轴流风机振动故障分析与处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴流风机振动故障分析与处理
一、设备参数与结构
风机型号W12g12.5,叶轮直径D2 =1250mm,最高转速n=2550r/min,设计性能参数为:风量Q=235440m3/h,全压p=11 000Pa,进口温度t=150℃,进口密度ρ=0.763kg/m 3 ,输送介质为转炉煤气(干法除尘)。
风机结构和试验台布置见图1。该风机主要由转子和定子组成,转子包括主轴、叶轮、联轴器、固定端轴承(以下简称轴承1)和非固定端轴承(以下简称轴承2),定子包括进风箱(含进口导叶和轴承I的底座)、机壳(含后导叶和轴承II的底座)、扩压器和钢制风机底座。显然,与一般离心风机结构不同的是,轴承I的底座和轴承II的底座均未与混凝土基础直接接触。为完成运转试验过程,由增速机通过长度为3.3m的加长型空心轴将两台直流电动机串联。
二、振动特点
根据转炉各冶炼阶段(准备、预热/降罩、吹炼、补吹、出钢、清理炉口、加废钢兑铁)的不同,该风机的运行工况频繁变换。因此,不仅要满足各冶炼阶段所需性能参数以及防泄漏、防爆的要求,还要满足35~38min内低、高速频繁调速运行的要求。所以,制造厂需对其进行严格的出厂运行实验。然而,该风机在运行实验中却发生了严重的振动问题,振动数据见表1,尤其进行的所有实验转速还远达不到最高设计转速2 550r/min,显然,这个振动问题的分析和处理十分具有挑战性。
由表1可分析其振动特点如下:
1)风机振动与转速关联性强,转速越高,振动越大;
2)风机升/降速过程中,在同一转速的振动特性相同,具有重复性;
3)风机轴承I 与轴承II 振动相差不大,即振动数量级相同;在2 320r/min 以上,风机轴承I与轴承II相比,前者垂直方向振动小于后者,而水平方向振动大于后者,显示二者在垂直和水平方向的刚度存在差异;
4)增速机振动与转速关联性强,在输出轴反转2 400r/min时达到10.0mm/s,由此增加了振动问题的复杂性;
5)受电机功率限制,最高转速只有达到正转2 349r/min和反转2 400r/min,不可能实施冲转实验;
6)风机最高线速度为167m/s,但在试验中无法实施,需由次高转速判断最高转速时的振动特性。
三、振动检测分析
风机主要有动不平衡、不对中、轴承故障、转子零部件部分松动或脱落、转子转速接近临界转速、共振等八大类振动问题,但具体表现在不同的风机结构
上,其振动征兆会有所区别,尤其是振动由多种因素共同作用时,则大大增加了诊断和分析的复杂性。对于本例,不排除为多种因素的复合作用,为此,在振动频谱分析、转子模态测试等方面都进行了相应的分析工作。
本例采用的测试仪器和传感器有八通道数据采集箱、四通道信号调理仪、激振器、功率放大器、速度传感器、加速度传感器、力锤及力传感器;所应用的软件有SsCras信号与系统分析、SinSwt 正弦扫频动力特性及MaCras 机械及结构模态分析。
1、增速机振动
首先解决增速机振动问题。根据经验,对增速机滑动轴承重新浇瓦、加工,同时将增速机高、低速端联轴器与其齿轮轴重新进行动平衡校正。增速机经过维修后其高速输出端带负荷运行到2 400r/min时振动速度仅为2.5mm/s,表明增速机振动已经排除。但在后续的风机试验中(风机振动见表1),则说明风机振动此时已经与增速机无关联。
2、振动频谱分析
各试验转速下的振动频率分析见表2。正转2 349r/min时的振动频谱见图2(其余转速的振动频谱略去),其中:图2(a)、2(b)为轴承I的垂直、水平振动频谱,图2(c)、2(d)为轴承II的垂直、水平振动频谱。由此分析:升速2 000r/min以后振动明显增加,频谱以工频分量为主,基本没有2倍频分量且基础振动不大,可以排除轴系对中及基础安装不牢固的可能,但提高转子动平衡品质等级对解决问题是有利的;再升高转子速度后,出现幅值较低的2倍频、3倍频和4倍频分量,不排除叶轮内焊渣、氧化皮或其它异物未清理干净的因素。
3、检测共振问题
由于无论整机或单独吊出转子组试验,上述振动特性基本一致,所以怀疑存
在共振的可能。为此,采用了两种测试方法互为补充。
第一种方法:采用正弦扫描法测试转子、机壳内筒和机壳外筒的共振频率。扫描时进风箱、机壳上盖打开,拆除扩压器,转子维持正常安装状态。测试结果见表3和图3。显然,转子一阶弯曲振动临界转速实测结果为55Hz×60=3 300r/min,与理论计算结果3 335 r/min基本一致,说明2 400r/min附近的振动与转子临界转速无关;而转子41Hz不能确认为独立的固有频率,可以认为其处于55Hz的频谱边带范围之内;此外,机壳内筒、机壳外筒均检测出41Hz的频率成分,表明存在结构共振的可能。
第二种方法:采用锤击法测试定子结构的共振频率。
机壳和风机底座敲击点位置见图4。敲击时,进风箱、机壳上盖打开,拆除
扩压器,转子维持正常安装状态。
在图4 中的G1 、G2 、G3 、G4 点为机壳内筒和机壳外筒的敲击部位,分两种情况:一是未加临时支撑板;二是增加三个临时支撑板,以对比增加临时支撑板后其共振频率的变化情况。前者共振频谱见图5,分别测得共振频率为41、40.5、40、40.5Hz,而后者与前者相比,其共振频谱和共振频率基本不变,说明增加临时支撑板后对机壳的共振频率不影响。在图4中D1 ~D7 点为钢制风机底座的敲击部位,只测得D2 、D3 、D4 三个点存在41Hz左右的频率。
另外,由于进风箱附近轴承I所在的位置也表现出刚性不足,则对其敲击检测,结果为轴承I的底架在水平方向也存在41.5Hz的固有频率。
结合上述两种方法的检测结果可以认为,在频率41Hz附近发生了定子的结构共振。根据该风机的结构特点,其刚度弱点位置为:后导叶水平/垂直刚度(但增加有限数量的后导叶是无效的)、轴承I底架的水平刚度、轴承II底架的水平/垂直刚度
4、轴系模态试验
模态是风机结构的固有振动特性,每一阶模态具有特定的固有频率和模态振型。本例分别对空心传动轴和风机转子采用敲击法进行模态试验分析,得到其模态频率和振型见表4和图6。在图6(a)~6(d)中,左侧为增速机输出端,右侧为风机联轴器端,在图6(e)~6(j)中,左侧为风机联轴器端,右侧为轴承II的端部。由此知道,空心传动轴与风机振动无关,而转子一阶弯曲振动临界转速也已经远离工频,这与上述结果是相符的。