=90°,∠CAO+∠AED=90°,∴∠ACO=∠AED,又∵∠CAO=∠CAO,∴△AOC∽△ADE,∴=,即=,解得AE=,∴E(,0).∵DE为线段AC的垂直平分线,∴点D为AC的中点,∴D(﹣,1).可求得直线DE的解析式为:y=﹣x+①.∵y=﹣x2+x+2=﹣(x﹣)2+,∴M(,).又A(﹣1,0),则可求得直线AM的解析式为:y=x+②.∵DE为线段AC的垂直平分线,∴点A、C关于直线DE对称.如答图2,连接AM,与DE交于点G,此时△CMG的周长=CM+CG+MG=CM+AM最小,故点G为所求.联立①②式,可求得交点G的坐标为(﹣,).∴在直线DE上存在一点G,使△CMG的周长最小,点G的坐标为(﹣,).方法二:(1)略.(2)连接BC,过点P作x轴垂线,交BC′于F,当△BCP面积最大时,四边形ABPC的面积最大.∵B(2,0)、C(0,2),∴lBC:y=﹣x+2,设P(t,﹣t2+t+2),∴F(t,﹣t+2),S△BCP=(P Y﹣F Y)(B X﹣C X)=(﹣t2+t+2+t﹣2)×2=﹣t2+2t,有最大值,即四边形ABPC的面积最大.∴当t=1时,S△BCP∴P(1,2).(3)∵DE为线段AC的垂直平分线,∴点A是点C关于直线DE对称,∴GC=GA,∴△CMG的周长最小时,M,G,A三点共线.∵抛物线y=﹣x2+x+2,∴M(,),A(﹣1,0),∴l MA:y=x+,∵A(﹣1,0),C(0,2),∴K AC==2,∵AC⊥DE,∴K AC×K DE=﹣1,K DE=﹣,∵点D为AC的中点,∴D x==﹣,D Y==1,∴D(﹣,1),∴l DE:y=﹣x+,∴⇒,∴G(﹣,).【点评】本题是二次函数综合题,难度适中,综合考查了二次函数的图象与性质、待定系数法求解析式、相似三角形、轴对称﹣最短路线、图形面积计算、最值等知识点.。

2021中考数学必刷题 (284)

2021中考数学必刷题 (284)

2021中考数学必刷题284一、选择题(每小题3分,共30分)1.(3分)﹣3的绝对值等于()A.﹣3B.﹣C.±3D.32.(3分)“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是()A.0.24×103B.2.4×106C.2.4×105D.24×1043.(3分)下列运算结果正确的是()A.b3•b3=2b3B.(a5)2=a7C.(﹣ab2)3=﹣ab6D.(﹣c)4÷(﹣c)2=c2 4.(3分)下面四个几何体中,主视图与俯视图相同的几何体共有()A.1个B.2个C.3个D.4个5.(3分)下列说法中不正确的是()A.函数y=2(x﹣1)2﹣1的一次项系数是﹣4B.“明天降雨的概率是50%”表示明天有半天都在降雨C.若a为实数,则|a|<0是不可能事件D.一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同),如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n 的和是66.(3分)如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数y=的图象经过点E,则k的值是()A.33B.34C.35D.367.(3分)如图,数轴上点A表示的数是﹣1,原点O是线段AB的中点,∠BAC=30°,∠ABC=90°,以点A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数是()A.B.C.D.8.(3分)如图,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB 的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60°B.55°C.50°D.45°9.(3分)如图,直线l与x轴、y轴分别相交于A、B两点,已知B(0,),∠BAO=30°,圆心P的坐标为(1,0).⊙P与y轴相切于点O,若将⊙P沿x轴向左移动,当⊙P与该直线相交时,横坐标为整数的P′的个数是()A.2B.3C.4D.510.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(每小题3分,共18分)11.(3分)3的算术平方根是.12.(3分)分解因式:a2b﹣b3=.13.(3分)已知关于x的分式方程=3的解是正数,那么字母m的取值范围是.14.(3分)如图,在平面直角坐标系中,点P的坐标为(1,2),将线段OP沿y轴正方向移动m(m>0)个单位长度至O′P′,以O′P′为直角边在第一象限内作等腰直角△O′P′Q,若点Q在直线y=x上,则m的值为.15.(3分)在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为.16.(3分)如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2,…,A n…,连接A1P2,A2P3,…,A n﹣1P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是.(结果用含n代数式表示)三、解答题(共23分)17.(5分)计算:﹣|1﹣|+3tan30°+(2018﹣π)0.18.(6分)先化简(﹣)÷,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.19.(6分)如图,平行四边形ABCD中,点E,F在直线AC上(点E在F左侧,)BE∥DF(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.20.(6分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A(﹣4,2)、B(2,n)两点,且与x轴交于点C.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)根据图象写出一次函数的值<反比例函数的值x的取值范围.四、实践应用(共30分)21.(6分)为了调查某校学生对“校园足球”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了如下两幅不完整的统计图,请解答下列问题:(1)扇形统计图中表示“C”的扇形的圆心角度数为度,并请补全男生的条形统计图;(2)选择“C”的男生中有2人是九年级的,选择“D”的女生中有1人是九年级的,现在要从选择“C”的男生和选择“D”的女生中各选1人来谈谈各自对“校园足球”的感想,请用画树状图或列表法求选中的两人刚好都来自九年级的概率.22.(8分)某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?23.(8分)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有结果精确到个位)24.(8分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC 边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折:S▱ABCD=.痕分别是线段,;S矩形AEFG(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.五、推理论证题(共9分)25.(9分)已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O 上的一点,且AD平分∠FAE,ED⊥AF交AF的延长线于点C.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若AF:FC=5:3,AE=16,求⊙O的直径AB的长.六、拓展探索题(共10分)26.(10分)已知,如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)若点M为抛物线上一动点,是否存在点M,使△ACM与△ABC的面积相等?若存在,求点M的坐标;若不存在,请说明理由.(3)在x轴上是否存在点N使△ADN为直角三角形?若存在,确定点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.【考点】15:绝对值.【分析】根据绝对值的性质解答即可.【解答】解:|﹣3|=3.故选:D.【点评】此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将2400000用科学记数法表示为:2.4×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减对各选项分析判断后利用排除法求解.【解答】解:A、b3•b3=b3+3=b6,故本选项错误;B、(a5)2=a5×2=a10,故本选项错误;C、(﹣ab2)3=﹣a3b6,故本选项错误;D、(﹣c)4÷(﹣c)2=(﹣c)4﹣2=(﹣c)2=c2,故本选项正确.故选:D.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.【考点】U1:简单几何体的三视图.【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形进行分析.【解答】解:①正方体的主视图与俯视图都是正方形;②圆锥主视图是三角形,俯视图是圆;③球的主视图与俯视图都是圆;④圆柱主视图是矩形,俯视图是圆;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.【考点】X3:概率的意义;H1:二次函数的定义;X1:随机事件;X4:概率公式.【分析】分别利用概率的意义以及随机事件的意义和二次函数的定义以及概率公式分别求出即可.【解答】解:A、函数y=2(x﹣1)2﹣1=2x2﹣4x+1故一次项系数是﹣4,此选项正确,不合题意;B、“明天降雨的概率是50%”表示降雨的可能性,故此选项错误,符合题意;C、若a为实数,则|a|<0是不可能事件,此选项正确,不合题意;D、一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同),如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6,此选项正确,不合题意.故选:B.【点评】此题主要考查了概率的意义以及随机事件的意义和二次函数的定义以及概率公式等知识,正确把握相关定义是解题关键.6.【考点】G6:反比例函数图象上点的坐标特征;LE:正方形的性质.【分析】作EH⊥x轴于H,求出AB的长,根据△AOB∽△BCG,求出DG的长,再根据△AOB∽△EHA,求出AE的长,得到答案.【解答】解:作EH⊥x轴于H,∵OA=1,OB=2,由勾股定理得,AB=,∵AB∥CD,∴△AOB∽△BCG,∴CG=2BC=2,∴DG=3,AE=4,∵∠AOB=∠BAD=∠EHA=90°,∴△AOB∽△EHA,∴AH=2EH,又AE=4,∴EH=4,AH=8,点E的坐标为(9,4),k=36,故选:D.【点评】本题考查的是正方形的性质和反比例函数图象上点的特征,运用相似三角形求出图中直角三角形两直角边是关系是解题的关键,解答时,要认真观察图形,找出两正方形边长之间的关系.7.【考点】KQ:勾股定理;29:实数与数轴.【分析】首先求得AB的长,然后在直角△ABC中利用三角函数即可求得AC的长,则AD=AC即可求得,然后求得OD即可.【解答】解:∵点A表示﹣1,O是AB的中点,∴OA=OB=1,∴AB=2,在直角△ABC中,AC===,∴AD=AC=,∴OD=.故选:D.【点评】本题考查了三角函数,在直角三角形中利用三角函数求得AC的长是关键.8.【考点】PB:翻折变换(折叠问题);KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【解答】解:如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC﹣∠ABO=65°﹣25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣40°﹣40°=100°,∴∠CEF=∠CEO=50°.故选:C.【点评】该题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析、判断.9.【考点】MR:圆的综合题.【分析】求出函数与x轴、y轴的交点坐标,求出函数与x轴的夹角,计算出当⊙P与AB线切时点P的坐标,判断出P的横坐标的取值范围.【解答】解:如图,作⊙P′与⊙P″切AB于D、E.∵B(0,),∠BAO=30°,∴OA=OBcot30°=3.则A点坐标为(﹣3,0);连接P′D、P″E,则P′D⊥AB、P″E⊥AB,则在Rt△ADP′中,AP′=2×DP′=2,同理可得,AP″=2,则P′横坐标为﹣3+2=﹣1,P″横坐标为﹣1﹣4=﹣5,∴P横坐标x的取值范围为:﹣5<x<﹣1,∴横坐标为整数的点P坐标为(﹣2,0)、(﹣3,0)、(﹣4,0).故选:B.【点评】本题考查圆的综合题,熟悉一次函数的性质和切线的性质是解题的关键.10.【考点】H4:二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵﹣=﹣2,∴b=4a,ab>0,∴b﹣4a=0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,∴b2﹣4ac>0,方程ax2+bx=0的两个根为x1=0,x2=﹣4,∴②⑤正确,∵当x=﹣3时y>0,即9a﹣3b+c>0,∴③正确,故正确的有②③④⑤.故选:C.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.二、填空题(每小题3分,共18分)11.【考点】22:算术平方根.【分析】根据开平方的意义,可得算术平方根.【解答】解:3的算术平方根是,故答案为:.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.12.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b),故答案为:b(a+b)(a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】先分式方程求解,然后令x>0且x+1≠0即可求出m的范围【解答】解:2x﹣m=3x+3∴2x﹣3x=m+3∴x=﹣m﹣3∵x>0,且x+1≠0,∴x>0∴﹣m﹣3>0∴m<﹣3故答案为:m<﹣3【点评】本题考查分式方程的解法,涉及不等式的解法,属于基础题型.14.【考点】F8:一次函数图象上点的坐标特征;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】以O′P′为直角边在第一象限内作等腰直角△O′P′Q,需要分两种情况进行讨论,先根据等腰直角三角形的性质,判定全等三角形,再根据全等三角形的性质,得出对应边相等,最后根据线段的和差关系以及平移的方向,得出平移的距离即可.【解答】解:①如图所示,当△O′P′Q为等腰直角三角形时,过点P'作P'A⊥y轴于A,过Q作QB⊥y轴于B,则∠O'AP'=90°=∠QBO',∠P'O'Q=90°,∴∠AO'P'+∠BO'Q=90°=∠O'QB+∠BO'Q,∴∠AO'P'=∠O'QB,又∵O'P'=QO',∴△O'AP'≌△QBO',∴AP'=BO',AO'=BQ,∵点P的坐标为(1,2),∴由平移可得,AP'=1,AO'=2,∴BO'=1,当点Q在直线y=x上时,BQ=2=BO,此时OO'=BO'+BO=1+2=3,即平移的距离m为3;②如图所示,过点P'作x轴的平行线交y轴于C,过点Q作y轴的平行线,交直线CP'于点D,过点Q作QE⊥y轴于E,同理可得,△O'CP'≌△P'DQ,∴CE=DQ=CP'=1,DP'=CO'=2,∴CD=EQ=1+2=3=OE,EO'=CO'﹣CE=2﹣1=1,∴OO'=OE﹣O'E=3﹣1=2,即平移的距离m为2,故答案为:2或3.【点评】本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质以及平移的性质,解决问题的关键是根据图形进行分类讨论,运用全等三角形的对应边相等进行计算求解.15.【考点】M8:点与圆的位置关系;KP:直角三角形斜边上的中线;KX:三角形中位线定理.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.【解答】解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5.∵M是BD的中点,E是AB的中点,∴ME=AD=2.∴在△CEM中,5﹣2≤CM≤5+2,即3≤CM≤7.∴最大值为7,故答案为:7.【点评】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答.16.【考点】G6:反比例函数图象上点的坐标特征;G2:反比例函数的图象;L5:平行四边形的性质.【分析】根据反比例函数图象上点的坐标特征求得点P1、P2的纵坐标,由平行四边形对边平行且相等的性质求得点B1的纵坐标是y2+y1、B2的纵坐标是y3+y2、B3的纵坐标是y4+y3,据此可以推知点B n的纵坐标是:y n+1+y n=+=.【解答】解:∵点P1(1,y1),P2(2,y2)在反比例函数的图象上,∴y1=3,y2=;∴P1A1=y1=3;又∵四边形A1P1B1P2,是平行四边形,∴P1A1=B1P2=3,P1A1∥B1P2,∴点B1的纵坐标是:y2+y1=+3,即点B1的纵坐标是;同理求得,点B2的纵坐标是:y3+y2=1+=;点B3的纵坐标是:y4+y3=+1=;…点B n的纵坐标是:y n+1+y n=+=;故答案是:.【点评】本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象.解答此题的关键是根据平行四边形的对边平行且相等的性质求得点B n的纵坐标y n+1+y n.三、解答题(共23分)17.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用负指数幂的性质以及特殊角的三角函数值和零指数幂的性质、绝对值的性质分别化简各数得出答案.【解答】解:原式=﹣4﹣+1+3×+1=﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【考点】6D:分式的化简求值.【分析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.【解答】解:(﹣)÷=•=,∵a≠±1,∴当a=时,原式==2.【点评】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.19.【考点】LB:矩形的性质;L7:平行四边形的判定与性质.【分析】(1)通过全等三角形△BEC≌△DFA的对应边相等推知BE=DF,则结合已知条件证得结论;(2)连接BD,再根据矩形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BEC与△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图:∵AB⊥AC,AB=4,BC=2,∴AC=6,∴AO=3,∴Rt△BAO中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.【点评】本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.20.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y=,再求出B的坐标是(2,﹣4),利用待定系数法求一次函数的解析式;=×2×4+×2×2=6;(2)把△AOB的面积分成两个部分求解S△AOB(3)当一次函数的值<反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值<反比例函数的值x的取值范围﹣4<x<0或x>2.【解答】解:(1)设反比例函数的解析式为y=,因为经过A(﹣4,2),∴k=﹣8,∴反比例函数的解析式为y=.因为B(2,n)在y=上,∴n==﹣4,∴B的坐标是(2,﹣4)把A(﹣4,2)、B(2,﹣4)代入y=ax+b,得,解得:,∴y=﹣x﹣2;(2)y=﹣x﹣2中,当y=0时,x=﹣2;∴直线y=﹣x﹣2和x轴交点是C(﹣2,0),∴OC=2=×2×4+×2×2=6;∴S△AOB(3)﹣4<x<0或x>2.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.四、实践应用(共30分)21.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)先利用B等级的人数和它所占的百分比计算出调查的总人数,再利用D等级所占的百分比计算D等级的人数,则可得到D等级中男生人数,接着用调查的总人数分别减去A、B、D等级的人数得到C等级的人数,则可计算出C等级中男生人数,然后用×360°得到C等级的扇形的圆心角度数;最后补全条形统计图;(2)C组的男生有4人,用C3表示九年级的,D组的女生有3人,用D3表示九年级的,画树状图展示所有12种等可能的结果,找出两人都来自九年级的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数=(4+2)÷15%=40,所以D等级的人数=40×10%=4,D等级中男生人数为4﹣3=1,所以C等级的人数=40﹣18﹣6﹣4=12,所以C等级中男生人数=12﹣8=4,C等级所占的百分比=×100%=30%,C等级的扇形的圆心角度数=360°×30%=108°;条形统计图为:故答案为108;(2)C组的男生有4人,用C3表示九年级的,D组的女生有3人,用D3表示九年级的,画树状图如下:共有12种等可能的结果,其中两人都来自九年级的结果数为2,所以P(两人都来自九年级)==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.23.【考点】T8:解直角三角形的应用.【分析】(1)Rt△ABC中利用三角函数即可直接求解;(2)延长FE交DG于点I,利用三角函数求得∠DEI即可求得β的值,从而作出判断.【解答】解:(1)∵Rt△ABC中,tanA=,∴AB====55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI===,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.【点评】此题综合性比较强,解此题的关键是把实际问题转化为数学问题,本题只要把实际问题抽象到几何图形中来考虑,就能迎刃而解.24.【考点】LO:四边形综合题.【分析】(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S=S▱ABCD,即可得出答案;矩形AEFG(2)由矩形的性质和勾股定理求出FH,即可得出答案;(3)折法1中,由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM﹣GM=1,BC=BM+CM=7;折法2中,由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MC=CN,求出GH=CD=5,由叠合正方形的性质得出EM=GH=5,正方形EMHG的面积=52=25,由勾股定理求出FM=BM==3,设AD=x,则MN=FM+FN=3+x,由梯形ABCD的面积得出BC=﹣x,求出MC=BC﹣BM=﹣x﹣3,由MN=MC得出方程,解方程求出AD=,BC=;折法3中,由折叠的性质、正方形的性质、勾股定理即可求出BC、AD的长.【解答】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,=S▱ABCD,∴S矩形AEFG:S▱ABCD=1:2;∴S矩形AEFG故答案为:AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH==13,由折叠的性质得:AD=FH=13;(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM===3,∴AD=BG=BM﹣GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴FM=BM==3,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=(AD+BC)×8=2×25,∴AD+BC=,∴BC=﹣x,∴MC=BC﹣BM=﹣x﹣3,∵MN=MC,∴3+x=﹣x﹣3,解得:x=,∴AD=,BC=﹣=;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=4,GM=FM=4,CM==3,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,∴AD=5.【点评】本题是四边形综合题目,考查了折叠的性质、正方形的性质、勾股定理、梯形面积的计算、解方程等知识;本题综合性强,有一定难度.五、推理论证题(共9分)25.【考点】MD:切线的判定;KF:角平分线的性质;M5:圆周角定理.【分析】(1)连接OD,只要证明∠ODE=90°即可.(2)连接BF,根据圆周角定理及平行线性质不难求得AB的长.【解答】解:(1)直线CE与⊙O相切,证明:如图,连接OD,∵AD平分∠FAE,∴∠CAD=∠DAE.∵OA=OD,∴∠ODA=∠DAE.∴∠CAD=∠ODA.∴OD∥AC.∵EC⊥AC,∴OD⊥EC.∴CE是⊙O的切线.(2)如图,连接BF,∵AB是⊙O的直径,∴∠AFB=90°.∵∠C=90°,∴∠AFB=∠C.∴BF∥EC.∴AF:AC=AB:AE.∵AF:FC=5:3,AE=16,∴5:8=AB:16.∴AB=10.【点评】本题利用了角的平分线的性质,等边对等角,平行线的判定和性质,切线的概念,直径对的圆周角是直角求解.六、拓展探索题(共10分)26.【考点】HF:二次函数综合题.【分析】(1)先求得点A和点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求得b,c的值即可;(2)设M的坐标为(x,y),由△ACM与△ABC的面积相等可得到|y|=3,将y=3或y=﹣3代入抛物线的解析式求得对应的x的值,从而得到点M的坐标;(3)先利用配方法求得点D的坐标,当∠DNA=90°时,DN⊥OA,可得到点N的坐标,从而得到AN=2,然后再求得AD的长;当∠N′DA=90°时,依据sin∠DN′A=sin ∠ADN可求得AN′的长,从而可得到N′的坐标.【解答】解:(1)将x=0代入AB的解析式得:y=3,∴B(0,3).将y=0代入AB的解析式得:﹣x+3=0,解得x=3,A(3,0).将点A和点B的坐标代入得:,解得:b=2,c=3.∴抛物线的解析式为y=﹣x2+2x+3.(2)设M的坐标为(x,y).∵△ACM与△ABC的面积相等,∴AC•|y|=AC•OB.∴|y|=OB=3.当y=3时,﹣x2+2x+3=3,解得x=0或x=2,∴M(2,3)、(0、3).当y=﹣3时,﹣x2+2x+3=3,解得:x=1+或x=1﹣.∴M(1+,﹣3)或(1﹣,﹣3).综上所述点M的坐标为(0、3)或2,3)或(1+,﹣3)或(1﹣,﹣3).(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4).①当∠DNA=90°时,如图所示:∵∠DNA=90°时,∴DN⊥OA.又∵D(1,4)∴N(1,0).∴AN=2.∵DN=4,AN=2,∴AD=2.②当∠N′DA=90°时,则∠DN′A=∠NDA.∴=,即=,解得:AN′=10.∵A(3,0),∴N′(﹣7,0).综上所述点N的坐标为(1,0)或(﹣7,0).【点评】本题主要考查的是二次函数的应用,求得点A和点B的坐标是解答问题(1)的关键,求得点M的纵坐标是解答问题(2)的关键,求得AN′的长是解答问题(3)的关键.。

2021中考数学必刷题 (129)

2021中考数学必刷题 (129)

2021中考数学必刷题129一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.在平面直角坐标系中,点(-6,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列函数中,自变量的取值范围是x>3的是( )A.y=x-3 B.1x-3C.x-3 D.1x-33.若正比例函数y=kx(k≠0的常数)的图象在第二、四象限,则一次函数y=2x+k的图象大致是( )4.如图,直线y=kx+b(k≠0)经过点A(-2,4),则不等式kx+b>4的解集为( ) A.x>-2B.x<-2C.x>4D.x<45.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数y=-3x的图象上,且x1>x2>0>x3,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y36.已知:将直线y=x-1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1) D.y随x的增大而减小7.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是( )8.如图,直线y =x -b 与y 轴交于点C ,与x 轴交于点B ,与反比例函数y =mx 的图象在第一象限交于点A(3,1),连接OA ,则△AOB 的面积为( )A .1 B.32C .2D .39.已知点P 为抛物线y =x 2+2x -3在第一象限内的一个动点,且P 关于原点的对称点P′恰好也落在该抛物线上,则点P′的坐标为( ) A .(-1,-1) B .(-2,-3) C .(-2,-22-1) D .(-3,-23)10.如图是二次函数y =ax 2+bx +c(a≠0)图象的一部分,对称轴为直线x =12,且经过点(2,0),有下列说法:①abc<0;②2a+b =0; ③4a+2b +c =0;④若(0,y 1),(1,y 2)是抛物线上的两点,则y 1=y 2,上述说法正确的是( )A .①②④B .③④C .①③④D .①②二、填空题(每小题3分,共15分)11.如图,在平面直角坐标系中,点A 的坐标为(2.5,1),连接OA 并延长至点B ,使OA =AB ,则点B 的坐标是________.12.如图,A ,B 是反比例函数y =kx 图象上的两点,过点A 作AC⊥y 轴,垂足为C ,AC 交OB 于点D.若D 为OB 的中点,△AOD 的面积为6,则k 的值为________.13.如图,一个横断面为抛物线形的拱桥,当水面宽4 m时,拱顶离水面2 m.以桥孔的最高点为原点,过原点的水平线为x轴,建立平面直角坐标系.当水面下降1 m时,此时水面的宽度增加了______m(结果保留根号).14.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5 h后速度为10 km/h,两选手的行程y(km)随时间x(h)变化的图象(全程)如图所示,则乙比甲晚到________h.15.如图,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(72,32),那么点A3的纵坐标是________,点A n的纵坐标是________.三、解答题(本大题共6个小题,满分55分)16.(8分)如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB∶OC=3∶1.(1)求点B的坐标;(2)求直线BC的函数关系式;(3)若点P(m,2)在△ABC的内部,求m的取值范围.17.(8分)如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2,m),B(n,-2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>k2x的解集;(3)若P(p,y1),Q(-2,y2)是函数y=k2x图象上的两点,且y1≥y2,求实数p的取值范围.18.(8分)已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B 关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:x…-1 0 1 3 4 …y…8 0 0 …(1)抛物线的对称轴是________.点A(________,________),B(________,________);(2)求二次函数y=ax2+bx+3的解析式;(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?图①图②19.(8分)“五一”期间,甲、乙两家商店以同样价格销售相同的商品,两家优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折,设商品原价为x 元(x≥0),购物应付金额为y 元. (1)求在甲商店购物时y 与x 之间的函数关系;(2)两种购物方式对应的函数图象如图所示,求交点C 的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.20.(10分)郑州市雾霾天气趋于严重,丹尼斯商场根据民众健康需要,代理销售每台进价分别为600元、560元的A 、B 两种型号的空气净化器,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)商场准备用不多于17 200元的金额再采购这两种型号的空气净化器共30台.(1)请分析以上的信息,提出一个用二元一次方程组或一元一次方程解决的问题,并解决这个问题;(2)分析题目中各个量之间的关系,请写出一个函数关系式,并说明是什么函数关系;(3)超市销售完这30台空气净化器能否实现利润为6 200元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(13分)在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,直线y =x +4经过A ,C 两点.(1)求抛物线的解析式;(2)在AC 上方的抛物线上有一动点P.①如图①,当点P 运动到某位置时,以AP ,AO 为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P 的坐标;②如图②,过点O ,P 的直线y =kx 交AC 于点E ,若PE∶OE=3∶8,求k 的值.图①图②参考答案1.B 2.D 3.A 4.A 5.D 6.C 7.B 8.A 9.D 10.C 11.(5,2) 12.16 13.26-4 14.0.3 15.94,(32)n -116.解:将A(6,0)代入y =-x -b ,得0=-6-b ,解得b =-6, ∴直线AB 解析式为y =-x +6, ∴B 点坐标为(0,6); (2)∵OB∶OC=3∶1, ∴OC=2,∴点C 的坐标为(-2,0),设直线BC 的解析式是y =kx +6,则0=-2k +6, 解得k =3,∴直线BC 的解析式是:y =3x +6; (3)把y =2代入y =-x +6中,得x =4; 把y =2代入y =3x +6中,得x =-43.结合图象可知m 的取值范围是-43<m <4.17.解:(1)把A(2,m),B(n ,-2)代入y =k 2x ,得k 2=2m =-2n ,即m =-n , 则A(2,-n),如解图,过A 作AE⊥x 轴于E ,过B 作BF⊥y 轴于F ,延长AE 、BF 交于D ,∵A(2,-n),B(n ,-2),∴BD=2-n ,AD =-n +2,BC =|-2|=2, ∵S △ABC =12BC·BD,∴12×2×(2-n)=5, 解得n =-3,即A(2,3),B(-3,-2),把A(2,3)代入y =k 2x ,得k 2=6,即反比例函数的解析式是y =6x;把A(2,3),B(-3,-2)代入y =k 1x +b ,得⎩⎪⎨⎪⎧3=2k 1+b -2=-3k 1+b , 解得:⎩⎪⎨⎪⎧k 1=1b =1,即一次函数的解析式是y =x +1; (2)∵A(2,3),B(-3,-2),∴不等式k 1x +b >k 2x的解集是-3<x <0或x >2;(3)分为两种情况:当点P 在第三象限时,要使y 1≥y 2,实数p 的取值范围是p≤-2,当点P 在第一象限时,要使y 1≥y 2,实数p 的取值范围是p >0,综上,实数p 的取值范围是p≤-2或p >0.18.解:(1)根据当x =1和3时,y =0,得出抛物线的对称轴是直线x =2,∵抛物线y =ax 2+bx +3与y 轴的交点为A , ∴当x =0时,y =3,则点A( 0,3 ),故B(4,3 ); (2)∵二次函数的图象过(1,0),(3,0), ∴设抛物线为y =a(x -1)(x -3), 把(0,3)代入可得3=a(0-1)(0-3), 解得a =1,故二次函数的解析式为y =(x -1)(x -3)=x 2-4x +3; (3)如解图①,∵AB∥x 轴,AB =4, 当0<m <4时,点M 到AB 的距离为3-n , ∴S △ABM =12(3-n)×4=6-2n ,又∵n=m 2-4m +3,∴S 1=-2m 2+8m ,∴当m <0或m >4时,点M 到直线AB 的距离为n -3, ∴S 2=12×4(n-3)=2n -6,而 n =m 2-4m +3,S 2=2m 2-8m ,S =⎩⎪⎨⎪⎧-2m 2+8m (0<m <4)2m 2-8m (m <0或m >4), 故函数图象如解图①(x 轴上方部分)所示,S 不存在最大值,从图象可知:当m <0或m >4时,S 的值可以无限大.图①图②19.解:(1)当0≤x≤200时,y 1=x ,当x >200时,y 1=0.7(x -200)+200=0.7x +60.(2)直线BC 的解析式为y =0.5(x -500)+500=0.5x +250,由⎩⎪⎨⎪⎧y =0.5x +250y =0.7x +60,解得⎩⎪⎨⎪⎧x =950y =725, ∴点C 的坐标(950,725).(3)由图象可知,当0≤x≤200或x =950时,选择甲、乙两家商店购物费用一样.当200<x <950时,选择甲商店购物费用更优惠, 当x >950时,选择乙商店购物费用更优惠.20.解:(1)问题:A ,B 两种型号的空气净化器的销售单价是多少? 设A 、B 两种型号的空气净化器的销售单价分别是x 元、y 元,由题意,得⎩⎪⎨⎪⎧4x +5y =71006x +10y =12 600,解得⎩⎪⎨⎪⎧x =800y =780,答:A ,B 两种型号的空气净化器的销售单价分别是800元、780元; (2)设新购进的两种净化器的销售利润为w 元,购进A 种型号的空气净化器a 台,则w =(800-600)a +(780-560)(30-a)=-20a +6 600, w 与x 的函数关系式是一次函数;(3)超市销售完这30台空气净化器能实现利润为6 200元的目标, 理由:由题意可得, 600a +560(30-a)≤17 200, 解得a≤10.∵w=-20a +6 600,∴当a =0时,w 取得最大值,此时w =6 600,当a =10时,w 取得最小值,此时w =6 400,∵6 600>6 200,6 400>6 200, ∴能够实现利润为6 200元的目标, ∴有十一种购买方案,方案一:购买A ,B 两种型号的空气净化器分别为0台、30台; 方案二:购买A ,B 两种型号的空气净化器分别为1台、29台; 方案三:购买A ,B 两种型号的空气净化器分别为2台、28台;方案四:购买A ,B 两种型号的空气净化器分别为3台、27台; 方案五:购买A ,B 两种型号的空气净化器分别为4台、26台; 方案六:购买A ,B 两种型号的空气净化器分别为5台、25台; 方案七:购买A ,B 两种型号的空气净化器分别为6台、24台; 方案八:购买A ,B 两种型号的空气净化器分别为7台、23台; 方案九:购买A ,B 两种型号的空气净化器分别为8台、22台; 方案十:购买A ,B 两种型号的空气净化器分别为9台、21台; 方案十一:购买A ,B 两种型号的空气净化器分别为10台、20台. 21.解:(1)∵直线y =x +4经过A ,C 两点, ∴A 点坐标是(-4,0),C 点坐标是(0,4), 又∵抛物线过A ,C 两点,∴⎩⎪⎨⎪⎧-12×(-4)2-4b +c =0c =4,解得⎩⎪⎨⎪⎧b =-1c =4,∴抛物线的解析式为y =-12x 2-x +4.(2)①如解图①. ∵y=-12x 2-x +4,∴抛物线的对称轴是直线x =-1.∵以AP ,AO 为邻边的平行四边形的第四个顶点Q 恰好也在抛物线上, ∴PQ∥AO,PQ =AO =4. ∵点P ,Q 都在抛物线上,∴点P ,Q 关于直线x =-1对称, ∴P 点的横坐标是-3,∴当x =-3时,y =-12×(-3)2-(-3)+4=52,∴P 点的坐标是(-3,52);②如解图②,过P 点作PF∥OC 交AC 于点F , ∵PF∥OC, ∴△PEF∽△OEC, ∴PE OE =PF OC. 又∵PE OE =38,OC =4,∴PF=32,设点F(x ,x +4),∴(-12x 2-x +4)-(x +4)=32,化简得:x 2+4x +3=0,解得:x 1=-1,x 2=-3. 当x =-1时,y =-12x 2-x +4=92;当x =-3时,y =-12x 2-x +4=52,即P 点坐标是(-1,92)或(-3,52).又∵点P 在直线y =kx 上, ∴k=-92或-56.图①图②。

2021中考数学必刷题 (105)

2021中考数学必刷题 (105)

2021中考数学必刷题105一、填空题(本大题共6小题,每小题3分,共18分)1.-4的相反数是______.2.不等式-2x+8≤0的解集是__________.3.如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=136°,则∠A NM=________°.4.关于x的方程ax=x+2(a≠1)的解是________.5.若代数式xx+5有意义,则实数x的取值范围是________.6.如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧B E的长为2π3,则图中阴影部分的面积为________.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.据统计,近十年中国累积节能1 570 000万吨标准煤,1 570 000这个数用科学记数法表示为( )A.0.157×107 B.1.57×106C.1.57×107 D.1.57×1088.如图所示几何体的主视图是( )9.已知a+b=4,c-d=-3,则(b+c)-(d-a)的值为( )A.7 B.-7 C.1 D.-110.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=( )A.3 B.4 C.5 D.611.下列计算中,正确的是( )A.x3·x2=x4B.(x+y)(x-y)=x2+y2C .(x -3)2=x 2-6x +9D .3x 3y 2÷xy 2=3x 412.为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有:A :篮球,B :排球,C :足球,D :羽毛球,E :乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A .选科目E 的有5人B .选科目D 的扇形圆心角是72°C .选科目A 的人数占体育社团人数的一半D .选科目B 的扇形圆心角比选科目D 的扇形圆心角的度数少21.6° 13.如图,反比例函数与正比例函数的图象交于A 、B 两点,过点A 作AC⊥x 轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是( )A .y =8xB .y =4xC .y =2xD .y =16x14.如图,⊙O 是△ABC 的外接圆,已知∠AC O =30°,则∠B 的度数是( )A .30°B .45°C .60°D .75° 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)计算:(2018-π)0+8-2cos 45°+(12)-1.16.(本小题满分6分)如图,在四边形ABCD中,点E是对角线BD上的一点,E A⊥AB,E C⊥BC,且E A=E C.求证:AD=CD.17.(本小题满分8分)八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.18.(本小题满分6分)某销售冰箱的公司有营销人员14人,销售部为指定销售人员月销售冰箱定额(单位:台),统计了这14位营销人员该月的具体销售量如下表:每人销售台数20171385 4人数11253 2(1)该月销售冰箱的平均数、众数、中位数各是多少?(2)销售部选择哪个数据作为月销售冰箱定额更合适?请你结合上述数据作出合理的分析.19.(本小题满分7分)在街头巷尾会遇到一类“摸球游戏”,摊主把分别标有数字1,2,3的3个白球和标有数字4,5,6的3个黑球放在口袋里(球除颜色外,其他均相同),让你摸球.规定:每付3元钱就玩一局,每局连续摸两次,每次只能摸一个,第一次摸完后把球放回口袋里搅匀后再摸一次,若前后两次摸得的都是白球,摊主就送你10元钱的奖品.(1)用列表法或树状图表示摸出的两个球可能出现的所有结果;(2)求获奖的概率.20.(本小题满分8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,C E∥DB,B E∥DC.(1)求证:四边形DB E C是菱形;(2)若AD=3,D F=1,求四边形DB E C面积.21.(本小题满分8分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.22.(本小题满分9分)如图,AB为⊙O的直径,点D,E为⊙O上的两个点,延长AD至C,使∠CBD=∠BE D.(1)求证:BC是⊙O的切线;(2)当点E为弧AD的中点且∠B E D=30°时,⊙O半径为2,求D F的长度.23.(本小题满分12分)如图,抛物线y=ax2+43x+c过A(-1,0),B(0,2)两点.(1)求抛物线的解析式.(2)M 为抛物线对称轴与x 轴的交点,N 为x 轴上对称轴上任意一点,若tan∠A NM =12,求M 到A N 的距离.(3)在抛物线的对称轴上是否存在点P ,使△P AB 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案1.4 2.x≥4 3.44 4.x =2a -1 5.x≠-5 6.332-23π7.B 8.D 9.C 10.B 11.C 12.C 13.A 14.C 15.解: 原式=1+22-2×22+2=1+22-2+2 =3+ 2.16.证明:∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB 与Rt△ECB 中,⎩⎪⎨⎪⎧EA =EC ,EB =EB ,∴Rt△EAB≌Rt△ECB,∴AB=CB ,∠ABE=∠CBE, 在△ABD 与△CBD 中 ⎩⎪⎨⎪⎧AB =CB ,∠ABE=∠CBE,BD =BD ,∴△ABD≌△CBD,∴AD=CD.17.解: 设骑车学生的速度为x km/h ,由题意得,10x -102x =13,解得:x =15.经检验:x =15是原方程的解.答:骑车学生的速度为15 km/h.18.解: (1)平均数是9(台),众数是8(台),中位数是8(台); (2)每月销售冰箱的定额为8台才比较合适.因为在这儿8既是众数,又是中位数,是大部分人能够完成的台数.若用9台,则只有少量人才能完成,打击了大部分职工的积极性.19.解: (1)画树状图为:共有36种等可能的结果数; (2)摸出两次都为白球的情况有9种, 所以P(两次都为白球)=936=14,即获奖的概率是14.20.(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC 为平行四边形.又∵Rt△ABC 中,∠ABC=90°,点D 是AC 的中点, ∴CD=BD =12AC ,∴平行四边形DBEC 是菱形;(2)解: ∵点D ,F 分别是AC ,AB 的中点,AD =3,DF =1, ∴DF 是△ABC 的中位线,AC =2AD =6,S △BCD =12S △ABC ,∴BC=2DF =2.又∵∠ABC=90°,∴AB=AC 2-BC 2=62-22=42=4 2.∵平行四边形DBEC 是菱形,∴S 四边形DBEC =2S △BCD =S △ABC =12AB·BC=12×42×2=4 2.21.解: (1)设y 关于x 的函数关系式y =kx +b ,则⎩⎪⎨⎪⎧50k +b =200,60k +b =260, 解得⎩⎪⎨⎪⎧k =6,b =-100,所以,y 关于x 的函数关系式是y =6x -100(x≥50); (2)由图可知,当y =620时,x >50,所以,6x -100=620,解得x =120,答:该企业2018年10月份的用水量为120吨. 22.(1)证明:∵AB 为⊙O 的直径,∴∠ADB=90°, ∴∠A+∠DBA=90°,∵BD ︵=BD ︵,∴∠A=∠E, ∵∠CBD=∠E,∴∠CBD=∠A,∴∠CBD+∠DBA=90°,∴AB⊥BC,∴BC 是⊙O 的切线;(2)解: ∵∠BED=30°,∴∠A=∠E=∠CBD=30°,∴∠DBA=60°,∵点E 为弧AD 的中点,∴∠EBD=∠EBA=30°, ∵⊙O 半径为2,∴AB=4,BD =2,AD =23, 在Rt△BDF 中,∠DBF=30°, tan∠DBF=DF BD =33,∴DF=233.23.解: (1)∵抛物线y =ax 2+43x +c 过A(-1,0),B(0,2)两点,∴⎩⎪⎨⎪⎧a -43-c =0,c =2,∴⎩⎪⎨⎪⎧a =-23,c =2,∴抛物线解析式为y =-23x 2+43x +2;(2)由(1)有,抛物线解析式为y =-23x 2+43x +2;∴抛物线对称轴为x =1,∴M(1,0),∴AM=2,∵tan∠ANM=12,∴AM MN =12,∴MN=4,∵N 为x 轴上对称轴上任意一点,∴N(1,4),∴AN=(1+1)2+42=25,设M 到AN 的距离为h ,在Rt△AMN 中,12AM×MN=12AN×h,∴h=AM×MN AN =2×425=455,∴M 到AN 的距离455;(3)存在,理由:设点P(1,m),∵A(-1,0),B(0,2),∴AB=5,AP =4+m 2,BP =1+(m -2)2, ∵△PAB 为等腰三角形,∴①当AB =AP 时, ∴5=4+m 2, ∴m=±1,∴P(1,1)或P(1,-1), ②当AB =BP 时, ∴5=1+(m -2)2, ∴m=4或m =0, ∴P(1,4)或P(1,0); ③当AP =BP 时,∴4+m 2=1+(m -2)2, ∴m=14,∴P(1,14);即:满足条件的点P 的坐标为P(1,1)或P(1,-1)或P(1,4)或P(1,0)或P(1,14).。

江苏2022-2021年中考数学必刷试卷03(含解析)

江苏2022-2021年中考数学必刷试卷03(含解析)

必刷卷03-中考数学必刷试卷一、选择题(本大题共6小题,每小题2分,共12分)1.方程x(x-1)=0的解是()A. x=0B. x=1C. x=0或x=-1D. x=0或x=1【答案】D解:∵x(x-1)=0∴x=0或x-1=0∴x1=0,x2=1.故选:D.2.化简(﹣x3)2的结果是()A. ﹣x6B. ﹣x5C. x6D. x5【答案】C解:原式=x6,故选:C.3.实数,2π,tan45°,,cos60°,sin45°,中无理数的个数有()个.A. 2B. 3C. 4D. 5【答案】B解:tan45°=1,=4,cos60°= ,sin45°= ,其中2π,cos60°,sin45°是无理数,故选:B.4.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()A. a-c<b-cB. |a-b|=a-bC. ac>bcD. -b<-c【答案】A解:由数轴上点的位置得:a<b<0<c,∴ac<bc,|a-b|=b-a,-b>-c,a-c<b-c,故选:A.5.如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112μg/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()A. ①②③B. ①②④C. ①③④D. ②③④【答案】C解:由图1可知,18日的PM2.5浓度为25μg/m3,浓度最低,故①正确;这六天中PM2.5浓度的中位数是=79.5μg/m3,故②错误;∵当AQI不大于100时称空气质量为“优良”,∴18日、19日、20日、23日空气质量为优,故③正确;空气质量指数AQI与PM2.5浓度有关,故④正确;故选:C.6.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A. 4B. 2C.D. 2【答案】D解:∵OA⊥BC,∴ CH=BH,= ,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB= ,∴BC=2BH=2,故选:D.二、填空题(本大题共10小题,每小题2分,共20分)7.的平方根为 ______ .【答案】±3解: 的平方根为±3.故答案为:±3.8. 根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 ______ .【答案】 1.17×10 7解:11700000=1.17×10 7. 故答案为:1.17×10 7. 9. 化简( -1) 0+()-2-+ = ______ .【答案】 -1 解:原式=1+4-3-3 =-1.故答案为:-1.10. 已知反比例函数 的图象在第一、三象限,则m 的取值范围是________.【答案】 m >【解答】解:由于反比例函数 的图象位于第一、三象限,则2m +1>0, 解得:m >.故答案为:m >- .11. 一个扇形的圆心角为100°,面积为15πcm 2,则此扇形的半径长为 ______ . 【答案】 3cm解:设该扇形的半径为R ,则 =15π,解得R =3.即该扇形的半径为3cm .故答案是:3cm .32712.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是 ______ .【答案】x1=-2,x2=1解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B (1,1),∴方程组的解为,,即关于x的方程ax2-bx-c=0的解为x1=-2,x2=1.所以方程ax2=bx+c的解是x1=-2,x2=1故答案为x1=-2,x2=1.13.已知28的立方根在n与n+1之间(n为整数),则n的值为 ______ .【答案】 3328解:∵28的立方根在n与n+1之间(n为整数),3<<4,∴n=3,故答案为:3.14.如图,一次函数的图象与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,得△ACB.若C(,),则该一次函数的解析式为 ______ .【答案】y=- x+解:连接OC,过点C作CD⊥x轴于点D,∵将△AOB沿直线AB翻折,得△ACB,C(,),∴AO=AC,OD= ,DC= ,BO=BC,则tan∠COD= = ,故∠COD=30°,∠BOC=60°,∴△BOC是等边三角形,且∠CAD=60°,则sin60°= ,即AC= =1,故A(1,0),sin30°= = = ,则CO= ,故BO= ,B点坐标为:(0,),设直线AB 的解析式为:y =kx +b , 则,解得: ,即直线AB 的解析式为:y=-x+ . 故答案为:y =-x + .15.如图,电线杆的顶上有一盏高为6m 的路灯,电线杆底部为A ,身高1.5m 的男孩站在与点A 相距6m 的点B 处,若男孩以6m 为半径绕电线杆走一圈,则他在路灯下的影子,BC 扫过的面积为______m 2. 【答案】28m【解析】解:如图所示,∵AE ∥BD, ∴△CBD ∽△CAE,∴= 即=,解得CB=2,∴AB=8,∴男孩以6m 为半径绕电线杆走一圈,他在路灯下的影子BC 扫过的面积为π×82-62=28πm 2. 故答案为:28π.16.如图,AB 是⊙m 的直径,弦mm ⊥mm ,弦mm //mm .若mm =10,mm =6,则DE 的长为______.【答案】【解析】解:设AB 与CD 交于H ,连接OD ,作OM ⊥DE ,交BC 于N ,作DG ⊥BC ,∵DE ∥BC ,∴MN ⊥BC ,DG ⊥DE ,∴DG=MN ,∵OM ⊥DE ,ON ⊥BC ,∴DM=EM=DE ,BN=CN , 33CA CB AEBD6 CB CB 65.1510921∵AB 是⊙O 的直径,弦CD ⊥AB ,弦DE ∥CB . ∴CH=DH=CD=3,∴OH===4,∴BH=9, ∴BC==3,∴BN=BC=,∴ON==, ∵tan ∠BCH==,即93√10=mm6,∴DG=,∴MN=DG=, ∴OM=MN-ON=∴DM==,∴DE=2DM=. 故答案为. 三、解答题(本大题共11小题,共88分)17.计算:÷(a+2-) 【答案】解:原式÷=·18.解下列方程:(1)x -=2- , (2) x 2-2x-6=0 【答案】解:(1)去分母得,6x-3(x-1)=12-2(x+2) 去括号得6x-3x+3=12-2x-4, 移项得6x-3x+2x=12-4-3, 合并得5x=5, 系数化为1得x=1;(2)x 2-2x=6,x 2-2x+1=7,(x-1)2=7,x-1=,∴=1+,=1-.19.射击爱好者甲、乙的近8次比赛的分析如下表成绩单位:环:2122DH OD -2235-22CH BH +1021210322BN OB -210BC BH CD DG 5109510910101322OM OD -101095109510923--a a 25-a 23--a a 292--a a 23--a a 31)3)(3(2+=-+-a a a a 21-x 32+x ±71x 72x 7次序 一 二 三 四 五 六 七 八 平均数 方差甲 9 6 6 8 7 6 6 8 a1.25 乙7745871087b(1)求a 、b 的值;(2)从两个不同角度评价两人的射击水平.【答案】解:(1)甲的平均数是:a=×(9+6+6+8+7+6+6+8)=7环,乙的方差b=[3(7-7)2+(4-7)2+(5-7)2+2(8-7)2+(10-7)2 ]=3 环;②甲和乙的平均数一样,射击水平相当;甲的方差比乙的方差小,则甲发挥稳定.20.一只不透明的袋子中有2个白球、3个红球,这些球除颜色外无其他差别.从这只袋子中随机摸出2个球,将“两个球都是红球”记为事件A ,设事件A 的概率为a . (1)求a 的值;(2)下列事件中,概率为1-a 的是______.(只填序号);①两个球都是白球;②两个球一红一白;③两个球至少一个是白球;④两个球至少一个是红球. 【答案】①列表如下; 白1 白2 红1 红2 红3 白1 白1白2 白1红1 白1红2 白1红3 白2 白2白1 白2红1 白2红2 白2红3 红1 红1白1 红1白2 红1红2 红1红3 红2 红2白1 红2白2 红2红1 红2红3 红3红3白1红3白2红3红1红3红2由列表可知共有20种可能,两次都摸到红球的有6种,所以两个球都是红球的概率为,23--a a ,∴a= (2)③8181103206=10321.如图,在矩形ABCD 中,对角线BD 的垂直平分线E F交BD于点O,交AD 于点E ,交BC 于点F ,连接BE 、DF .①求证:四边形BFDE 是菱形;②若AB=3,AD=6,求菱形BFDE 的面积.【答案】①证明:∵四边形ABCD 是矩形, ∴AD ∥BC, ∠A=900 ∴∠EDO=∠FBO,∵EF 是BD 的垂直平分线, ∴BO=DO,EF ⊥BD在△DEO 和△BFO 中,{∠mmm =∠mmmmm =mm ∠mmm =∠mmm,∴△DEO ≌△BFO(ASA),∴OE=OF∵OB=OD∴四边形BEDF 是平行四边形, ∵EF ⊥BD ,∴平行四边形BFDE 是菱形; ②解:设AE=x ,则DE=6-x ,由①得四边形BFDE 是菱形,∴BE=DE=6-x, ∵∠A=900.∴AE 2+AB 2=BE 2∴x 2+32=(6-x)2∴x=,∴DE=6-x= ∴菱形BFDE 的面积=DE ·AB=. 22.甲、乙两公司为“见义勇为基金会”各捐款30000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人? 【答案】解:设乙公司有x 人,则甲公司有1.2x 人, 根据题意得:-=20 解得:x=250,经检验,x=250是原方程的解,且符合题意, ∴1.2x=300.答:甲公司有300人,乙公司有250人.49415445x 30000x2.13000023.如图,一架无人机在点A 处悬停,从地面B 处观察无人机的仰角是ɑ,从楼顶C 处观察无人机的仰角是β已知B 、AE 、CD 在同一平面内,BD=115m ,楼高CD=50m ,求无人机的高度AE 参考数据:(tan α=2,sin α0.89,tan β=,sin β0.55) 【答案】解:如图,过点C 作CF ⊥AE ,垂足为F , 根据题意可得FC=DE ,EF=CD=50,在mm △mmm 中,∠mmm =90°,∠mmm =m , ∵tan β=,∴AF=FCtan β=FC 设mm =3m ,则mm =2m ,mm =115−3m , 在mm △mmm 中,∠mmm =90°,∠mmm =m , ∵tan α=,∴AE=BEtan α=2BE , ∴50+2x=2(115-3x), 解得x=22.5, ∴AE=50+22.5×2=95, 答:无人机的高度AE 为95m .24.如图,以△ABC 的一边AB 为直径作⊙O ,交BC 于点D ,交AC 于点E ,点D 为弧BE 的中点.(1)试判断△ABC 的形状,并说明理由;(2)直线l 切⊙O 于点D ,与AC 及AB 的延长线分别交于点F ,点G . ①∠BAC =45°,求的值;②若⊙O 半径的长为m ,△ABC 的面积为△CDF 的面积的10倍,求BG 的长(用含m 的代数式表示).【答案】 解:(1)△ABC 是等腰三角形,理由如下: 连接AD ,如图1所示. ∵AB 为⊙O 的直径, ∴AD ⊥BC .∵点D 为弧BE 的中点, ∴=,∴∠BAD =∠DAC , ∴∠ABD =∠ACD , ∴△ABC 为等腰三角形.≈32≈FC AF 32BEAE(2)①连接OD,如图2所示.∵直线l是⊙O的切线,点D是切点,∴OD⊥GF.∵OA=OD,∴∠ODA=∠BAD=∠DAC,∴OD∥AC,∴ = ,∠GOD=∠BAC=45°,∴△GOD为等腰直角三角形,∴GO= DO= BO,∴ = = = .②过点B作BH⊥GF于点H,如图3所示.∵△ABC是等腰三角形,AD⊥BC,∴BD=CD,∴S△ABD=S△ACD.∵S△ABC=10S△CDF,∴S△ACD=5S△CDF,∴AF=4CF.∵BH∥AC,∴∠HBD=∠C.在△BDH和△CDF中,,∴△BDH≌△CDF(ASA),∴BH=CF,∴AF=4BH.∵BH∥AC,∴△GBH∽△GAF,∴ = ,即= ,∴BG= m.25.甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为 ______ 件;这批服装的总件数为 ______ 件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间【答案】 80 1140解:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9-(420-120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x-4)=60x-120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x-120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.26.已知二次函数的图象经过点A(-2,0) B(1,3)和点C.(1)点C的坐标可以是下列选项中的______(只填序号)①(-2,2); ②(1,-1) ③(2,4) ④ (3,-4)(2)若点C坐标为(2,0),求该二次函数的表达式;(3)若点C坐标为(2,m),二次函数的图象开口向下且对称轴在y轴右侧,结合函数图象,直接写出m的取值范围.【答案】(1)(4);(2)设二次函数的解析式为y=a(x+2)(x-2),代入(1,3)得3=-3a,∴a=-1,∴该二次函数的表达式为y=-x2+4;(3)由题意可知,二次函数的图象开口向下,若对称轴是直线m=2,则m是最大值,由(1)可m<4,∴m的取值范围是0<m<4.27.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF 于点K,连接CK,请直接写出线段CK长的最大值.【答案】解(1)CH=AB(2)当点E 在DC 边上且不是DC 的中点时,(1)中的结论CH=AB 仍然成立. 如图2,连接BE ,在正方形ABCD 中,mm =mm =mm =mm ,∠m =∠mmm =∠mmm =90°, ∵AD=CD ,DE=DF ,∴AF=CE ,在△mmm 和△mmm 中,{mm =mm∠m =∠mmm mm =mm∴△ABF ≌△CBE ,∴∠1=∠2,∵EH ⊥BF, ∠BCE=900.∴C 、H 两点都在以BE 为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=900 ∠1+∠HBC=900 ∴∠4=∠HBC ∴CH=BC.又∵AB=BC, ∴CH=AB(3)如图3,∵CK ≤AC+AK ,∴当C 、A 、K 三点共线时,CK 的长最大,∵∠KDF+∠ADH=900 ∠HDE+∠ADH=900. ∴∠KDF=∠HDE,∵∠DEH +∠DFH=3600-∠ADC-∠EHF=3600-900-900=1800,∠DFK+∠DFH=1800, ∴∠DFK=∠DEH, 在△DFK 和△DEH 中,{∠mmm =∠mmmmm =mm ∠mmm =∠mmm∴△DFK ≌△DEH,∴DK=DH.在△DAK 和△DCH 中,{mm =mm∠mmm =∠mmm mm =mm∴△DAK ≌△DCH ∴AK=CH又∵CH=AB ,∴AK=CH=AB ,∵AB=3,∴AK=3,AC=3 ,∴CK=AC+AK=AC+AB=3+3,即线段CK 长的最大值是3+3.222。

2021中考数学必刷题 (107)

2021中考数学必刷题 (107)

2021中考数学必刷题107一、填空题(本大题共6小题,每小题3分,共18分) 1.-12的绝对值为________.2.已知点A(1,y 1),B(2,y 2)是反比例函数y =2x图象上两点,则y 1______y 2(填“>”“<”或“=”).3.2015年我国农村义务教育营养改善计划惠及学生人数达32 090 000人,将32 090 000用科学记数法表示为_____________. 4.若二次根式x -1在实数范围内有意义,则x 的取值范围是__________.5.方程组⎩⎪⎨⎪⎧x -y =4,2x +y =-1的解是____________.6.抛物线y =2x 2-4x +3绕坐标原点旋转180°所得的抛物线的解析式是__________________________.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列实数中的无理数是( )A .0.7 B.12 C .π D .-88.下列计算不正确的是( )A .2a ×3b =6ab B.36=±6 C .a 3b ÷2ab =12a 2D .(2ab 2)3=8a 3b 69.下列分解因式正确的是( )A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)210.不等式组⎩⎪⎨⎪⎧2x <6,x +1≥-4的解集是( )A .-5≤x <3B .-5<x ≤3C .x ≥-5D .x <311.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是( )A .a >0B .a =0C .c >0D .c =012.已知:将直线y =x -1向上平移2个单位长度后得到直线y =kx+b ,则下列关于直线y =kx +b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小13.如图,点C 在反比例函数y =kx(x >0)的图象上,过点C 的直线与x轴,y轴分别交于点A,B,且AB=BC,△A O B的面积为1,则k的值为( )A.1 B.2C.3 D.414.已知抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )三、解答题(本大题共9小题,共70分)15.(本小题满分6分)计算:3-8+(3-π)0-2sin 60°+(-1)2 006+|3-1|.16.(本小题满分6分)先化简,再求值:x2+2x+1x2-1-xx-1,其中x=2.17.(本小题满分6分)杨梅是漳州的特色时令水果,杨梅一上市,某水果店的老板用 1 200元购进一批杨梅,很快售完;该老板又用2 500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.第一批杨梅每件进价是多少元?18.(本小题满分8分)如图,将连续的奇数1,3,5,7,…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.(1)若x=17,则a+b+c+d=________;(2)移动十字框,用x表示a+b+c+d=________;(3)设M=a+b+c+d+x,判断M的值能否等于2 020,请说明理由.19.(本小题满分7分) 某校为打造书香校园,计划购进甲乙两种规格的书柜放置新购买的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需资金1 020元;若购买甲种书柜4个,乙种书柜3个,共需资金1 440元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金4 320元,请设计几种购买方案供这个学校选择.20.(本小题满分8分)如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.(1)当l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)当线段O A被l只分为两部分,且这两部分的比是1∶4时,求h的值.21.(本小题满分8分) 某学校开展“青少年科技创新比赛”活动,“喜羊羊”代表队设计了一个遥控车沿直线轨道AC做匀速运动的模型,甲、乙两遥控车同时分别从A、B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的1.5倍,设t分钟后甲、乙两遥控车与B处的距离分别为d1米、d2米,则d1、d2与t的函数如图所示,试根据图象解决下列问题:(1)填空:乙的速度v2=________米/分钟;(2)求d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?22.(本小题满分9分)某公交公司有A、B型两种客车,它们的载客量和租金如下表:某中学根据实际情况,计划租用A、B型客车共5辆,同时送七年级师生参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1 900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.23.(本小题满分12分) 如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线系数”.(1)任意抛物线都有“抛物线三角形”是______(填“真”或“假”)命题;(2)若一条抛物线系数为[1,0,-2],则其“抛物线三角形”的面积为______;(3)若一条抛物线系数为[-1,2b,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式;(4)在(3)的前提下,该抛物线的顶点为A,与x轴交于O,B两点,在抛物线上是否存在一点P,过P作PQ⊥x轴于点Q,使得△B PQ∽△O AB,如果存在,求出P点坐标,如果不存在,请说明理由.参考答案1.122.>3.3.209×1074.x≥15.⎩⎪⎨⎪⎧x =1,y =-3 6.y =-2x 2-4x -37.C 8.B 9.C 10.A 11.D 12.C 13.D 14.B15.解: 原式=-2+1-2×32+1+3-1=-2+1-3+1+3-1=-1.16.解: 原式=(x +1)2(x +1)(x -1)-xx -1=x +1x -1-xx -1=x +1-xx -1=1x -1. 当x =2时,原式=12-1=1.17.解: 设第一批杨梅每件进价是x 元, 则1 200x ×2=2 500x +5, 解得x =120.经检验,x =120是原方程的解且符合题意.答:第一批杨梅每件进价为120元. 18.解:(1)68; (2)4x ;(3)令M =4x +x =5x =2 020,x =2 0205=404,∵404是偶数不是奇数,∴与题目x 为奇数的要求矛盾, ∴M 不能为2 020.19.解:(1)设甲种书柜单价为x 元,乙种书柜单价为y 元,由题意得:⎩⎪⎨⎪⎧3x +2y =1 020,4x +3y =1 440, 解得:⎩⎪⎨⎪⎧x =180,y =240.答:甲种书柜单价为180元,乙种书柜单价为240元. (2)设甲种书柜购买m 个,则乙种书柜购买(20-m)个, 则20-m≥m,解得m≤10,又∵学校至多提供资金4 320元, ∴180m+240(20-m)≤4 320, 解得m≥8,∴8≤m≤10,∵m 取整数,∴m 可以取的值为:8,9,10. 即学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个, 方案三:甲种书柜10个,乙种书柜10个.20.解:(1)把x =2,y =1代入y =-(x -h)2+1,得h =2, ∴解析式为y =-(x -2)2+1,∴对称轴为x =2,顶点坐标为B(2,1);(2)把OA 分为1∶4两部分的点为(-1,0)或(-4,0), 把x =-1,y =0代入y =-(x -h)2+1,得h =0或h =-2, 但h =-2时,OA 被分为三部分,不合题意,舍去,同样,把x =-4,y =0代入y =-(x -h)2+1,得h =-5或h =-3(舍去),∴h 的值为0或-5. 21.解: (1)40;(2)甲的速度v 1=1.5v 2=1.5×40=60(米/分钟), 60÷60=1(分钟),所以a =1. 当0≤t≤1时,设d 1=k 1t +b 1,则⎩⎪⎨⎪⎧b 1=60,k 1+b 1=0,得⎩⎪⎨⎪⎧k 1=-60,b 1=60.所以d 1=-60t +60(0≤t≤1), 当1≤t≤3时,设d 1=k 2t +b 2,则⎩⎪⎨⎪⎧k 2+b 2=0,3k 2+b 2=120,解得⎩⎪⎨⎪⎧k 2=60,b 2=-60. 所以d 1=60t -60(1≤t≤3).综上,d 1与t 的函数关系式为d 1=⎩⎪⎨⎪⎧-60t +60(0≤t<1),60t -60(1≤t≤3).(3)由题意可得,d 2=40t(0≤t≤3), 当0≤t<1,d 1+d 2>10时, 即-60t +60+40t >10, 解得t <2.5,所以0≤t<1时,两遥控车的信号 不会产生相互干扰.当1≤t≤3时,d 2-d 1>10时, 即40t -(60t -60)>10, 解得t <2.5,所以1≤t<2.5时,两遥控车的信号不会产生相互干扰. 综上所述,当0≤t<2.5时,两遥控车的信号不会产生相互干扰. 22.解: (1)30(5-x),280(5-x); (2)依题意得,400x +280(5-x)≤1 900, 解得x≤256,∴x 的最大值为4;(3)由(2)可知,x≤4,则x的可能取值为0,1,2,3,4.故有如下5种租车方案:①A型0辆,B型5辆,此时租车费用为400×0+280×5=1 400(元),但由于载客量为45×0+30×5=150<195,故不合题意,舍去.②A型1辆,B型4辆,此时租车费用为400×1+280×4=1 520(元),但由于载客量为45×1+30×4=165<195,故不合题意,舍去.③A型2辆,B型3辆,此时租车费用为400×2+280×3=1 640(元),但由于载客量为45×2+30×3=180<195,故不合题意,舍去.④A型3辆,B型2辆,此时租车费用为400×3+280×2=1 760(元),此时,载客量为45×3+30×2=195,符合题意.⑤A型4辆,B型1辆,此时租车费用为400×4+280×1=1 880(元),此时,载客量为45×4+30×1=210>195,符合题意.综上可知,符合题意的方案有④⑤两种,其中最省钱的租车方案为第④种.23.解:(1)只有当抛物线与x轴有两个不同交点,此时抛物线才有“抛物线三角形”,故此命题为假命题;(2)由题意得:y=x2-2,令y=0,得:x=±2,∴ S=12×22×2=22;(3)依题意:y=-x2+2bx,它与x轴交于点(0,0)和(2b,0).当“抛物线三角形”是直角三角形时,根据对称性可知它一定是等腰直角三角形.∵y=-x2+2bx=-(x-b)2+b2,∴顶点为(b,b2),由直角三角形斜边上的中线等于斜边的一半得到:b2=12×|2b|,∴b2=|b|,解得b=0(舍去)或b=±1,∴y=-x2+2x 或y=-x2-2x;(4)①当抛物线为y=-x2+2x 时,∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2+2a),∴Q(a,0),则|-a2+2a|=|2-a|,即|a(a-2)|=|a-2|.∵a-2≠0,∴|a|=1,∴a=±1,∴P(1,1)或(-1, -3).②当抛物线为y=-x2-2x 时,∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2-2a),∴Q(a,0),则|-a2-2a|=|2+a|,即|a(a+2)|=|a+2|.∵a+2≠0,∴|a|=1,∴a=±1,∴P(1,-3)或(-1,1).综上所述:P(1,1)或P(-1,-3)或P(1,-3)或(-1,1).。

中考数学试卷基础必刷题

中考数学试卷基础必刷题

一、选择题1. 已知a、b、c是等差数列,且a=2,b=5,则c的值为()A. 8B. 7C. 6D. 52. 若函数f(x) = 2x - 1的图象上存在一点P,使得f(P) = 3,则点P的横坐标为()A. 2B. 1.5C. 1D. 0.53. 在等腰三角形ABC中,AB=AC,且∠BAC=60°,则∠ABC的度数为()A. 60°B. 45°C. 30°D. 90°4. 已知二次函数y = ax^2 + bx + c(a≠0)的图象与x轴有两个交点,且这两个交点的横坐标分别为-1和3,则该二次函数的解析式为()A. y = x^2 - 4x + 3B. y = x^2 + 4x + 3C. y = -x^2 - 4x - 3D. y = -x^2 + 4x - 35. 在直角坐标系中,点A(-2,3)关于原点的对称点为()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)二、填空题6. 若一个等差数列的前三项分别为1,3,5,则该数列的公差为______。

7. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为______。

8. 在直角坐标系中,点P(-3,4)到原点的距离为______。

9. 若等腰三角形ABC中,AB=AC,且∠BAC=40°,则∠ABC的度数为______。

10. 已知二次函数y = ax^2 + bx + c(a≠0)的图象与x轴有两个交点,且这两个交点的横坐标分别为-1和3,则该二次函数的对称轴方程为______。

三、解答题11. 已知数列{an}是等差数列,且a1=3,d=2,求该数列的前10项和。

12. 已知函数f(x) = 2x + 3,求证:对于任意实数x,都有f(x) + f(-x) = 6。

13. 在直角坐标系中,点A(2,3)和点B(-4,5)的中点为M,求直线AM和BM 的交点坐标。

2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练

2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练

2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练一. 选择题.1.对于任意实数m,下列函数一定是二次函数的是( )A.y=mx2+3x-1B.y=(m-1)x2C.y=(m-1)2x2D.y=(-m2-1)x22.二次函数y=x2-3x+2的图象不经过第象限.A.一B.二C.三D.四3.已知二次函数y=1-11x-6x2,其二次项系数为a,一次项系数为b,常数项为c,则a+b+c= ( )A.+16B.6C.-6D.-164.二次函数2=-的图象是一条抛物线,下列关于该抛物线的说法,正确的23y x是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线1x=D.抛物线与x轴有两个交点5.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是( )6.如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b27.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax 2+bx+c(a ≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为 ( )A.10 mB.15 mC.20 mD.22.5 m8.如图,二次函数y=ax 2+bx+c 的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b 29.一位运动员在距篮下4 m 处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m 时,达到最大高度3.5 m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05 m,该运动员身高1.9 m,在这次跳投中,球在头顶上方0.25 m 处出手时,他跳离地面的高度是( )A.0.1 mB.0.2 mC.0.3 mD.0.4 m10.已知二次函数2y ax bx c =++满足:(1)a b c <<;(2)0a b c ++=;(3)图象与x 轴有2个交点,且两交点间的距离小于2;则以下结论中正确的有( ) ①0a <;②0a b c -+<;③0c >;④20a b ->;⑤124b a -<. A .1个 B .2个 C .3个 D .4个二.填空题.11.抛物线y=4(x-2)2+1的顶点坐标是 .12.已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则y1,y2,y3的大小关系为.13.如图,抛物线y=ax2+bx+4(a≠0)经过点A(-3,0),点B在抛物线上,CB∥x轴,且AB平分∠CAO,则此抛物线的解析式是 .14.如图是某个二次函数的图象,根据图象可知,该二次函数的解析式是 .15.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为米.16.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB 向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过s,四边形APQC的面积最小.17.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为元.18. 如图为函数y=ax2+bx+c与y=x的图象,下列结论:①b2-4ac>0;②3b+c+6=0;③当1<x<3时,x2+(b-1)x+c<0;④=3. 其中正确的有 .三.解答题.19. 在平面直角坐标系中,二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示.(1)求这个二次函数的解析式;(2)当-2≤x≤2时,求y的取值范围.20. 如图所示,甲、乙两船分别从A地和C地同时开出,各沿箭头所指方向航行,已知AC=10海里,甲、乙两船的速度分别是每小时16海里和每小时12海里,同时出发多长时间后,两船相距最近?最近距离是多少?21. 某公司从年初以来累计利润S(万元)与时间t(月)之间的关系(即前t个月的利润总和S和t之间的关系)为二次函数关系.试根据图象提供的信息,解答下列问题:(1)求累计利润S(万元)与时间t(月)之间的函数解析式;(2)截至几月末该公司累计利润可达16万元?(3)第10个月该公司所获利润是多少万元?。

2021中考数学必刷题 (433)

2021中考数学必刷题 (433)

2021中考数学必刷题433一、选择题(每小题3分,共30分)1.(3.00分)下列四个数中,绝对值最小的数是()A.﹣2B.0C.1D.72.(3.00分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是()A.7.44×104B.7.44×108C.74.4×1012D.7.44×10133.(3.00分)如图,立体图形的俯视图是()A.B.C.D.4.(3.00分)下列调查中,最适宜采用全面调查方式的是()A.对三门峡全市初中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对三门峡全市初中学生视力情况的调查5.(3.00分)在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17B.14C.12D.106.(3.00分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°7.(3.00分)关于x的一元二次方程有实数根,则实数a满足()A.B.C.a≤且a≠3D.8.(3.00分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6B.8C.10D.8或109.(3.00分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°10.(3.00分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3.00分)因式分解:9a3b﹣ab=.12.(3.00分)如图,BD是菱形ABCD的对角线,AE⊥BC于点E,交BD于点F,且E为BC的中点,则cos∠BFE的值是.13.(3.00分)如图,抛物线y=ax2﹣4x+c的图象与x轴交于A(﹣3,0)、B(5,0)两点,则a的值为.14.(3.00分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数是.15.(3.00分)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB 为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为.三、解答题(本大题共8个题,共75分)16.(8.00分)先化简:(2x﹣)÷,然后从﹣2≤x≤2中选择一个适当的整数作为x的值代入求值.17.(9.00分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.18.(9.00分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC 边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形OEDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为(直接写出结果).19.(9.00分)一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).20.(9.00分)如图,在同一直角坐标系中,直线y=x+4与y=﹣3x﹣3相交于A点,分别与x轴交于B、C两点.(1)求△ABC的面积;(2)P、Q分别为直线y=x+4与y=﹣3x﹣3上的点,且P、Q关于原点对称,求P点的坐标.21.(10.00分)某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润.22.(10.00分)四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长;(2)如图2,当点E在线段AD上时,AE=1;①求点F到AD的距离;②求BF的长;(3)若BF=3,请直接写出此时AE的长.23.(11.00分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.【考点】15:绝对值;18:有理数大小比较.【分析】根据绝对值具有非负性可得绝对值最小的数是0.【解答】解:绝对值最小的数是0,故选:B.【点评】此题主要考查了绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】U2:简单组合体的三视图.【分析】根据几何体的三视图,即可解答.【解答】解:如图所示的立体图形的俯视图是C.故选:C.【点评】本题考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.4.【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、对三门峡全市初中学生每天学习所用时间的调查,适合抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,适合抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,适合全面调查,故此选项正确;D、对三门峡全市初中学生视力情况的调查,适合抽样调查,故此选项错误.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【考点】M5:圆周角定理.【分析】连接CD,根据圆周角定理得到CD为圆的直径,根据勾股定理计算即可.【解答】解:连接CD,∵∠AOB=90°,∴CD为圆的直径,CD=≈12,故选:C.【点评】本题考查的是圆周角定理和勾股定理的应用,掌握90°的圆周角所对的弦是直径是解题的关键.6.【考点】L5:平行四边形的性质;PB:翻折变换(折叠问题).【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故选:B.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.7.【考点】A1:一元二次方程的定义;AA:根的判别式.【分析】讨论:当a﹣3=0,原方程变形为一元一次方程,有一个实数根;当a ﹣3≠0,△=(﹣)2﹣4×(a﹣3)×1≥0,然后综合这两种情况即可.【解答】解:当a﹣3=0,方程变形为﹣x+1=0,此方程为一元一次方程,有一个实数根;当a﹣3≠0,△=(﹣)2﹣4×(a﹣3)×1≥0,解得a≤且a≠3.所以a的取值范围为a≤且a≠3.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.8.【考点】A3:一元二次方程的解;K6:三角形三边关系;KH:等腰三角形的性质.【分析】先利用一元二次方程解的定义把x=2代入方程x2﹣(m+4)x+4m=0得m=2,则方程化为x2﹣6x+8=0,然后解方程后利用三角形三边的关系确定三角形的三边,最后就是三角形的周长.【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.9.【考点】KH:等腰三角形的性质;R2:旋转的性质.【分析】分两种情况进行讨论:OE在∠BOD内部,OE'在∠BOD外部,分别根据全等三角形的性质以及角的和差关系进行计算,即可得到∠BOE的度数.【解答】解:如图,当OE在∠BOD内部时,若∠DOE=∠COB=15°,则由OD=OC,∠DOE=∠COB,OB=OE可得,△ODE≌△OCB,故DE=CB,此时∠BOE=45°﹣15°﹣15°=15°;当OE'在∠BOD外部时,则由OD=OC,∠DOE'=∠COB,OB=OE可得,△ODE'≌△OCB,故DE'=CB,此时∠BOE'=45°﹣15°+15°=45°;故选:B.【点评】本题主要考查了旋转的性质,解题时注意:对应点到旋转中心的距离相等,旋转前、后的图形全等.10.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x ≤4),图象为:故选:A.【点评】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x的函数解析式.二、填空题(每小题3分,共15分)11.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【考点】L8:菱形的性质;T7:解直角三角形.【分析】直接利用菱形的性质结合线段垂直平分线的性质得出AB=BC=AC,进而得出∠BFE=60°,即可得出答案.【解答】解:∵E为BC的中点,AE⊥BC,∴AB=AC,∵四边形ABCD是菱形,∴AB=BC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∠BAE=30°,∴∠BFE=60°,∴cos∠BFE=.故答案为.【点评】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出△ABC是等边三角形是解题关键.13.【考点】HA:抛物线与x轴的交点.【分析】根据抛物线的对称性易求对称轴x===1,则易求a=2.【解答】解:∵如图,抛物线y=ax2+4x+c的图象与x轴交于A(﹣3,0)、B(5,0)两点,∴该抛物线的对称轴x===1,即=1,解得,a=2.故答案是:2.【点评】本题考查了抛物线与x轴的交点.此题利用抛物线的对称性、对称轴的定义来求a的值.14.【考点】V8:频数(率)分布直方图;W5:众数.【分析】读懂统计图,利用众数的定义即可得出答案.【解答】解:一名射击运动员连续打靶8次,其中有3次为8环,所以数据的众数是8,故答案为:8.【点评】本题主要考查了众数,解题的关键是读懂统计图,准确的获取信息.15.【考点】I2:点、线、面、体;M2:垂径定理;MO:扇形面积的计算.【分析】连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出AF=BF,进而可得出DE=CE=3,再根据圆环的面积公式结合勾股定理即可得出CD 边扫过的面积.【解答】解:连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,如图所示.∵PE⊥CD,AB∥CD,∴PF⊥AB.又∵AB为⊙P的弦,∴AF=BF,∴DE=CE=CD=AB=3,∴CD边扫过的面积为π(PD2﹣PE2)=π•DE2=9π.故答案为:9π.【点评】本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,结合AB边的旋转,找出CD边旋转过程中扫过区域的形状是关键.三、解答题(本大题共8个题,共75分)16.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣2≤x≤2中选择一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:(2x﹣)÷===,当x=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【分析】(1)根据条形统计图中的数据,找出中位数即可;(2)根据扇形统计图找出的百分比,乘以3000即可得到结果;(3)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.【解答】解:(1)四个年级被抽出的人数由小到大排列为30,45,55,70,∴中位数为50;(2)根据题意得:3000×(1﹣25%)=2250人,则该校帮助父母做家务的学生大约有2250人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.【考点】MR:圆的综合题.【分析】(1)根据已知条件即可得到结论;(2)根据角平分线的性质得到DE=DF,有AD是⊙O的直径,得到∠DEA=90°,由三角形的内角和得到∠EDA=60°,推出△OED是等边三角形,得到ED=OE,根据菱形的判定定理即可得到结论;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF由最小值,连接OE,OF,过O作OH⊥EF于H,解直角三角形即可得到结论.【解答】解:(1)∵∠BAC=60°,∴∠EOF=120°,∵OE=OF,∴=;(2)当AD平分∠BAC时,四边形OEDF是菱形,理由:∵AD平分∠BAC,∴DE=DF,∠BAD=30°,∵AD是⊙O的直径,∴∠DEA=90°,∴∠EDA=60°,∵OE=OD,∴△OED是等边三角形,即ED=OE,∴OE=OF=DE=DF,∴四边形OEDF是菱形;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF有最小值,如图,过O作OH⊥EF于H,在Rt△ADB中,∵∠ABC=45°,AB=10,∴AD=BD=10,即此时,⊙O的直径为10,∵∠EOH=∠EOH=∠BAC=60°,∴EH=OE•sin∠EOH=5×=,由垂径定理可得EF=2EH=5.线段EF的最小值为5,故答案为:5.【点评】本题考查了菱形的判定,垂径定理,圆周角定理,解直角三角形,关键是根据运动变化,找出满足条件的最小圆.19.【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)由题意知∠QPB=60°、∠PQB=60°,从而得△BPQ是等边三角形,据此可得答案;(2)由(1)知PQ=BQ=900m,从而得AQ==600,根据∠AQB=180°﹣60°﹣30°=90°知AB==300.【解答】解:(1)相等,由图知∠QPB=60°、∠PQB=60°,∴△BPQ是等边三角形,∴BQ=PQ;(2)由(1)知PQ=BQ=900m,在Rt△APQ中,AQ===600,又∵∠AQB=180°﹣60°﹣30°=90°,∴在Rt△AQB中,AB===300(m),答:A、B间的距离为300m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是通过角的计算得出BQ=PQ,再由直角三角形先求出AQ,根据勾股定理求出AB.20.【考点】FF:两条直线相交或平行问题;R6:关于原点对称的点的坐标.【分析】(1)先依据一次函数解析式,求得点B,C的坐标,再根据解方程组,求得点A的坐标,即可得到△ABC的面积;(2)根据P在直线y=x+4上,即可设P(m,m+4),再根据P、Q关于原点成中心对称,可得Q(﹣m,﹣m﹣4).最后根据点Q在直线y=﹣3x﹣3上,可得﹣m﹣4=3m﹣3,进而得到m的值.【解答】解:(1)令y=x+4中y=0,则x=﹣4,∴B(﹣4,0);令y=﹣3x﹣3中y=0,则x=﹣1,∴C(﹣1,0);解方程组,得,∴A(﹣,).∴S=×[﹣1﹣(﹣4)]×=.△ABC(2)∵点P在直线y=x+4上,∴设P(m,m+4),∵P、Q关于原点成中心对称,∴Q(﹣m,﹣m﹣4).∵点Q在直线y=﹣3x﹣3上,∴﹣m﹣4=3m﹣3,解得:m=﹣,∴m+4=,∴点P的坐标为(﹣,).【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积公式,解题的关键是掌握关于原点对称的点的坐标特征.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).21.【考点】B7:分式方程的应用;CE:一元一次不等式组的应用;FH:一次函数的应用.【分析】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.【解答】解:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【点评】此题考查了一次函数的应用,分式方程的应用,以及一元一次不等式组的应用,弄清题意是解本题的关键.22.【考点】LO:四边形综合题.【分析】(1)作FH⊥AB于H,由AAS证明△EFH≌△CED,得出FH=CD=4,AH=AD=4,求出BH=AB+AH=8,由勾股定理即可得出答案;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,则FM=AH,AM=FH,①同(1)得:△EFH≌△CED,得出FH=DE=3,EH=CD=4即可;②求出BM=AB+AM=7,FM=AE+EH=5,由勾股定理即可得出答案;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,同(1)得::△EFH≌△CED,得出FH=DE=4+AE,EH=CD=4,得出FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得出方程,解方程即可;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,同理得AE的长.【解答】解:(1)作FH⊥AB于H,如图1所示:则∠FHE=90°,∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=4,EF=CE,∠ADC=∠DAH=∠BAD=∠CEF=90°,∴∠FEH=∠CED,在△EFH和△CED中,,∴△EFH≌△CED(AAS),∴FH=CD=4,AH=AD=4,∴BH=AB+AH=8,∴BF===4;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,如图2所示:则FM=AH,AM=FH,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH≌△CED(AAS),∴FH=DE=3,EH=CD=4,即点F到AD的距离为3;②∴BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF===;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD于点H,交BC延长线于K.如图3所示:同(1)得::△EFH≌△CED,∴FH=DE=AE﹣4,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=(3)2,解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=2+或2﹣(舍去).③当点E在AD上时,可得:(8﹣AE)2+(4+AE)2=90,解得AE=5或﹣1,5>4不符合题意.综上所述:AE的长为1或2+.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.23.【考点】HF :二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P (m ,m 2+2m +1),表示出PE=﹣m 2﹣3m ,再用S 四边形AECP =S △AEC +S△APC =AC ×PE ,建立函数关系式,求出极值即可;(3)先判断出PF=CF ,再得到∠PCA=∠EAC ,以C 、P 、Q 为顶点的三角形与△ABC 相似,分两种情况计算即可.【解答】解:(1)∵点A (0,1).B (﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x 2+2x +1,(2)∵AC ∥x 轴,A (0,1)∴x 2+2x +1=1,∴x 1=﹣6,x 2=0,∴点C 的坐标(﹣6,1),∵点A (0,1).B (﹣9,10),∴直线AB 的解析式为y=﹣x +1,设点P (m ,m 2+2m +1)∴E (m ,﹣m +1)∴PE=﹣m +1﹣(m 2+2m +1)=﹣m 2﹣3m ,∵AC ⊥EP ,AC=6,∴S 四边形AECP=S △AEC +S △APC=AC ×EF +AC ×PF=AC ×(EF +PF )=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣);(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4或t=﹣8(不符合题意,舍)∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3或t=﹣15(不符合题意,舍)∴Q(3,1)【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.。

2021年中考数学必刷卷B(广东)参考答案

2021年中考数学必刷卷B(广东)参考答案

2021年中考数学必刷卷B 〔广东〕参考答案1.解:﹣2的绝对值是:2.应选:A.2.解:A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.应选:A .3.解:=4.6×10﹣6.应选:C .4.解://l OB ,1180AOB ∴∠+∠=︒,128AOB ∴∠=︒, OC 平分AOB ∠,64BOC ∴∠=︒,又//l OB ,且2∠与BOC ∠为同位角,264∴∠=︒,应选:C .5.解:A 、原式5x =,故A 错误;C 、原式26x =,故C 错误;D 、原式32=,故D 错误; 应选:B .6.解:由折线图可知,乙与其平均值的离散程度较小,所以稳定性更好.应选:B.7.解:x 2﹣4x ﹣1=0,x 2﹣4x =1,x 2﹣4x +4=1+4,〔x ﹣2〕2=5,应选:D .8.解:过点D 作DF AC ⊥于F 如下图, AD 为BAC ∠的平分线,且DE AB ⊥于E ,DF AC ⊥于F ,1DE DF ∴==,在Rt BED ∆中,30B ∠=︒,22BD DE ∴==,在Rt CDF ∆中,45C ∠=︒,CDF ∴∆为等腰直角三角形,CD ∴==2BC BD CD ∴=+=应选:A .9.解:在函数k y x=和2(0)y kx k =+≠中, 当0k >时,函数k y x =的图象在第一、三象限,函数2y kx =+的图象在第一、二、三象限,应选项A 、D 错误,选项B 正确,当0k <时,函数k y x=的图象在第二、四象限,函数2y kx =+的图象在第一、二、四象限,应选项C 错误,应选:B .10.解:∵A 〔﹣3,4〕,B 〔3,4〕,∴AB =3+3=6,∵四边形ABCD 为正方形,∴AD =AB =6,∴D 〔﹣3,10〕,∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D 的坐标为〔3,﹣10〕.应选:D .二、填空题:此题共7小题,每题4分,共28分。

中考数学总复习第二章《方程(组)与不等式(组)》必刷题【70道】

中考数学总复习第二章《方程(组)与不等式(组)》必刷题【70道】

第二章 方程(组)与不等式(组)【必刷题071】关于x 的方程mx 2m -1+(m -1)x -2=0如果是 一元一次方程,则其解为______________.【必刷题072】若以二元一次方程x+2y-b=0的解为坐标的点(x,y )都在直线121-+-=b x y上,则常数b=( ) A.21B.2C.-1D.1【必刷题073】若关于x ,y 的二元一次方程 ⎩⎨⎧2x +y =-3m +2,x +2y =4的解满足x +y >-32,求出满足条件的m 的所有正整数值.【必刷题074】若关于x 的方程kx 2-x -34=0有实数根,则实数k 的取值范围是( ) A.k =0 B .k ≥-13且k ≠0C .k ≥-13D .k >-13第二章 方程(组)与不等式(组)【必刷题075】关于x 的方程013)1(2=-++x x m 有两实根,则m 的取值范围是 .【必刷题076】关于x 的一元二次方程026)2(22=-++++k k x x k 有有一个根是0,则k= .【必刷题077】已知方程0120212=+-x x 的两个根分别为x 1,x 2,则2212021x x -的值为( ) A.1 B.-1 C.2021 D.-2021【必刷题078】关于x 的一元二次方程 x 2+(a 2-2a)x +a -1=0的两个实数根互为相 反数,则a 的值为( )A.2 B .0 C .1 D .2或0【必刷题079】已知关于x的一元二次方程(a2-3)x2-(a-1)x+1=0的两个实数根互为倒数,则a的值为( )A.2或-2 B.2 C.-2 D.0【必刷题080】已知m,n是方程x2+2x-5=0 的两个实数根,则m2-mn+3m+n=________.【必刷题081】若x1,x2是一元二次方程x2+x-3=0的两个实数根,则x32-4x21+17的值为( )A.-2 B.6 C.-4 D.4【必刷题082】已知a≥2,m2-2am+2=0,n2-2an+2=0,m≠n,则(m-1)2+(n-1)2的最小值是( )A.6 B.3 C.-3 D.0【必刷题083】解关于x的方程:2(1)20a x ax a--+=【必刷题084】解方程:3x2+2x-1x2-2x=0.【必刷题085】解方程:x-3x-2+1=32-x.【必刷题086】若不等式组⎩⎨⎧x+13<x2-1,x<4m无解,则m的取值范围为( )A.m≤2 B.m<2 C.m≥2 D.m>2【必刷题087】关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为( )A.-5<a<-3 B.-5≤a<-3 C.-5<a≤-3 D.-5≤a≤-3【必刷题088】已知关于x 的不等式3x -m +1>0的最小整数解为2,则实数m 的取值范围是________.【必刷题089】已知关于x 的不等式组无实数解,a 的取值范围是 .【必刷题090】若不等式-1≤2-x 的解集中x 的每一个值,都能使关于x 的不等式 3(x-1)+5>5x+2(m+x)成立,则m 的取值范围是 ( C ).【必刷题091】若关于x 的不等式mx -n >0的解集是x <35.则关于x 的不等式(m +n)x >n -m的解集是 .【必刷题092】若关于x 的不等式组有且只有2个整数解,则a 的取值范围是 .【必刷题093】已知不等式组的解集为x>-1,则k 的取值范围是 .【必刷题094】若不等式组的解集中的任意x,都能使不等式x-5>0成立,则a 的取值范围是 .【必刷题095】 已知不等式组⎩⎪⎨⎪⎧x 2+x +13>0,x +5a +43>43x +1+3a有且只有三个整数解,试求a 的取值范围.中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题096】若关于x 的不等式组中任意x 的值均不在4≤x ≤7范围内,求a 的取值范围.【必刷题097】若数a 使关于x 的不等式组⎩⎨⎧x 3-2≤14x -7,6x -2a>51-x有且仅有三个整数解,且使关于y 的分式方程1-2y y -1-a1-y =-3的解为正数,则所有满足条件的整数a 的值之和是多少?【必刷题098】关于x 的方程(k-1)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是 .中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题099】已知关于x 的一元二次方程x 2-kx+k-3=0的两个实数根分别为x 1,x 2,且+=5,则k 的值是?【必刷题100】已知关于x 的一元二次方程x 2-4x-2m+5=0有两个不相等的实数根. (1)求实数m 的取值范围;(2)若该方程的两个根都是符号相同的整数,求整数m 的值.【必刷题101】若关于x 的分式方程=3的解是非负数,则b的取值范围是 .若关于x 的分式方程=3无解,则b 的取值范围是 .若关于x 的分式方程=3有增根,则b 的取值范围是 .中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题102】若关于x的分式方程=有增根,则m的值为 .若关于x的分式方程=有无解,则m的值为 .若关于x的分式方程=的解是非负数,则b 的取值范围是 .【必刷题103】若x<2,且+|x-2|+x-1=0,则x=.【必刷题104】若分式方程-4=的解为整数,则整数a=.【必刷题105】若关于x的方程+=无解,则m的值为.若关于x的方程+=有增根,则m的值为.若关于x的方程+=的解是非负数,则m取值范围是 .中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题106】如果不等式组的解集为x>2,那么m的取值范围是?【必刷题107】已知关于x的不等式组无解,则实数a的取值范围是?【必刷题108】若关于x的不等式x+m<1只有3个正整数解,则m的取值范围是?【必刷题109】若不等式>-x-的解都能使不等式(m-6)x<2m+1成立,则实数m的取值范围是?【必刷题110】若关于x,y的二元一次方程组的解满足0<x-2y<1,求k的取值范围.中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题111】若关于x 的不等式组 有且只有三个整数解,求m 的取值范围.【必刷题112】关于x ,y 的二元一次方程组⎩⎨⎧mx +y =n ,x -ny =2m 的解是⎩⎨⎧x =0,y =2,则m +n 的值为 .【必刷题113】某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2 240元,则这种商品的进价是________元.【必刷题114】用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A ,B 两种型号的钢板共________块.中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题115】若关于x ,y 的二元一次方程组⎩⎨⎧x -3y =4m +3,x +5y =5的解满足x +y ≤0,则m 的取值范围是________.【必刷题116】下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为________.【必刷题117】对于实数a ,b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值;(2)若x ⊗(-y )=2,(2y )⊗x =-1,求x +y 的值.【必刷题118】关于x 的一元二次方程x 2-4x +m =0的两实数根分别为x 1,x 2,且x 1+3x 2=5,则m 的值为?中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题119】关于x的一元二次方程x2-(k -1)x-k+2=0有两个实数根x1,x2,若(x1-x2+2)(x1-x2-2)+2x1x2=-3,则k的值?【必刷题120】某校办厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件,若设这个百分数为x,则可列方程为____ ___【必刷题121】已知关于x的方程ax2+2x-3=0有两个不相等的实数根,则a的取值范围是________.【必刷题122】已知关于x的一元二次方程x2+(2m-1)x+m2-3=0有实数根.(1)求实数m的取值范围;(2)当m=2时,方程的根为x1,x2,求代数式(x21+2x1)(x22+4x2+2)的值.【必刷题123】解方程:xx-2-1=4x2-4x+4中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题124】关于x的一元二次方程x2-3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值.【必刷题125】若方程x2-2x-4=0的两个实数根为α,β,则α2+β2的值为?【必刷题126】若α,β是关于x的一元二次方程x2-2x+m=0的两实根,且1α+1β=-23,则m等于?中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题127】已知a ,b 是方程x 2+x -3=0的两个实数根,则a 2-b +2 019的值是?【必刷题128】设a ,b 是方程x 2+x -2 019=0的两个实数根,则(a -1)(b -1)的值为 ________.【必刷题129】已知x 1,x 2是关于x 的一元二次方程x 2+2x +k -1=0的两个实数根, 且x 21+x 22-x 1x 2=13,则k 的值为________.【必刷题130】已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1-1)(x 2-1)=8k 2,则k 的值为 ________.【必刷题131】已知关于x 的一元二次方程 x 2-6x +(4m +1)=0有实数根. (1)求m 的取值范围;(2)若该方程的两个实数根为x 1,x 2, 且|x 1-x 2|=4,求m 的值.中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题132】 关于x 的方程k 2x -4-1=x x -2的解为正数,则k 的取值范围是________.【必刷题133】 已知关于x 的分式方程2x -mx -3=1的解是非正数,则m 的取值范围是________.【必刷题134】若关于x 的分式方程x x -2+2m2-x =2m 有增根,则m 的值为________. 若关于x 的分式方程x x -2+2m 2-x=2m 无解,则m 的值为________. 若关于x 的分式方程x x -2+2m 2-x=2m 的解为非负数,则m 的值为________.中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题135】关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为?【必刷题136】某学校计划购买A、B两种型号的小黑板共60块,购买一块A型小黑板100元,购买一块B型小黑板80元,要求总费用不超过5 250元,并且购买A型小黑板的数量至少占总数量的13,请你通过计算,求出购买A、B 两种型号的小黑板有哪几种方案?【必刷题137】甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3 000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7 800元,那么甲至少加工了多少天?中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题138】定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[-1.2]=-2;②[a-1]=[a]-1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是________(写出所有正确结论的序号).【必刷题139】若关于x,y的方程组⎩⎨⎧3x-5y=2m3x+5y=m-18,的解满足x<0且y<0,求m的范围.【必刷题140】已知不等式组⎩⎪⎨⎪⎧x2+x+13>0,x+5a+43>43x+1+3a有且只有五个整数解,试求a的取值范围.。

2021年中考真题必刷题《第二专题:方程与不等式》

2021年中考真题必刷题《第二专题:方程与不等式》

2021年中考真题必刷题《第二专题:方程与不等式》一、选择题1. (2020年安徽)下列方程中,有两个相等实数根的是A. X 2+1=2XB. X 2+1=0 C ・ X 2-2X =3 D ・ X 2-2X =02. (2020年南充)某工程队承接了 80万平方米的荒山绿化任务,为 了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了 35%, 结果提前40天完成了这一任务。

设实际工作时每天绿化的而积为X 万平方米,则下而所列方程中正确的是()° 80 80 “ 小 8° 80(1 + 35%)B. — ------------------- = 40 D. — ----------------- --- ---------- =40 X (1 + 35%)X X X3. (2020年河南省)国家统计数据显示,我国快递业务收入逐年增加。

2017年至2019年我国快递业务收入由5000亿元增加到7500亿元。

设我国2017年至2019年快递业务收入的年平均增长率为X,则可列 方程为()A. 5000(l+2x) =7500B. 5000x2(l+x)=7500C. 5000(1+X )2=7500A. 80(1 + 35%) X 80 — = 40 XB. 80 80 - -- —=40 (1 + 35%)X X -D. 5000+5000(1+X )+5000(1+X )2=75004. (2020年浙江)不等式组卩3-4的解集在数轴上表示正确的 3x > 2x -1 是()5. (2020年遵义)如图,把一块长为40cm,宽为30cm 的矩形硬纸 板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并 用胶带粘好,即可做成一个无盖纸盒。

若该无盖纸盒的底而积为 600cm 2,设剪去小正方形的边长为xcm,则可列方程为A. (30-2x) (40-x) =600B. (30-x)(40-x)=600C. (30-x)(40-2x)=600C.(30-2x)(40-2x)=6006. (2020年随州市)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何”。

必刷卷01-2021年中考数学考前信息必刷卷(湖南长沙专用)(原卷版)

必刷卷01-2021年中考数学考前信息必刷卷(湖南长沙专用)(原卷版)

绝密★启用前2021年中考数学考前信息必刷卷(湖南长沙专用)第一模拟注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列各数中,比2-小的数是( )A .1-B .2C .0D .3-2.下列运算正确的是( )A .()2326ab a b =B .2532a a a -=C .235a b ab +=D .()2224a a =++ 3.2020年11月24日22时06分,嫦娥五号探测器3000N 发动机工作约2秒钟,顺利完成第一次轨道修正,继续飞向月球.截至第一次轨道修正前,嫦娥五号探测器各系统状态良好,已在轨飞行约17个小时,距离地球约16万千米,16万千米用科学记数法表示为( )A .41.610km ⨯B .51.610km ⨯C .41610km ⨯D .50.1610km ⨯4.如图的几何体由5个相同的小正方体搭成,从上面看,这个几何体的形状是( )A.B.C.D.5.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.众数是9 B.中位数是8.5 C.平均数是9 D.方差是76.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A.2 B.3 C.4 D.67.关于x的方程240x x m-+=有一个根为1-,则另一个根为()A.5 B.2 C.5-D.2-8.抛物线y=(x-2)2+3的顶点坐标为()A.(2,-3) B.(2,3) C.(-2,3) D.(-2,-3)9.如图,在A处测得点P在北偏东60︒方向上,在B处测得点P在北偏东30方向上,若63AP=则点AB两点的距离为()千米.A .4B .43 C .2 D .6 10.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ADC ∠的值为( )A .21313B .313C .23D .3211.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为( )A .3551y x y x +=⎧⎨-=⎩B .3551y x y x -=⎧⎨=-⎩C .15355x y y x ⎧+=⎪⎨⎪=-⎩D .()5351x y x y -=⎧⎨=-⎩12.如图,点A ,B 的坐标分别为(2,0)A 、(0,2)B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,当OM 最大时,M 点的坐标为( )A .21222B .22(22C .3232(44D .22(1,144++ 二、填空题:本题共4小题,每小题3分,共12分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智乐星优题库数学108一、填空题(本大题共6小题,每小题3分,共18分)1.一组数据:2 015,2 015,2 015,2 015,2 015,2 015的方差是______.2.一个暗箱中放有除颜色外其他完全相同的m个红球,6个黄球,3个白球.现将球搅匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到黄球的频率稳定在30%附近,由此可以估算m的值是________.3.一组数据:3,4,4,6,6,6的中位数是______.4.若甲、乙、丙、丁四个同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为s甲2=0.80,s乙2=1.31,s丙2=1.72,s丁2=0.42,则成绩最稳定的同学是______.5.如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称图形的概率是________.6.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1 200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为__________人.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列调查中,适宜采用普查方式的是( )A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件8.下列事件中,不可能事件是( )A.抛掷一枚骰子,出现4点向上B.五边形的内角和为540°C.实数的绝对值小于0D.明天会下雨9.下列统计图能够显示数据变化趋势的是( )A .条形图B .扇形图C .折线图D .直方图 10.下表是某校合唱团成员的年龄分布:年龄/岁 13 14 1516 频数515x10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) A .平均数、中位数 B .众数、中位数 C .平均数、方差 D .中位数、方差 11.下列说法中,正确的是( ) A .不可能事件发生的概率为0 B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 12.如图,有以下3个条件:①AC=AB ,②AB∥CD,③∠1=∠2.从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A .0B .1 C.23 D.1313.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是( ) A .平均数是82 B .中位数是82 C .极差是30 D .众数是8214.如图所示是从我市有关部门了解到的某条道路测速点所记录的在某个时段来往车辆的车速情况,下列说法中正确的是( )A .平均数是52B .众数是8C .中位数是52.5D .中位数是52 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)在一次数学家文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.16.(本小题满分6分)某市2013~2017年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)该市常住人口数,2017年比2016年增加了______万人;(2)与上一年相比,该市常住人口数增加最多的年份是____________;(3)预测2018年该市常住人口数大约为多少万人?请用所学的统计知识说明理由.17.(本小题满分6分)4张相同的卡片分别写着数字-1、-3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是________;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.18.(本小题满分8分)保险公司车保险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下表:上年度出险次数0 1 2 3 4 ≥5保费0.85a a 1.25a 1.5a 1.75a 2a该公司随机调查了该险种的300名续保人在一年内的出险情况,得到如下统计图:(1)样本中,保费高于基本保费的人数为__________名;(2)已知该险种的基本保费a为6 000元,估计1名续保人本年度的平均保费.19.(本小题满分7分)小娜家购买了4个灯笼(外观完全一样),灯笼上分别写有“欢”“度”“春”“节”.(1)小娜从四个灯笼中任取一个,取到“春”的概率是多少;(2)小娜从四个灯笼中先后取出两个灯笼,请用列表法或画树状图法求小娜恰好取到“春”“节”两个灯笼的概率.20.(本小题满分8分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计图表组别分数/分频数各组总分/分A 60<x≤7038 2 581B 70<x≤8072 5 543C 80<x≤9060 5 100D 90<x≤100m 2 796依据以上统计信息,解答下列问题:(1)求得m=________,n=__________;(2)这次测试成绩的中位数落在______组;(3)求本次全部测试成绩的平均数.21.(本小题满分8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x;再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果;(2)求取出的两张卡片上的数字之和为偶数的概率P.22.(本小题满分9分)某校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.23.(本小题满分12分)某年级共有300名学生,为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制)、并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100);b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A 75.8 m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是______(填“A”或“B”),理由是__________________________________________________________;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.参考答案1.0 2.11 3.5 4.丁 5.136.4807.D 8.C 9.C 10.B 11.A 12.B 13.A 14.D15.解: 画树状图如下:由树状图可知,共有12种等可能的结果,抽取的2张牌的数字之和为偶数的结果有4种,所以P(抽取的2张牌的数字之和为偶数)=412=13.16.解: (1)7. (2)2016.(3)预测2018年该市常住人口数大约为757万人,理由如下:从统计图可以看出,该市常住人口每年增加的数量的众数为7万人,因此预测2018年该市常住人口数大约为757万人(理由不唯一,言之有理即可得分). 17.解: (1)12.(2)根据题意列表,得:当k <0,b >0时,一次函数y =kx +b 的图象经过第一、二、四象限,一共有12种可能,其中k <0,b >0有4种,∴这个一次函数的图象经过第一、二、四象限的概率P =412=13.18.解: (1)120;(2)1名续保人本年度的平均保费为1300×[6 000×(100×0.85+80×1+40×1.25+40×1.5+30×1.75+10×2)]=6 950(元). 19.解: (1)P =14.(2)列表如下:或画树状图如下:由列表或画树状图可知,共有12种等可能情况,其中恰好取到“春”“节”两个灯笼的有2种, ∴P(两次恰好取到“春”“节”)=212=16.20.解: (1)30,19%; (2)B(或70<x≤80);(3)本次全部测试成绩的平均数为: 2 581+5 543+5 100+2 796200=80.1(分).21.解: (1)列表如下:由列表可知,(x ,y)的所有等可能结果共6种;(2)由(1)知,共有6种等可能结果,其中两张卡片上的数字和为偶数的情况有2种,则P(两张卡片上数字和为偶数)=26=13.22.解:(1)补全条形统计图如解图1所示;(2)七年级获一等奖人数:4×14 =1(人),八年级获一等奖人数:4×14=1(人),∴ 九年级获一等奖人数:4-1-1=2 (人).七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1、P2表示,树状图如解图2所示:共有12种等可能结果,其中选出的两人中既有七年级又有九年级同学的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P =412=13.23.解: (1)78.75.(2)B.(3)抽取的60名学生中.A课程成绩超过75.8分的人数为36人,∴3660×300=180(人).答:该年级学生都参加测试.估计A课程分数超过75.8分的人数为180人.。

相关文档
最新文档