最新发电机励磁系统

合集下载

图解发电机励磁原理(2024)

图解发电机励磁原理(2024)
对于要求高精度和快速响应的应用场合,应选择具有高性能的控制策略和优化方法,如最 优励磁控制策略结合遗传算法或粒子群优化算法等。
21
05
发电机励磁系统故障诊断与处理 措施
2024/1/26
22
常见故障类型及原因分析
励磁不足或失磁
可能是由于励磁电源故障、励磁 回路开路或接触不良、励磁绕组
匝间短路等原因导致。
应用范围
直流励磁方式和交流励磁方式适用于各种规模的发电机组和电力系统 ;永磁体励磁方式适用于小型风力发电、太阳能发电等领域。
13
03
发电机励磁调节器原理与结构
2024/1/26
14
调节器基本原理
2024/1/26
电磁感应原理
发电机励磁调节器通过电磁感应 原理,将输入的交流电转换为直 流电,为发电机的励磁绕组提供 励磁电流。
替换法
在怀疑某个元器件损坏时,可以用正 常的元器件替换后观察故障是否消除 ,以验证故障部位和原因。
2024/1/26
测量法
使用万用表、示波器等工具测量励磁 系统各点的电压、电流、波形等参数 ,与正常值进行比较分析,进一步确 定故障原因。
专家系统诊断
利用专家系统或故障诊断软件对励磁 系统故障进行自动诊断和分析,提高 故障诊断的准确性和效率。
性,但控制精度相对较低。
20
控制策略选择依据
2024/1/26
系统稳定性要求
对于要求较高的电力系统,应选择稳定性好的控制策略,如恒压控制策略或最优励磁控制 策略。
发电机运行工况
不同的运行工况下,应选择适合的控制策略。例如,在轻载或空载工况下,可采用恒功率 因数控制策略以提高运行效率。
控制精度和响应速度要求

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指为了使发电机在运行中能够产生稳定的电压和电流,采取的一系列控制和调整励磁电流的措施。

励磁系统的原理是通过调节励磁电流来改变磁场强度,进而控制发电机的输出电压和频率。

一、电磁感应原理根据法拉第电磁感应定律,当导体在磁场中运动或磁场变化时,会在导体中产生感应电动势。

由此,发电机中的转子在转动时,通过导线产生的感应电动势可以用来驱动电流,从而实现电能的转换。

二、励磁机构发电机励磁系统的核心是励磁机构,它由励磁电源和励磁回路组成。

励磁电源提供直流电源,用于激励发电机的磁场。

而励磁回路则通过一组电阻、电感和励磁开关等元件,将励磁电流导入到发电机的励磁线圈中。

三、调整励磁电流励磁电流的大小决定了发电机的磁场强度,从而影响了输出电压和频率。

一般情况下,发电机励磁系统会根据负荷的需求,通过调节励磁电流的大小来实现稳定的电压输出。

4、励磁系统的调整机制发电机励磁系统通常采用自动调压和手动调压两种方式来保持输出电压的稳定。

在自动调压模式下,根据电压传感器的反馈信号,控制励磁电流的大小。

一旦输出电压下降,励磁系统会自动增加励磁电流,以提高输出电压。

手动调压模式下,操作人员可以根据需要手动调整励磁电流,以实现电压的稳定输出。

五、励磁系统的稳定性好的励磁系统应具有良好的稳定性,能够在负荷变化时迅速调整励磁电流,并且使输出电压变化最小。

稳定性的提高可以通过增加励磁回路中的电感和电容元件,以及制定合理的励磁调节策略来实现。

六、励磁系统的应用发电机励磁系统广泛应用于各种发电场景中,包括电力站、风力发电、水力发电、汽车发电机等。

它不仅能够保证电力供应的稳定性和可靠性,还能够提高发电效率和节能减排。

总结:发电机励磁系统是使发电机能够稳定输出电压和频率的重要控制系统。

通过调节励磁电流来改变发电机的磁场强度,励磁系统能够实现电能的转换和稳定输出。

良好的励磁系统应具有稳定性和高效性,能够适应负荷变化并实现可靠的电力供应。

2023年度电力系统同步发电机励磁系统的建模与仿真

2023年度电力系统同步发电机励磁系统的建模与仿真

2023年度电力系统同步发电机励磁系统的建模与仿真随着电力系统的快速发展和电力负荷的不断增加,同步发电机在电力系统中的作用日益重要。

在发电过程中,同步发电机的励磁系统起着至关重要的作用,它不仅决定了发电机的输出功率和电压稳定度,还直接影响到电力系统的稳定性和安全性。

因此,对同步发电机励磁系统进行建模和仿真,分析其特性及优化其性能具有十分重要的实用价值和工程应用前景。

本文将针对电力系统同步发电机励磁系统的建模和仿真,从理论分析、实验研究和实际应用等角度进行探讨,并提出相应的解决方案和建议。

一、同步发电机励磁系统的基本原理同步发电机是电力系统中常用的发电设备之一,其工作原理是通过励磁系统对转子产生恒定电磁势,使得电动机的旋转速度与电网同步。

励磁系统由调节回路和发电机励磁机组成,前者用于调节励磁电流大小,后者用于产生励磁电流。

励磁机由交流电源供电,将电能转换为磁能,形成恒定的磁场,以激励转子产生电势,并与电网同步。

二、同步发电机励磁系统的建模方法同步发电机励磁系统建模方法通常采用开环和闭环两种方法。

开环方法着重考虑发电机励磁机的特性和参数,而忽略负载和电力系统的影响;闭环方法则将发电机励磁系统与负载和电力系统耦合起来,考虑更加全面的影响因素。

基于此,可以利用MATLAB等软件对同步发电机励磁系统建立模型并进行仿真。

三、同步发电机励磁系统的特性分析同步发电机励磁系统特性分析是建模和仿真的重要内容,其目的是分析系统的性能和稳定性。

特性分析主要包括励磁电路特性分析、励磁系统数学模型建立、励磁机暂态过程仿真等方面。

四、同步发电机励磁系统的优化同步发电机励磁系统的优化可以通过改变发电机励磁电路参数、控制环节参数等方式进行。

其中,提高励磁机的内部反馈控制效果,降低负载波动对励磁系统的影响,并采用先进的励磁控制算法等方法,可以显著提升系统的质量和性能。

五、同步发电机励磁系统仿真结果分析通过对同步发电机励磁系统的仿真分析,可以建立电网和发电机系统的各种工况和稳态性能参数,并提出相应的改进措施和建议。

同步发电机励磁控制系统

同步发电机励磁控制系统
预测控制
预测控制是一种基于模型的控制方法,能够根据系统的历史数据和当前状态预测 未来的行为,实现更精确的控制。
环保与节能要求对励磁控制系统的影响
能效要求
随着能源危机和环保意识的提高,励磁控制系统需要更加注重能效,采用更高效的电机 和节能控制策略,降低能源消耗和排放。
排放要求
励磁控制系统需要符合更严格的排放标准,采用环保型的电机和控制策略,减少对环境 的污染。
转子过电流保护装置
作用
转子过电流保护装置用于监测同 步发电机转子电流,当出现异常 过电流时,及时切断励磁电流, 防止转子烧毁。
工作原理
转子过电流保护装置通过电流传 感器实时监测转子电流,当检测 到过电流时,触发保护动作,快 速切断励磁电流。
组成
转子过电流保护装置由电流传感 器、比较电路和开关器件等部分 组成,各部分协同工作实现转子 过电流保护功能。
根据励磁调节器的控制指令,输出励 磁电流给发电机励磁绕组。
励磁控制系统的功能
电压控制
通过调节励磁电流,维 持发电机端电压在给定
水平。
无功功率调节
根据系统无功需求,调 节励磁电流以改变发电
机无功功率的输出。
增磁与减磁
通过增加或减少励磁电 流来改变发电机的输出
电压。
保护功能
在异常情况下,自动采 取措施保护发电机和励
THANKS
谢谢
Байду номын сангаас
磁系统。
02
CHAPTER
励磁控制系统的主要设备
励磁调节器
作用
励磁调节器是励磁控制系统的核 心,用于调节同步发电机的励磁 电流,以控制机组的无功输出和
电压水平。
工作原理
励磁调节器通过采集发电机电压、 电流等信号,经过运算处理后,输 出控制信号给功率整流器,以调节 励磁电流。

同步发电机励磁自动控制系统

同步发电机励磁自动控制系统

时,输出波形不连续,周期为2π/3
三相半控整流电路输出电压与控制角α的关系式为:
静止励磁系统(发电机自并励系统)中发电机的励磁电源不用励 磁机,而由机端励磁变压器供给整流装置。
这类励磁装置采用大功率晶闸管元件,没有转动部分,故称静
止励磁系统。由于励磁电源是发电机本身提供,故又称为发电
机202自1/5/并27 励系统。
21
第三节 励磁系统中的整流电路
同步发电机励磁系统中整流电路的主要任务是将交流电压 整流成直流电压供给发电机励磁绕组或励磁机的励磁绕组。
一 励磁系统的历史
直流励磁机励磁系统
换流困难
交流励磁机励磁系统(交流发电机和半导体整流元件组成) 为缩短主轴长度,降低造价,减少环节。
20静21/止5/27励磁系统 (发电机自并励系统)
13
二 直流励磁机励磁系统(100MW以下) 按励磁机的励磁绕 ➢ 自励直流励磁机励磁系统 组供电方式的不同 ➢ 他励直流励磁机励磁系统
1 自励直流励磁机励磁系统
IEE
IR DE =
IE
G
IAVR
R
励磁调节器
发电机转子绕组由专用的直流励磁机DE供电,调整励磁
2021机/5/2磁7 场电阻R可改变励磁机励磁电流
14
2 他励直流励磁机励磁系统
IR
PE =
= IAVR IEE DE
IE
G
励磁调节器
他励直流励磁机的励磁绕组是由副励磁机供电的,比自励多用 了一台副励磁机
ug1
t0 t1
VS5 V6
VS1 V2
ug3
ug5
VS3 V4
VS5 V6
t
t
t
27

发电机静态励磁系统

发电机静态励磁系统

发电机静态励磁系统发电机静态励磁系统(参考EXC —9000 型)发电机励磁系统的主要任务是向发电机的励磁绕组提供一个可调的直流电流,以满足发电机正常运行的需要。

无论在稳定运行或暂态过程中,同步发电机运行状态在很大程度上与励磁有关。

对发电机的励磁进行的调节和控制,不仅可以保证发电机运行的可靠性和稳定性,而且可以提高发电机及其电力系统的技术经济指标。

WX21Z —085LLT 150MW 发电机采用的是静态励磁方式,也称为机端自并励励磁系统,指的是发电机出口处装设有一台降压的励磁变压器通过晶闸管向发电机提供受控的励磁电流,其显著特点是整个励磁装置中没有旋转的励磁机部分,电源来自静止的变压器所以又称为静态励磁系统。

这种系统没有转动部分,励磁系统接线相对简单,维护简单,造价低,而且是一种高起始响应系统。

但这种系统也有缺点,当发生发电机机端短路时,励磁电压会严重下降,以至完全消失。

实际证明,在短路开始的0.5S 内,静态励磁与它励方式的励磁能力是很接近的,只是在短路0.5S 以后才明显下降。

因此,只要发变组装设了动作时间小于0.5S 的快速保护,就能满足静态励磁系统的要求。

自动励磁调节器概述自动励磁调节器是发电机励磁控制系统中的控制设备,其基本任务是检测和综合励磁控制系统运行状态的信息,即发电机的端电压、静子电流、转子电流、有功功率、无功功率、发电机频率等,并产生相应的控制信号,控制励磁功率单元的输出,以达到自动调节励磁、满足发电机及系统安全稳定运行的需要。

自动励磁系统主要作用分析1、控制发电机机端电压在系统正常运行条件下,励磁调节系统供给同步发电机所需要的励磁功率,根据不同的负荷情况,自动调节励磁电流,以维持机端或系统某点电压在给定水平上。

根据发电机的外特性曲线可知,造成发电机空载电势与端电压差值的主要原因是负荷电流中无功电流的大小,如果发电机的励磁电流保持不变时,当负荷的无功电流越大时,端电压降低也越严重,发电机的外特性曲线就是保持发电机转速不变,发电机的负载和负载功率因数为常数的情况下,发电机端电压随负载变化的曲线。

2024版图解发电机励磁原理

2024版图解发电机励磁原理

高可靠性设计
提高发电机励磁系统的可靠性是未 来的重要发展方向,通过采用冗余 设计、故障预测与健康管理等技术
手段降低系统故障率。
绿色环保
随着环保意识的提高,未来发电机 励磁系统将更加注重绿色环保,采 用低能耗、低污染的材料和技术,
降低系统对环境的影响。
对未来学习和工作的建议
深入学习专业知识
继续深入学习电力电子、控制理 论等相关专业知识,为从事发电 机励磁相关领域的工作打下坚实
案例分析:某大型水电站励磁调节器设计
• 设计背景:某大型水电站采用水轮发电机组,装机容量大、运行工况复杂,对励磁调节器性能要求高。 • 设计目标:设计一款高性能、高可靠性的励磁调节器,满足水电站运行要求。 • 设计方案:采用基于DSP的数字式励磁调节器设计方案,实现快速、精确的电压调节和功率分配功能;同时采
基础。
关注前沿技术动态
关注发电机励磁技术的最新发展 动态,了解新技术、新方法的应 用情况,不断提升自己的专业素 养。
加强实践动手能力
通过参与实验、项目等方式加强 实践动手能力,培养解决实际问 题的能力。
拓展跨学科知识
学习与发电机励磁相关的跨学科 知识,如电力系统分析、电机学 等,提升综合分析和解决问题的
如失磁、励磁不稳、励磁过流等故障,通过 案例分析学习相应的处理方法和预防措施。
发电机励磁技术发展趋势预测
数字化与智能化
随着电力电子技术和控制理论的发 展,未来发电机励磁系统将更加数 字化和智能化,实现更精确的控制 和优化。
多功能集成化
为满足不同应用场景的需求,发电 机励磁系统将向多功能集成化方向 发展,如集成无功补偿、谐波治理 等功能。
提高发电机并列运行的稳定性。
功能

发电机励磁系统介绍

发电机励磁系统介绍

发电机励磁系统介绍励磁系统主要由励磁电源、励磁绕组、励磁控制器和励磁回路组成。

励磁电源是励磁系统的核心部分,它一般由稳压整流器组成。

稳压整流器通过将交流电转换成直流电,向励磁绕组提供稳定的励磁电流。

稳压整流器的工作原理主要是利用整流元件(如晶闸管、可控整流器等)将交流电变为直流电,并通过电压调节器(如电抗式调压器、电位器等)控制输出电压的大小。

励磁电源的稳定性直接影响着发电机的励磁能力和发电质量。

励磁绕组是发电机中的一部分线圈,一般位于发电机的转子极端。

励磁绕组的主要作用是通过激励电流形成磁场,使得转子产生电磁感应,进而发生电磁能量转换。

励磁绕组的设计和工艺技术对发电机的励磁能力和稳定性有着重要的影响。

一般情况下,励磁绕组采用的是多层绕组,以减少电磁感应的损失并提高转子的稳定性。

励磁控制器是励磁系统的智能控制部分,通过对励磁电源和励磁绕组的调节,实现对发电机励磁电流和磁场的控制。

励磁控制器一般具有自动调节功能,可以根据发电机的负荷情况动态调整励磁电流,确保输出电压和电流的稳定性。

同时,励磁控制器还可以监测发电机的运行状态,如温度、振动等参数,并及时报警,以保护发电机的安全运行。

励磁回路是连接励磁电源和励磁绕组的电路,它主要由导线、接线盒、开关等组成。

励磁回路的设计应考虑导线的导电性、抗干扰能力和散热能力等因素,以确保励磁电流的稳定传输。

此外,励磁回路还应具备可靠的保护装置,以防止因励磁电流过大或故障等原因对发电机造成损坏。

总体而言,发电机励磁系统是确保发电机能够持续稳定输出电能的关键系统。

它通过励磁电源、励磁绕组、励磁控制器和励磁回路等组成部分的协同工作,实现对发电机励磁能力的控制和调节。

只有励磁系统工作正常、稳定,才能保障发电机提供稳定的电力输出,并确保电力系统的安全和可靠运行。

发电机励磁系统

发电机励磁系统

第二类: 自励励磁系统(利用发电机自身发出的电流励磁)
概述
基本结构
励磁系统
姓名:直流励磁机励磁系统
同步发电机励磁系统
概述
基本构
励磁系统
同步发电机励磁系统
姓名:他励静止硅整流交流励磁系统 • 优点: 容量不受限制;不受电网干扰,可靠性高;整流装置静止不动,强度要求低。 • 缺点 :碳刷维护麻烦,存在炭粉和铜末引起电机线圈污染。
值得指出的是:从原理上讲任何一台同步电机既可以作为同步发电机运行,也可以作为电动机或调相 机运行,这就是电机的可逆性原理。例如水电站的同步电机.旺水期用作发电机运行,枯水期可作为 同步调相机运行。当然同步发电机、同步电动机和同步调相机各有自己的特点,没有特殊情况不互换 使用。
概述
基本结构
励磁系统
• 同步电机的基本类型
概述
基本结构
励磁系统
同步发电机励磁系统
概述
基本结构
励磁系统
同步发电机励磁系统
姓名:他励旋转半导体整流交流励磁系统 定义:交流主励磁机的交流绕组和整流设备随同主轴旋转,发电机励磁绕组和主励磁输出绕组相对静止 • 优点 :取消了大电流集电环及碳刷装置,减少运行维护量。 • 缺点 :无法对励磁回路进行直接测量;对整流元件等的强度及可靠性要求高。
概述
基本结构
励磁系统
同步发电机励磁系统
第二类:自励励磁系统(特点:利用发电机自身发出的电流励磁,励磁绕组与电枢绕组相连接) 并励:励磁绕组与电枢绕组并联。 串励:励磁绕组与电枢绕组串联。 复励:主极铁心上装有两个励磁绕组,一个与电枢绕组并联,一个与电枢绕组串联。 优点: 结构简单、可靠性高、造价低、维护量小。 无励磁机,缩短机组轴系长度。 直接用可控硅控制转子电压,可获很快的励磁电压响应速度。 缺点: 保护配合较复杂。

发电机的励磁系统介绍

发电机的励磁系统介绍

发电部培训专题(发电机的励磁系统)(因为目前我公司的励磁系统的资料还没有到,该培训资料还是不全面的,其间还有许多不足之处希望大家批评指正)我厂励磁系统采用的是机端自并励静止励磁系统,全套引入ABB公司型号为UNITROL5000励磁系统。

发电机励磁系统能够满足不超过额定励磁电压和额定励磁电流倍情况下的连续运行。

励磁系统具有短时间过负荷能力,励磁强励倍数为2倍,允许强励时间为20秒,励磁系统强励动作值为倍的机端电压值。

我厂励磁系统可控硅整流器设置有备用容量,功率整流装置并联支路为5路。

当一路退出运行后还可以满足强励及额定励磁电压和额定励磁电流倍情况下的连续运行工况;当两路退出运行时还可以满足额定励磁电压和额定励磁电流倍情况下的连续运行工况,但闭锁强励功能。

5路整流装置均设有均流装置,均流系数不低于95%。

整流柜冷却风机有100%的额定容量,其通风装置有两路电源供电并可以自动进行切换。

任意一台整流柜或风机有故障时,都会发生报警。

每一路整流装置都设有快速熔断器保护。

我厂励磁系统主要包括:励磁变、励磁调节器、可控硅整流器、起励和灭磁单元几个部分。

如图所示:我厂励磁变采用三相油浸式变压器,其容量为7500KV A,变比为,接线形式为△/Y5形式,高压侧每相有3组CT ,其中两组分别提供给发变组保护A、C柜,另一组为测量用。

低压侧设有三组CT其中两组分别提供给发变组保护A、C柜,另一组为备用。

高压侧绝缘等级是按照35KV设计的,它设有静态屏蔽装置。

我厂励磁调节器采用的是数字微机型,具有微调节和提高暂态稳定的特性。

励磁调节器设有过励限制、过励保护、低励限制、电力系统稳定器、过激磁限制、过激磁保护、转子过电压和PT断线保护单元。

自动调节器有两个完全相同而且独立的通道,每个通道设有独立的CT、PT稳压电源元件。

两个通道可实现自动跟踪和无扰动切换。

单通道可以完全满足发电机各种工况运行。

自动调节器具备以下4种运行方式:机端恒压运行方式、恒励磁电流运行方式、恒无功功率运行方式、恒功率因数运行方式。

发电机励磁系统图解(老图,在校生参考)

发电机励磁系统图解(老图,在校生参考)

发电机励磁系统图解
上图为三机励磁系统(主要内容在左半边以及中下部),带厂用电备励。

先说备励:厂用380伏经Q3刀闸到T1感应调压器,隔离变压器T2,交流三相保险,二极管(6只)整流桥,投退刀闸Q6(和Q4,Q5的切换有操作流程的),ELE是线性灭磁回路。

主励部分:400HZ的永磁机,输出电压大概在350V~450V之间(东电、哈电、上电、北重、济电均不一样),T10是同步变压器(采集励磁调节器需要的同步信号,时序、相序、电压值等,但主要是相序)。

中间的很多框图表示的是以前的模拟调节器,现在主流是下面的数字调节器,调节器发出触发脉冲信号(和同步时序配合好的)给中间的两个可控硅整流桥(Q2+A+Q5 Q1+B+Q4)中的可控硅(内部还有脉冲变压器,6脉冲变对应各自的可控硅),整流桥输出直流电压(带很大的三次谐波的)给100HZ的励磁机转子供电(0V~
1.35×450V可调。

励磁机后面就很简单了,励磁机发出三相电经两个二接管整流桥(通常被称为死硅)整流为直流给发电机转子供电,调节发电机的无功输出值,SD是负极单相灭磁开关(其实灭磁开关的种类很多的),转子两侧并联的是灭磁回路(线性电阻灭磁+过压气隙放电保护,实际上中国的30万机组肯定没有这个回路,这个图应该从老外的早期研究中抄来的,太老了)。

最后,多说一句,三级励磁应该是小机组用的,2000年后,10万以上的机组肯定用自并励方式。

发电机自并励静止励磁系统和三机励磁系统的比较

发电机自并励静止励磁系统和三机励磁系统的比较

发电机自并励静止励磁系统和三机励磁系统的比较一.概述大型常规火电厂发电机的励磁方式主要有自并励静止励磁和三机励磁两大类,静止励磁中发电机的励磁电源取自于发电机机端,通过励磁变压器降压后供给可控硅整流装置,可控硅整流变成直流后,再通过灭磁开关引入至发电机的磁场绕组,整个励磁装置没有转动部件,属于全静态励磁系统;而三机励磁的原理是:主励磁机、副励磁机、发电机三机同轴,主励磁机的交流输出,经硅二极管整流器整流后,供给汽轮发电机励磁。

主励磁机的励磁,由永磁副励磁机之中频输出经可控硅整流器整流后供给。

自动电压调节器根据汽轮发电机之端电压互感器、电流互感器取得的调节信号,控制可控硅整流器输出的大小,实现机组励磁的自动调节。

在励磁方式的选择上,俄罗斯、东欧多采用带有主副交流励磁机的三机他励励磁系统,法国Alstom、德国Siemens、美国西屋等公司多采用无刷励磁系统,而ABB、美国GE、日立、东芝公司更多地采用了静止励磁系统,特别是在常规火电中静止励磁更是占绝大部分份额。

二、发电机自并励静止励磁系统和三机励磁系统的比较1.1励磁系统的组成自并激静止励磁系统由励磁变压器、可控硅功率整流装置、自动励磁调节装置、发电机灭磁及过电压保护装置、起励设备及励磁操作设备等部分组成。

三机励磁系统由主励磁机、副励磁机、2套励磁调节装置、3台功率柜、1台灭磁开关柜及1台过电压保护装置等组成。

1.2 相对于三机励磁系统,静态励磁系统的优点归纳为以下几点: (1)静止励磁用静止的励磁变压器取代了旋转的励磁机,用大功率静止可控硅整流系统取代了旋转二极管整流盘,由于励磁系统没有旋转部分,设备接线比较简单,大大提高了整个励磁系统的可靠性,机组的检修维护工作量大大减少。

(2)机组采用静止励磁方式,取消了励磁机和旋转二极管整流盘,其轴系长度缩短,机组轴系的支点减少使得轴系的震动模式简单,利于轴系的稳定;电厂厂房的长度可以适当缩短4-5米,减少基建投资。

同步发电机励磁系统分类

同步发电机励磁系统分类

同步发电机励磁系统分类
同步发电机励磁系统根据其工作原理和结构特点可分为以下几种类型:
1. 静止励磁系统
- 直流励磁系统
- 交流励磁系统
2. 旋转励磁系统
- 直流励磁系统
- 交流励磁系统
3. 无刷励磁系统
- 静止无刷励磁系统
- 旋转无刷励磁系统
静止励磁系统是最传统的励磁方式,其中直流励磁系统使用直流电机或硅整流器作为励磁电源,而交流励磁系统则使用变压器或旋转变流器作为励磁电源。

旋转励磁系统将励磁绕组安装在同步发电机的转子上,与主绕组一同旋转。

直流旋转励磁系统通常使用小型直流发电机作为励磁电源,而交流旋转励磁系统则采用旋转整流器。

无刷励磁系统是近年来发展起来的一种新型励磁方式,它利用功率半
导体器件代替传统的滑环和电刷,可以避免滑环和电刷带来的维护问题。

静止无刷励磁系统将半导体整流器安装在定子上,而旋转无刷励磁系统则将其安装在转子上。

不同的励磁系统各有优缺点,在实际应用中需要根据发电机的型号、容量和运行条件等因素来选择合适的励磁方式。

发电机UN6000励磁系统简介

发电机UN6000励磁系统简介
程度。 • 根据运行要求对发电机实行最大励磁限制及最小励磁限
制。
发电机UN6000励磁系统简介
励磁系统的分类
励磁系统
按供电方式分
他励式励磁系统
自励式励磁系统
按整流器是否旋转分
直流电机励磁系 整流器励磁系统
统(直流励磁机)
交流励磁机
按功率引取方式分
自并励系 自复励系 谐波励磁


系统
按整流器是否旋转分
发电机UN6000励磁系统简介
灭磁单元
1)、灭磁作用:当发电机内部、引出线、高厂变等发生故障时, 虽然保护装置动作迅速切除故障,但励磁电流产生的感应电动 势会继续维持故障电流,为了迅速排除故障,减小其损坏程度, 必须安全迅速地将储存在磁场中的能量泄放(实验表明,只要 剩磁电压小于500V,电弧就不能维持,一般剩磁电压不大于 100-300V)即把励磁绕组的电流建立的磁场迅速降低到最小。
2)、灭磁要求:a.灭磁时间尽可能的短(发电机端电压由额定 值Un降至5% Un所需的时间称灭磁时间)b.励磁绕组两端的过电 压不超过允许值(通过跨接器来实现过压保护的要求)。
3)、灭磁方式:按励磁系统的不同,主要有两种自然灭磁(一 般是对采用旋转二极管整流方式的励磁系统用如无刷励磁系统, 通过整流二极管的续流作用实现自然灭磁,时间较长10S左右) 和逆变灭磁(对采用可控硅整流方式的励磁系统用如自并励励 磁)。
➢ 当两个功率柜退出运行时,能提供 发电机额定工况所需的励磁容量, 不能进行强励。
➢ 如果三台功率柜故障则自动切断励 磁。
发电机UN6000励磁系统简介
可控硅整流器
➢ 运行中一般不要打开功率柜的门, 否则,该功率柜将会发出报警信号。
➢ 标准整流器 (n = 5) 具有五个并联 的可控硅整流桥,其中至少有一个 冗余的(n-1)配置。(n-1)的含 义是当一个可控硅故障时,系统仍 能满足最大励磁功率。

同步发电机励磁系统

同步发电机励磁系统
励磁调节器提供的 I AVR 之和。 I EE I RC I AVR
• 他励与自励的区别在与励磁机的励磁方式不同,他励比自 励多用了一台励磁机。由于他励方式取消了励磁机的自并 励,励磁单元的时间减小,既提高了励磁系统的电压增长 速率。
• 直流励磁机有电刷、整流子等转动接触部件,运行维护繁 杂,励磁容量有限,只用在n=3000转/分的中小型容量机 组。
• 交流励磁机励磁系统根据励磁机电源的不同分为: • (一)他励交流励磁机励磁系统 • (二)自励交流励磁机励磁系统 • 交流励磁机励磁系统按整磁系统
• (一)他励交流励磁机励磁系统 • 1、交流励磁机静止整流器励磁系统
2、交流励磁机旋转整流器励磁系统(无刷励磁)
• 发电机G的励磁电流由交流励磁机AE经晶闸管整流装置 VS供给。
• 交流励磁机的励磁采用晶闸管自励恒压方式。
• 励磁调节器AVR直接控制晶闸管整流装置,其时间常数 小.但本励磁方式的励磁容量比硅整流励磁的大的多.
• 1、自励直流励磁机励磁系统
• 同步发电机G励磁绕组GLE电流由同轴的直流励磁机GE供给。 • 励磁机的励磁电流由可变电阻R供给的自励电流和励磁调节器AER供给
的励磁调节电流供给。即 I R I AVR
• 2、他励直流励磁机励磁系统 • 主励磁机DE的励磁电流I EE 是副励磁机PE提供的电流I RC和
• 励磁自动控制系统是由与主机同轴的交流励磁机、中频副励磁机和励 磁调节器组成。
• 发电机G的励磁电流由频率为100Hz的交流励磁机AE经硅整流器V供 给,交流励磁机的励磁电流由晶闸管可控整流器供给,晶闸管电源由 副励磁机提供。副励磁机是自励式中频交流发电机,用自励恒压调节 器保持其端电压恒定。由于副励磁机的启励电压较高,不能像直流励 磁机那样能依靠剩磁启励,所以在机组启动时必须外加启励电源,直 到副励磁机输出电压足以使自励恒压调节器正常工作时,启励电源方 可退出。在此励磁系统中,励磁调节器控制晶闸管元件的控制角,来 改变交流励磁机的励磁电流,达到控制发电机励磁的目的。

同步发电机励磁系统介绍

同步发电机励磁系统介绍

可控硅整流桥采用相控方式。 对三相全控桥,当负载为感性负载时,控 制角在0o~90o之间为整流状态(产生正向电 压与正向电流);控制角在90o~150o(理论 上控制角可以达到180o考虑到实际存在换流重 叠角,以及触发脉冲有一定的宽度,所以一般 最大控制角取150o)之间为逆流状态(产生负 向电压与正向电流)。 因此当发电机负载发生变化时,通过改变 可控硅的控制角来调整励磁电流的大小,
这种励磁方式整个系统没有任何转动接触 元件。其原理图见图1-9。
FLQ ACL F CT
PT PMG kz 自动励磁 调节器
无刷励磁系统中,主励磁机(ACL)电枢 是旋转的,它发出的三相交流电经旋转的二极 管整流桥整流后直接送发电机转子回路。由于 主励磁机电枢及其硅整流器与主发电机转子都 在同一根轴上旋转,所以它们之间不需要任何 滑环及电刷等转动接触元件。无刷励磁系统中 的副励磁机(PMG)是一个永磁式中频发电 机,它与发电机同轴旋转。主励磁机的磁场绕 组是静止的,即它是一个磁极静止、电枢旋转 的交流发电机。
励磁变压器
励磁变压器为励磁系统提供励磁能源。对 于自并激励磁系统的励磁变压器,通常不设自 动开关。高压侧可加装高压熔断器,也可不加。 励磁变压器可设置过电流保护、温度保护。 容量较大的油浸励磁变压器还设置瓦斯保护。 大多小容量励磁变压器一般自己不设保护。变 压器高压侧接线必须包括在发电机的差动保护 范围之内。励磁变压器的联接组别,通常采用 Y/△组别,Y/Y—12组别通常不用。与普通配 电变压器一样,励磁变压器的短路压降为 4%~8%。
1.2励磁系统构成
它分为励磁功率单元和励磁调节器两 个主要部分: 1.励磁功率单元向同步发电机转子提供 励磁电流; 2.励磁调节器则根据输入信号和给定的 调节准则控制励磁功率单元的输出。

发电机励磁系统原理(2024)

发电机励磁系统原理(2024)
经验教训总结
在励磁系统改造过程中,应充分考虑现有设备的兼容性和可扩展性,避免重复投 资和浪费。同时,应注重技术创新和人才培养,提高电站自身的技术水平和运维 能力。
31
07
总结与展望:未来发展趋 势和挑战
2024/1/26
32
当前存在问题和挑战
2024/1/26
励磁系统稳定性问题
当前发电机励磁系统在运行过程中,可能会受到电网波动、负载变化等因素的影响,导致 系统稳定性下降,进而影响发电机的正常运行。
励磁系统基本概念与作用
2024/1/26
3
励磁系统定义及功能
定义:励磁系统是为发电机提供励磁 电流的装置,用于建立发电机的磁场
,使发电机能够正常发电。
功能
提供发电机所需的励磁电流;
2024/1/26
维持发电机端电压稳定; 实现发电机并列运行时的无功功率分 配;
提高发电机的动态稳定性。
4
励磁方式分类及特点
12
励磁调节器
模拟式调节器
通过模拟电路实现励磁电流的自动调节,具有简单可靠、成本低等优点。但调 节精度和响应速度相对较低。
数字式调节器
采用微处理器或数字信号处理器(DSP)实现励磁电流的自动调节,具有调节 精度高、响应速度快、功能丰富等优点。数字式调节器还可以实现远程监控和 故障诊断等功能。
2024/1/26
3
5. 记录维修过程和结果,总结经验教训并反馈给 相关部门。
2024/1/26
24
故障处理流程和注意事项
注意事项
1. 在进行维修前必须切断电源并采取安全措施, 防止触电事故。
2. 对于复杂故障或无法处理的故障,应及时联系 专业维修人员进行处理。

发电机励磁系统

发电机励磁系统

发电机励磁系统1 励磁系统主回路图:2 2 励磁系统操作2.1 正常开机操作(就地)2.1.1 检查以下元件是否处于规定位置2.1.1.1 空开1KKA、2KKA、1KKB、2KKB处于分断位置,直流侧灭磁开关LMK处于分闸状态,分闸按钮SB2上绿色指示灯点亮;2.1.1.2 调节器交、直流工作电源开关1QS、2QS处于闭合位置,并且测量交、直流电压正常;2.1.1.3所有保险均处于合位置,应测量起励电源保险FU1、FU2两端DC220V电压大小及方向是否正确;2.1.1.4 “通道切换”1QK处于“切换”位置;2.1.1.5 “就地/主控”转换开关2QK选择“就地”;2.1.1.6 “运行方式”3QK开关选择“恒电压”;2.1.1.7 “保护联跳”压板“YB1”处于合位置;2.1.1.8 “零起升压”压板“YB2”处于合位置。

2.1.2 发电机达到额定转速3000转/分,具备升压条件,开始升压操作:2.1.2.1 分别合上A、B通道励磁输入、输出空开1KKA、2KKA、1KKB、2KKB;2.1.2.2 按下合闸按钮SB1,同时红色合闸指示灯点亮;2.1.2.3 操作“通道切换”开关,选择“通道A”或者“通道B”;2.1.2.4 此时按下“起励”按钮SB3,机端电压上升;2.1.2.5 待机端电压稳定在95%额定机端电压后,通过“增磁/减磁”开关4QK增增至额定机端电压附近,退出“零起升压”板YB1,投同期并网。

2.1.2.6 成功并网后,通过“运行方式”开关3QK选择“恒功率因数”或者“恒无功”运行。

注:1)若“运行方式”开关3QK选择“恒电流”,再按下“起励”按钮SB3后,发电机机端电压只能上升到5%额定空载转子电流时的电压,随后得继续通过“增磁/减磁”按钮2QK增磁至额定机端电压值附近,如果电压维持不住,则先通过增磁按钮将手动给定值增大一些,再按“起励”按钮SB32)“零起升压”YB2的作用是启机后使机端电压值快速上升到95%额定机端电压,并且只能在“恒电压”、“恒无功”和“恒功率因数”方式状态下有效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电机励磁系统发电机励磁系统一、简介:励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统,励磁系统是一种直流电源装置。

励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。

另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。

励磁功率单元向同步发电机转子提供直流电流,即励磁电流,以建立直流磁场。

励磁功率单元有足够的可靠性并具有一定的调节容量。

在电力系统运行中,发电机依靠电流的变化进行系统电压和本身无功功率的控制因此,励磁功率单元应具备足够的调节容量以适应电力系统中各种运行工况的要求。

而且它有足够的励磁顶值电压和电压上升速度具有较大的强励能力和快速的响应能力。

励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出,是整个励磁系统中较为重要的组成部分。

励磁调节器的主要任务是检测和综合系统运行状态的信息,以产生相应的控制信号,经放大后控制励磁功率单元以得到所要求的发电机励磁电流。

系统正常运行时,励磁调节器就能反映发电机电压高低以维持发电机电压在给定水平。

应能迅速反应系统故障,具备强行励磁等控制功能以提高暂态稳定和改善系统运行条件。

在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。

图一二、励磁系统必须满足以下要求:1、正常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。

2、整流装置提供的励磁容量应有一定的裕度,应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。

3、调节器应设有相互独立的手动和自动调节通道;4、励磁系统应装设过电压和过电流保护及转子回路过电压保护装置。

三、励磁系统方式:励磁方式,就是指励磁电源的不同类型。

一般分为三种:直流励磁机方式、交流励磁机方式、静止励磁方式。

静止励磁系统。

由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。

自并励静止可控硅整流励磁系统主接线原理图:FMK (灭磁开关)L F CT (电流互感器)ZB (励磁变) PT (互感器) SCR自动励磁调节器 (AVR )图6-2图二自动励磁控制系统原理框图图 三励磁系统的组成:(1) 励磁系统主回路:励磁变、功率柜、灭磁电路、过压过流保护电路等 (2) 励磁调节器:测量回路、比较放大、移相触发、整流器等 自并励方式的优点:设备和接线比较简单;由于励磁系统无转动部分,具有较高的可靠性;造价低;励磁变压器放置自由,缩短了机组长度;励磁调节速度快,是一种高起始响应的励磁系统;当主整流器采用三相全控桥时,可用逆变来灭磁,使灭磁时间短。

自并励方式的缺点:整流输出的直流顶值电压受发电机端或电力系统短路故障形式(三相、两相或单相短路)和故障点远近等因素的影响;需要起励电源;存在滑环和碳刷。

四、励磁系统主回路:1、励磁变:励磁变压(流)器供给整流装置,为整个励磁系统的电源。

整个励磁装置没有转动部分,属于全静态励磁系统。

2、功率柜整流可控硅三相全控桥电路,其接线特点是六个桥臂元件全都采用可控硅管,共阴极组的可控硅元件及共阳极组的可控硅元件都要靠触发换流。

它既可工作于整流状态,将交流变成直流;也可工作于逆变状态,将直流变成交流。

正是因为有逆变状态,励磁装置在正常停机灭磁时,就不需要跳灭磁开关,可以大大减轻了灭磁装置的工作负担。

三相全控桥整流电路原理接线见图1-10,这里,六个可控硅按+A、-C、+B、-A、+C、-B顺序轮流配对导通,在一个360度周期内,每个可控硅导通120度。

KRD是快速熔断器,起保护可控硅的作用。

RC是可控硅阻容保护,主要吸收可控硅换相时的过电压,可限制可控硅两端的电压上升率,有效防止误导通。

运行实践表明,RC对励磁系统过电压毛刺的影响最大,选择合理的参数非常重要。

YGK表示三相电源刀闸或电动开关,由于功率柜都是先切脉冲后跳开关,再加上使用电动开关后的维护工作量较大,现在一般都使用刀闸。

ZDK 表示直流输出刀闸。

在图1-10中,整流输出电压Ud(平均电压)同阳极电压Uy(线电压有效值)和控制角α的关系式:Ud=1.35 UyCOSα,这里的α范围一般是20~120度。

整流电流的平均值Id同阳极线电流有效值Iy的关系式:Iy=0.817Id。

值得注意的是,电流关系的这种表达式,只在全控桥外接大电感和大电容负载情况下存立,比如发电机转子负载。

对于全控桥带电阻负载,电流表达式还与α有关系。

A○○YGK图1-10 三相全控整流桥原理接线图可控硅元件的工作原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示图1 可控硅等效图解图当阳极A加上正向电压时,BG1和BG2管均处于放大状态。

此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。

因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。

此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。

由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。

由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1表1 可控硅导通和关断条件状态条件说明从关断到导通1、阳极电位高于阴极电位2、控制极有足够的正向电压和电流两者缺一不可维持导通1、阳极电位高于阴极电位2、阳极电流大于维持电流两者缺一不可从导通到关断1、阳极电位低于阴极电位2、阳极电流小于维持电流任一条件即可三相桥式全控整流电路应用最为广泛,共阴极组——阴极连接在一起的3个晶闸管(VT1,VT3,VT5)共阳极组——阳极连接在一起的3个晶闸管(VT4,VT6,VT2)编号:1、3、5,4、6、2假设将电路中的晶闸管换作二极管进行分析对于共阴极阻的3个晶闸管,阳极所接交流电压值最大的一个导通对于共阳极组的3个晶闸管,阴极所接交流电压值最低(或者说负得最多)的导通任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态三相桥式全控整流电路的特点:(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。

(2)对触发脉冲的要求:按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60°。

共阴极组VT1、VT3、VT5的脉冲依次差120°,共阳极组VT4、VT6、VT2也依次差120°同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180°。

表2-1 三相桥式全控整流电路电阻负载a=0°时晶闸管工作情况时段 I II III IV V VI 共阴极组中导通的晶闸管VT1 VT1 VT3 VT3 VT5 VT5 共阳极组中导通的晶闸管VT6 VT2 VT2 VT4 VT4 VT6 整流输出电压Ud Ua-Ua- Ub-Ub-Uc-Uc-图2-17 三相桥式全控整流电路原Ub=Uab Uc=Uac Uc=Ubc Ua=Uba Ua=Uca Ub=Ucb (3)u d一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

(4)需保证同时导通的2个晶闸管均有脉冲可采用两种方法:一种是宽脉冲触发,另一种方法是双脉冲触发(常用)。

图2-19 三相桥式全控整流电路带电阻负载a =30°时图2-20 三相桥式全控整流电路带电阻负载a =60°时的图2-21 三相桥式全控整流电路带电阻负载a =90°小结当a≤60°时,u d波形均连续,对于电阻负载,i d波形与u d波形形状一样,也连续当a>60°时,u d波形每60°中有一段为零,u d波形不能出现负值。

带电阻负载时三相桥式全控整流电路a角的移相范围是120°可控硅过电压保护加于可控硅元件上的瞬时反向电压,达到反向击穿电压,将造成可控硅元件的反向击穿,导致可控硅元件的损坏。

产生过电压的原因,除了大气过电压之外,主要是由于系统中断路器操作过程,以及可控硅元件本身换相关断过程,在电路中激发起电磁能量的互相转换和传递而引起的过电压。

利用电容器两端电压不能突变,而能储存电能的基本特性,可以吸收瞬间的浪涌能量,限制过电压。

为了限制电容器的放电电流,以及避免电容与回路电感产生振荡,通常在电容回路上串入适当电阻,从而构成阻容吸收保护。

一般可抑制瞬变电压不超过某一容许值,作为交流侧、直流侧及硅元件本身的过电压保护。

用于单相或三相交流侧、直流侧的过电压阻容保护,如图30(a)、(b)所示。

并联于可控硅元件两端的阻容保护接线如图30(c)所示。

B +-b Rb(a)(c)图30 阻容吸收保护的接线可控硅过电流保护:快速熔断器是硅元件的过电流保护器件,可防止回路短路。

快速熔断器,其熔断时间一般在0.01s以内,专门用作硅元件的过电流保护器件。

其熔体(或称熔片)的导热性能良好而热容量小,能快速熔断。

通常是每个硅元件串联一个快速熔断器。

功率柜风机操作电路采用半敞开式强迫风冷方式进风口采用空调滤尘网硅组件布置采用并联结构流阻小无温差提高停风机输出能力A683 B683 C683 N683图5-9 励磁风机操作图励磁风机主要是通过分冷,带走可控硅运行时产生的热量,使功率柜能够正常运行。

在图5-9中,FZK为风机的电源自动开关,该开关设置有速断过电流保护,当风机发生短路或过载电流达到保护动作值时,开关自动分闸,以保护风机及电源系统,防止危及其他部位的正常工作。

FQK是风机的控制方式切换开关。

当开关置于“Z”位置时,风机处于自动控制状态;开关置于“S”位置时,风机处于手动控制状态。

当风机处于自动控制状态时,机组LCU装置可以将风机设置为运行状态,也可以设置为备用状态,既可以启动,亦可以命令停止。

“T”位置是风机的退出运行状态位置。

63CJ在回路中的作用是在机组并网运行时,自动将未运行的风机设置为备用状态。

相关文档
最新文档