金属学与热处理课后习题答案9

合集下载

金属学及热处理习题参考答案(1-9章)

金属学及热处理习题参考答案(1-9章)

第一章金属及合金的晶体结构一、名词解释:1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。

2.非晶体:指原子呈不规则排列的固态物质。

3.晶格:一个能反映原子排列规律的空间格架。

4.晶胞:构成晶格的最基本单元。

5.单晶体:只有一个晶粒组成的晶体。

6.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。

7.晶界:晶粒和晶粒之间的界面。

8.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。

9.组元:组成合金最基本的、独立的物质称为组元。

10.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。

11.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。

12.固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。

二、填空题:1.晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。

2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。

3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。

4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。

5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。

6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。

7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。

8.金属晶体中最主要的面缺陷是晶界和亚晶界。

9.位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。

10.在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、 (210)、(201)、 (201)、(012)、(012)、(021)、(021)、等晶面。

金属学与热处理(第三版)课后习题答案 哈工大工业大学 崔忠圻主编

金属学与热处理(第三版)课后习题答案  哈工大工业大学 崔忠圻主编

金属学与热处理课后答案第一章填表:晶格类型原子数原子半径配位数致密度体心立方2a43868%面心立方4a421274%密排六方6a211274%5、作图表示出立方晶系(123)、(0-1-2)、(421)等晶面和[-102]、[-211]、[346]等晶向10、已知面心立方晶格常数为a,分别计算(100)、(110)、和(111)晶面的晶面间距;并求出【100】、【110】和【111】晶向上的原子排列密度(某晶向上的原子排列密度是指该晶向上单位长度排列原子的个数)答:(100):(110):(111):14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答:组元:组成合金最基本的、独立的物质。

相:合金中结构相同、成分和性能均一并以界面相互分开的组成部分。

固溶体:合金组元之间以不同的比例相互混合形成的晶体结构与某一组元相同的固相。

固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在整个晶体中都按—定的顺序排列起来,转变为长程有序,形成有序固溶体。

置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。

影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个大?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度、硬度提高,而塑性、韧性有所下降的现象。

间隙固溶体的强化效果大于置换固溶体的强化效果。

原因:溶质原子与溶剂原子的尺寸差别越大,所引起的晶格畸变也越大,强化效果越好。

间隙固溶体晶格畸变大于置换固溶体的晶格畸变16、何谓间隙相?它与间隙固溶体及复杂晶格间隙化合物有何区别?答:间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成的简单的晶体结构称为间隙相。

(完整word版)金属学与热处理(哈尔滨工业大学_第二版)课后习题答案

(完整word版)金属学与热处理(哈尔滨工业大学_第二版)课后习题答案

第一章1•作图表示出立方晶系(1 2 3)、(0 -1-2)、(4 2 1)等晶面和[-1 02]、3•某晶体的原子位于正方晶格的节点上,其晶格常数今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。

解:设X方向的截距为5a, Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a, 1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2, (1 1 0)面间距为"2a/2, (1 1 1)面间距为"3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示贝卩OD=c/2,AB=BC=CA=CD=a因厶ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2有(CD)2=(OC)2+(1/2C)2,即I /T J(CU)(c)2- '3 2因此c/a=V8/3=1.6338•试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-v2a/4=0.146a面心立方原子半径R二辺a/4,贝卩a=4R/\2,代入上式有R=0.146X4R/ V2=0.414R9. a )设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。

b)经X射线测定,在912C时丫-Fe的晶格常数为0.3633nm, a -Fe的晶格常数为0.2892nm,当由丫-Fe转化为a -Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。

金属材料与热处理课后习题答案

金属材料与热处理课后习题答案
4、γ—Fe转变为α—Fe时,纯铁体积会()。
A、收缩B、膨胀C、不变
四、名词解释
1、晶格与晶包
2、晶粒与晶界
3、单晶体与多晶体
五、简述
1、生产中细化晶粒的常用方法有哪几种?为什么要细化晶粒?
2、如果其他条件相同,试比较下列铸造条件下铸铁晶粒的大小。
(1)金属模浇注与砂型浇注
(2)铸成薄件与铸成厚件
3、金属化合物一般具有复杂的晶体结构。()
4、碳在γ—Fe中的溶解度比在α—Fe中的溶解度小。()
5、奥氏体的强度、硬度不高,但具有良好的塑性。()
6、渗碳体是铁与碳的混合物。()
7、过共晶白口铸铁的室温组织是低温莱氏体加一次渗碳体。()
8、碳在奥氏体中的溶解度随温度的升高而减小。()
9、渗碳体的性能特点是硬度高、脆性大。()
2、大小不变或变化很慢的载荷称为载荷,在短时间内以较高速度作用于零件上的载荷称为载荷,大小和方向随时间发生周期性变化的载荷称为载荷。
3、变形一般分为变形和变形两种,不能随载荷的去除而消失的变形称为
变形。
4、强度是指金属材料在载荷作用下,抵抗或的能力。
5、强度的常用衡量指标有和,分别用符号和表示。
6、如果零件工作时所受的应力低于材料的或,则不会产生过量的塑性变形。
三、选择
1、α—Fe是具有()晶格的铁。
A、体心立方B、面心立方C、密排六方
2、纯铁在1450℃时为()晶格,在1000℃时为()晶格,在600℃时为
()晶格。A、体心立方B、面心立方C、密排六方
3、纯铁在700℃时称为(),在1000℃时称为(),在1500℃时称为()。
A、α—Fe B、γ—Fe C、δ—Fe
A、屈服点B、抗拉强度C、弹性极限

《金属学与热处理》课后答案完整版.docx

《金属学与热处理》课后答案完整版.docx

第一章金属的晶体结构1-1作图表示出立方晶系( 1 2 3[-2 1 1]、[3 4 6]等晶向。

)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、答:1-2 立方晶系的 {1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。

答:{1 1 1} 晶面共包括( 1 1 1 )、(-1 1 1 )、(1 -1 1 )、(1 1 -1 )四个晶面,在一个立方晶系中画出上述四个晶面。

1-3某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠ c,c=2/3a 。

今有一晶面在 X、Y、Z 坐标轴上的结局分别为 5 个原子间距、 2 个原子间距和 3个原子间距,求该晶面的晶面指数。

答:由题述可得: X 方向的截距为×2a/3=2a 。

取截距的倒数,分别为1/5a ,1/2a ,1/2a5a, Y 方向的截距为2a,Z 方向截距为3c=3化为最小简单整数分别为故该晶面的晶面指数为(2,5,5 255 )1-4 体心立方晶格的晶格常数为a,试求出( 1 0 0 )、( 1 1 0 )、(1 1 1 )晶面的面间距大小,并指出面间距最大的晶面。

答:H( 1 0 0) ==a/2 H( 1 1 0) ==√2a/2H)==√3a/6(111面间距最大的晶面为( 1 1 0 )1-5 面心立方晶格的晶格常数为a,试求出( 1 0 0 )、( 1 1 0 )、(1 1 1 )晶面的面间距大小,并指出面间距最大的晶面。

答:H( 1 0 0) ==a/2H( 1 1 0) ==√2a/4H( 1 1 1) ==√3a/3面间距最大的晶面为( 1 1 1 )注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时 H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。

1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。

金属学与热处理课后答案(崔忠圻版)

金属学与热处理课后答案(崔忠圻版)

第二章纯金属的结晶2-3 为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么?答:(1)因为金属结晶时存在过冷现象,是为了满足结晶的热力学条件,过冷度越大,固、液两项的自由能差越大,相变驱动力越大。

(2)过冷度随金属的纯度不同和本性不同,以及冷却速度的差异可以再很大范围内变化。

金属不同,过冷度也不同;金属的纯度越高,则过冷度越大;冷却速度越大,过冷度越大,反之,越小。

(3)会,当液态金属的自由能低于固态时,这时实际结晶温度高于理论结晶温度T m,此时,固态金属才能自发的转变为液态金属,称为过热。

2-4试比较均匀形核与非均匀形核的异同点。

答;均匀形核是指:若液相中各区域出现新相晶核的几率是相同的;非均匀形核:液态金属中存在微小的固相杂质质点,液态金属与型壁相接触,晶核可以优先依附现成的固体表面形核。

在实际的中,非均匀形核比均匀形核要容易发生。

二者形核皆需要结构起伏,能量起伏,过冷度必须大于临界过冷度,晶胚的尺寸必须大于临界晶核半径。

2-5说明晶体成长形状与温度梯度的关系?答;正温度梯度下以平面状态的长大形态,服温度梯度下以树枝状长大。

2-6简述铸锭三晶区形成的原因及每个晶区的性能特点?(1)表层细晶区形成原因:①型壁临近的金属液体产生极大过冷度满足形核的热力学条件;②型壁可以作为非均匀形核的基地。

该晶区特点:组织细密,力学性能较好,但该晶区较薄,一般没有多大的实际意义。

(2)柱状晶区的形成原因:①液态金属结晶前沿有适当的过冷度,满足形核要求;②垂直于型壁方向散热最快,晶体向相反的方向生长;③外因是散热的方向性;④内因是晶体晶体生长的各向异性。

该晶区的特点:相互平行的柱状晶接触面及相邻垂直的柱状晶区的交界面较为脆弱,并常聚集着易熔杂质和非金属夹杂物,使铸锭在热压力加工时,容易沿着这些脆弱面开裂,组织比较致密。

(3)中心等轴晶区形成特定:①中心液体达到过冷,加上杂质元素的作用,满足形核的要求;②散热失去方向性,晶核自由生长,长大速度差不多,长成等轴区。

金属学与热处理课后习题答案东北大学.pdf

金属学与热处理课后习题答案东北大学.pdf

第十章钢的热处理工艺10-1 何谓钢的退火?退火种类及用途如何?答:钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。

退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。

退火用途:1、完全退火:完全退火是将钢加热至AC3以上20-30℃,保温足够长时间,使组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。

其主要应用于亚共析钢,其目的是细化晶粒、消除内应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。

2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-ACcm(过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。

对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除内应力、降低硬度的目的。

对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除内应力、降低硬度,改善切削加工性能。

3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。

主要用于共析钢、过共析钢和合金工具钢。

其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。

4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。

其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。

5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后缓慢冷却至室温的热处理工艺。

其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留内应力,使钢的组织和性能恢复到冷变形前的状态。

金属学与热处理(第三版)课后习题答案 哈工大工业大学 崔忠圻主编

金属学与热处理(第三版)课后习题答案  哈工大工业大学 崔忠圻主编

金属学与热处理课后答案第一章填表:晶格类型原子数原子半径配位数致密度体心立方2a43868%面心立方4a421274%密排六方6a211274%5、作图表示出立方晶系(123)、(0-1-2)、(421)等晶面和[-102]、[-211]、[346]等晶向10、已知面心立方晶格常数为a,分别计算(100)、(110)、和(111)晶面的晶面间距;并求出【100】、【110】和【111】晶向上的原子排列密度(某晶向上的原子排列密度是指该晶向上单位长度排列原子的个数)答:(100):(110):(111):14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答:组元:组成合金最基本的、独立的物质。

相:合金中结构相同、成分和性能均一并以界面相互分开的组成部分。

固溶体:合金组元之间以不同的比例相互混合形成的晶体结构与某一组元相同的固相。

固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在整个晶体中都按—定的顺序排列起来,转变为长程有序,形成有序固溶体。

置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。

影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个大?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度、硬度提高,而塑性、韧性有所下降的现象。

间隙固溶体的强化效果大于置换固溶体的强化效果。

原因:溶质原子与溶剂原子的尺寸差别越大,所引起的晶格畸变也越大,强化效果越好。

间隙固溶体晶格畸变大于置换固溶体的晶格畸变16、何谓间隙相?它与间隙固溶体及复杂晶格间隙化合物有何区别?答:间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成的简单的晶体结构称为间隙相。

金属学与热处理原理崔忠圻第三版课后题全部答案

金属学与热处理原理崔忠圻第三版课后题全部答案

10.
11. 多晶型转变:大部分金属只有一种晶体结构,但也有少数金属如 Fe、Mn、Ti、Co 等具有两种或几种的晶体结 构,当外界条件(如温度、压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变。
-8.1% 12. 晶带:平行于或相交于同一直线的一组晶面叫做一个晶带。
晶带轴:晶带中平行于或相交于的那条直线叫做晶带轴。 13.(1-211)(-3211)(-1-122) 14.组元:组成合金的最基本的、独立的物质称为组元,一般来说,组元是组成合金的元素,也可以是稳定的化合物;
随着晶胚 r 增大,系统的自由能下降,这样的晶胚可以自发地长成稳定的晶核,当 r= rk =时,这种晶胚既可能消失,
也可能长大称为稳定的晶核,因此把 rk 称为临界形核半径;
⑾活性质点:在非均匀形核中,固态杂质和晶核(晶体)界面满足点阵匹配原理(结构相似、尺寸相当),就可能
能量起伏;
⑦均匀形核:液相中各个区域出现新相晶核的几率是相同的,这种形核方式称为均匀形核;
⑧形核功:形成临界晶核时,体积自由能的下降只补偿了表面能的 2/3,还有 1/3 的表面能没有得到补偿,需要
对形核作功,故称
△Gk=1/3Skσ为形核功;
⑨临界形核半径:当 r<rk 时,随着晶胚 r 增大,系统自由能增加,这种晶胚不能成为稳定的晶核,当 r>rk 时,
电子浓度决定的,故电子浓度影响着固溶度:公式
上式 Va、Vb 分别为溶剂和溶质的原子价,X 为溶剂 B 的摩尔分数。一定的金属晶体结构的单位体积中能容纳的 价电子数有一定限度,超过这个限度会引起结构不稳定甚至变化,故此固溶体的电子浓度有一极限值。(fcc 为 1.36,bcc 为 1.48)元素的原子价越高,则其固溶度越小。 4 晶体结构因素:溶剂与溶质的晶体结构类型是否相同,是其能否形成无限固溶体的必要条件。如果组元的 晶体结构不同,只能形成有限固溶体。即使组元晶体结构相同但是不能形成无限固溶体,其溶解度也将大于晶 格类型不同的组元间的溶解度。 以上 4 个要素都有利时所形成的固溶体固溶度可能较大,甚至无限固溶体。但上述四个要素只是形成固溶体的必要 条件。此外,温度越高,固溶度越大。 15. 固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度、硬度提高,而塑韧性有所下降的现象称为固溶 强化。 由于间隙原子造成的晶格畸变比置换固溶体要大得多,所以间隙固溶体的强化效果要好。 16. 间隙相:过渡族金属能与原子甚小的非金属形成化合物,当非金属原子半径与金属原子半径比值小于 0.59 时, 形成的化合物具有比较简单的晶体结构,称为间隙相; 间隙相与间隙固溶体之间有着本质的区别,间隙相是一种化合物,它具有与其组元完全不同的晶体结构,而间隙 固溶体则保持溶剂组元的晶格类型; 间隙相的非金属原子半径与金属半径比小于 0.59 且具有较简单的结构,而间隙化合物的非金属原子与金属原子 半径比大于 0.59 且结构比较复杂。此外,间隙相一般比间隙化合物硬度更高,更稳定。 17. Ag、Al 都具有面心立方晶体结构,如果 Ag、Al 在固态下形成无限固溶体,则必须是置换固溶体,影响置换 固溶体的四个因素:原子半径、电负性、电子浓度、晶体结构。Ag、Al 的原子半径相差不大、电负性相差不大,晶 体结构都为面心立方晶体,这三个因素都比较有利,但是面心立方结构单位体积能容纳的价电子数有一定限度,超 过这个限度就会引起结构的不稳定甚至改变,故而有电子浓度有一定的限度。AL 的化合价位+3(很大),只需溶入 相对较少的 AL 就能达到极限电子浓度,即溶解度有一定限度,不能形成无限固溶体。 18. P107 19. 晶体结构:固溶体保持着溶剂组元的晶格类型,此外固溶体结构还会发生如下变(①晶格畸变;②偏聚与有序; ③有序固溶体); 金属化合物晶结构不同于任一组元,是合金组元间发生相互作用形成的新相; 机械性能:固溶体相对来说塑韧性较好,硬度低;金属化合物硬而脆。 20. 点缺陷都会造成晶格畸变,对金属的性能产生影响,如使屈服强度升高、电阻增大、体积膨胀等等;此外,点 缺陷的存在将加速扩散,因而凡是与扩散有关的相变、化学热处理、高温下的塑性变形和断裂等等,都与空位和间 隙原子的存在和运动有关系。 21. 刃形位错:设有一简单立方晶体,某一原子面在晶体内部中断,这个原子平面中断处的边缘就是一个刃形位错, 犹如用一把锋利的钢刀将晶体上半部分切开,沿切口硬插入一额外半原子面一样,将刃口处的原子列称为刃形位错 线。 螺形位错:一个晶体的某一部分相对于其它部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原 子面上升(下降)一个晶面间距。在中央轴线(即位错线)附近的原子是按螺旋型排列的,这种位错称为螺形位错。 各种间隙原子核尺寸较大的置换原子,它们的应力场是压应力,因此在正刃形位错的上半部分的应力相同,二者

金属学与热处理课后答案(崔忠圻版)

金属学与热处理课后答案(崔忠圻版)

第二章纯金属的结晶2-3 为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么?答:(1)因为金属结晶时存在过冷现象,是为了满足结晶的热力学条件,过冷度越大,固、液两项的自由能差越大,相变驱动力越大。

(2)过冷度随金属的纯度不同和本性不同,以及冷却速度的差异可以再很大范围内变化。

金属不同,过冷度也不同;金属的纯度越高,则过冷度越大;冷却速度越大,过冷度越大,反之,越小。

(3)会,当液态金属的自由能低于固态时,这时实际结晶温度高于理论结晶温度T m,此时,固态金属才能自发的转变为液态金属,称为过热。

2-4试比较均匀形核与非均匀形核的异同点。

答;均匀形核是指:若液相中各区域出现新相晶核的几率是相同的;非均匀形核:液态金属中存在微小的固相杂质质点,液态金属与型壁相接触,晶核可以优先依附现成的固体表面形核。

在实际的中,非均匀形核比均匀形核要容易发生。

二者形核皆需要结构起伏,能量起伏,过冷度必须大于临界过冷度,晶胚的尺寸必须大于临界晶核半径。

2-5说明晶体成长形状与温度梯度的关系?答;正温度梯度下以平面状态的长大形态,服温度梯度下以树枝状长大。

2-6简述铸锭三晶区形成的原因及每个晶区的性能特点?(1)表层细晶区形成原因:①型壁临近的金属液体产生极大过冷度满足形核的热力学条件;②型壁可以作为非均匀形核的基地。

该晶区特点:组织细密,力学性能较好,但该晶区较薄,一般没有多大的实际意义。

(2)柱状晶区的形成原因:①液态金属结晶前沿有适当的过冷度,满足形核要求;②垂直于型壁方向散热最快,晶体向相反的方向生长;③外因是散热的方向性;④内因是晶体晶体生长的各向异性。

该晶区的特点:相互平行的柱状晶接触面及相邻垂直的柱状晶区的交界面较为脆弱,并常聚集着易熔杂质和非金属夹杂物,使铸锭在热压力加工时,容易沿着这些脆弱面开裂,组织比较致密。

(3)中心等轴晶区形成特定:①中心液体达到过冷,加上杂质元素的作用,满足形核的要求;②散热失去方向性,晶核自由生长,长大速度差不多,长成等轴区。

金属学与热处理课后习题答案9

金属学与热处理课后习题答案9

第九章钢得热处理原理91 金属固态相变有哪些主要特征?哪些因素构成相变得阻力?答:固体相变主要特征:1、相变阻力大2、新相晶核与母相晶核存在一定得晶体学位向关系。

3、母相中得晶体学缺陷对相变其促进作用。

4、相变过程中易出现过渡相。

相变阻力构成:1、表面能得增加。

2、弹性应变能得增加,这就是由于新旧两相得比体积不同,相变时必然发生体积得变化,或者就是由于新旧两相相界面得不匹配而引起弹性畸变,都会导致弹性应变能得增加。

3、固态相变温度低,原子扩散更困难,例如固态合金中原子得扩散速度为107—108cm/d,而液态金属原子得扩散速度为107 cm/s。

92 何谓奥氏体晶粒度?说明奥氏体晶粒大小对钢得性能影响?答:奥氏体晶粒度:就是奥氏体晶粒大小得度量。

当以单位面积内晶粒得个数或每个晶粒得平均面积与平均直径来描述晶粒大小时,可以建立晶粒大小得概念。

通常采用金相显微镜100倍放大倍数下,在645mm2范围内观察到得晶粒个数来确定奥氏体晶粒度得级别。

对钢得性能得影响:奥氏体晶粒小:钢热处理后得组织细小,强度高、塑性好,冲击韧性高。

奥氏体晶粒大:钢热处理后得组织粗大,显著降低钢得冲击韧性,提高钢得韧脆转变温度,增加淬火变形与开裂得倾向。

当晶粒大小不均匀时,还显著降低钢得结构强度,引起应力集中,容易产生脆性断裂。

93 试述珠光体形成时钢中碳得扩散情况及片、粒状珠光体得形成过程?答:珠光体形成时碳得扩散:珠光体形成过程中在奥氏体内或晶界上由于渗碳体与铁素体形核,造成其与原奥氏体形成得相界面两侧形成碳得浓度差,从而造成碳在渗碳体与铁素体中进行扩散,简言之,在奥氏体中由于碳得扩散形成富碳区与贫碳区,从而促使渗碳体与铁素体不断地交替形核长大,直至消耗完全部奥氏体。

片状珠光体形成过程:片状珠光体就是渗碳体呈片状得珠光体。

首先在奥氏体晶界形成渗碳体晶核,核刚形成时与奥氏体保持共格关系,为减小形核得应变能而呈片状。

渗碳体长大得同时,使其两侧得奥氏体出现贫碳区,从而为铁素体在渗碳体两侧形核创造条件,在渗碳体两侧形成铁素体后,铁素体长大得同时造成其与奥氏体体界面处形成富碳区,这又促使形成新得渗碳体片。

金属学与热处理(哈尔滨工业大学_第二版)课后习题答案_附总复习提纲加习题

金属学与热处理(哈尔滨工业大学_第二版)课后习题答案_附总复习提纲加习题

第六章1.试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因是什么?2.答:由Hall-Petch 公式可知,屈服强度σs 与晶粒直径平方根的倒数 d v2呈线性关系。

在多晶体中,滑移能否从先塑性变形的晶粒转移到相邻晶粒主要取决于在已滑移晶粒晶界附近的位错塞积群所产生的应力集中能否激发相邻晶粒滑移系中的位错源,使其开动起来,从而进行协调性的多滑移。

由τ=nτ0知,塞积位错数目n越大,应力集中τ越大。

位错数目n与引起塞积的晶界到位错源的距离成正比。

晶粒越大,应力集中越大,晶粒小,应力集中小,在同样外加应力下,小晶粒需要在较大的外加应力下才能使相邻晶粒发生塑性变形。

在同样变形量下,晶粒细小,变形能分散在更多晶粒内进行,晶粒内部和晶界附近应变度相差较小,引起的应力集中减小,材料在断裂前能承受较大变形量,故具有较大的延伸率和断面收缩率。

另外,晶粒细小,晶界就曲折,不利于裂纹传播,在断裂过程中可吸收更多能量,表现出较高的韧性。

2.金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?答:残余内应力存在的原因1)塑性变形使金属工件或材料各部分的变形不均匀,导致宏观变形不均匀;2)塑性变形使晶粒或亚晶粒变形不均匀,导致微观内应力;3)塑性变形使金属内部产生大量的位错或空位,使点阵中的一部分原子偏离其平衡位置,导致点阵畸变内应力。

实际意义:可以控制材料或工件的变形、开裂、应力腐蚀;可以利用残留应力提高工件的使用寿命。

3.何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程中的影响。

答:塑性断裂又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度。

在塑性和韧性好的金属中,通常以穿晶方式发生塑性断裂,在断口附近会观察到大龄的塑性变形痕迹,如缩颈。

金属学与热处理九到十三章习题

金属学与热处理九到十三章习题
28、关于奥氏体,下列叙述不正确的是( C )
A. 奥氏体晶粒一般为等轴状多边形,在奥氏体晶粒内有孪晶
B. 珠光体的片间距愈小,碳原子的扩散距离减小,奥氏体形成速度加快
C. 其他条件相同的情况下散型相变,因此奥氏体晶核是通过扩散机制形成的
30、珠光体转变是个典型的扩散性转变,下列叙述是对其原因的说明,其中不正确的是( C )
13、奥氏体中存在未熔碳化物或铁素体,或还有某些非金属夹杂物,这些都会阻碍珠光体的形核,减缓珠光体转变。( F )
14、把钢加热到临界点Ac1或Ac3以上保温并随之以大于临界冷却速度冷却,用以得到介稳状态的马氏体或下贝氏体组织的热处理工艺方法称为淬火。( T )
15、过冷奥氏体的冷却速度越快,冷却后钢的硬度越高。( T )
A可锻铸铁 B球墨铸铁 C灰口铸铁 D白口铸铁
15、机械制造中,T10钢常用来制造( B )。A容器 B刀具 C轴承 D齿轮
16、铜只有通过冷加工并经随后加热才能使晶粒细化,而铁则不需冷加工,只需加热到一定温度即使晶粒细化,其原因是( C )。A 铁总是存在加工硬化,而铜没有 B 铜有加工硬化现象,而铁没有
7、粒状贝氏体是由条状亚单元组成的板条状铁素体和在其中呈一定方向分布的富碳奥氏体岛(有时还有少量碳化物)所构成的无明显的浮凸效应的复相组织。( F )
8、随奥氏体中碳含量的增加,马氏体转变后,其中片状马氏体增多,板条状马氏体减少。( T )
9、钢在奥氏体化时,若奥氏体化温度愈高,保温时间愈长,则过冷奥氏体愈稳定,C曲线愈靠左。( F )
C.T12钢淬火+低温回火
8、零件渗碳后,一般需经过( A )才能达到表面硬度高而且耐磨的目的。
A 淬火+低温回火 B正火 C调质 D淬火+高温回火

金属学与热处理课后习题答案(崔忠圻版)

金属学与热处理课后习题答案(崔忠圻版)

金属学与热处理课后习题答案(崔忠圻版) 第十章钢的热处理工艺10-1 何谓钢的退火,退火种类及用途如何,答:钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。

退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。

退火用途:1、完全退火:完全退火是将钢加热至AC3以上20-30?,保温足够长时间,使组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。

其主要应用于亚共析钢,其目的是细化晶粒、消除内应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。

2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-ACcm(过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。

对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除内应力、降低硬度的目的。

对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除内应力、降低硬度,改善切削加工性能。

3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。

主要用于共析钢、过共析钢和合金工具钢。

其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。

4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。

其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。

5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后缓慢冷却至室温的热处理工艺。

其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留内应力,使钢的组织和性能恢复到冷变形前的状态。

金属学与热处理课后习题答案9

金属学与热处理课后习题答案9

金属学与热处理课后习题答案9第九章钢的热处理原理9-1金属固态相变有哪些主要特征?哪些因素构成相变的阻力?答:固体相变主要特征:1、相变阻力大2、新相晶核与母相晶核存在一定的晶体学位向关系。

3、母相中的晶体学缺陷对相变其促进作用。

4、相变过程中易出现过渡相。

相变阻力构成:1、表面能的增加。

2、弹性应变能的增加,这是由于新旧两相的比体积不同,相变时必然发生体积的变化,或者是由于新旧两相相界面的不匹配而引起弹性畸变,都会导致弹性应变能的增加。

3、固态相变温度低,原子扩散更困难,例如固态合金中原子的扩散速度为10-7—10-8cm/d,而液态金属原子的扩散速度为10-7cm/s。

9-2何谓奥氏体晶粒度?说明奥氏体晶粒大小对钢的性能影响?答:奥氏体晶粒度:是奥氏体晶粒大小的度量。

当以单位面积内晶粒的个数或每个晶粒的平均面积与平均直径来描述晶粒大小时,可以建立晶粒大小的概念。

通常采用金相显微镜100倍放大倍数下,在645mm2范围内观察到的晶粒个数来确定奥氏体晶粒度的级别。

对钢的性能的影响:奥氏体晶粒小:钢热处理后的组织细小,强度高、塑性好,冲击韧性高。

奥氏体晶粒大:钢热处理后的组织粗大,显著降低钢的冲击韧性,提高钢的韧脆转变温度,增加淬火变形和开裂的倾向。

当晶粒大小不均匀时,还显著降低钢的结构强度,引起应力集中,容易产生脆性断裂。

9-3试述珠光体形成时钢中碳的扩散情况及片、粒状珠光体的形成过程?答:珠光体形成时碳的扩散:珠光体形成过程中在奥氏体内或晶界上由于渗碳体和铁素体形核,造成其与原奥氏体形成的相界面两侧形成碳的浓度差,从而造成碳在渗碳体和铁素体中进行扩散,简言之,在奥氏体中由于碳的扩散形成富碳区和贫碳区,从而促使渗碳体和铁素体不断地交替形核长大,直至消耗完全部奥氏体。

片状珠光体形成过程:片状珠光体是渗碳体呈片状的珠光体。

首先在奥氏体晶界形成渗碳体晶核,核刚形成时与奥氏体保持共格关系,为减小形核的应变能而呈片状。

《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]

《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]

第一章金属的晶体结构1-1 作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6]等晶向。

答:1-2 立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。

答:{1 1 1}晶面共包括(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。

1-3 某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。

今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。

答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。

取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)1-4 体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。

答:H(1 0 0)==a/2H(1 1 0)==√2a/2H(1 1 1)==√3a/6面间距最大的晶面为(1 1 0)1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。

答:H(1 0 0)==a/2H(1 1 0)==√2a/4H(1 1 1)==√3a/3面间距最大的晶面为(1 1 1)注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。

1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。

答:1-7 证明理想密排六方晶胞中的轴比c/a=。

证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,将各原子中心相连接形成一个正四面体,如图所示:此时c/a=2OD/BC在正四面体中:AC=AB=BC=CD ,OC=2/3CE所以:OD2=CD2-OC2=BC2- OC2OC=2/3CE,OC2=4/9CE2,CE2=BC2-BE2=3/4BC2可得到OC2=1/3 BC2,OD2= BC2- OC2=2/3 BC2OD/BC=√6/3所以c/a=2OD/BC=2√6/3≈1-8 试证明面心立方晶格的八面体间隙半径r=,四面体间隙半径r=;体心立方晶格的八面体间隙半径:<1 0 0>晶向的r=,<1 1 0>晶向的r=,四面体间隙半径r=。

金属学与热处理原理(第三版)课后答案 全

金属学与热处理原理(第三版)课后答案 全

金属学与热处理课后答案第一章金属键?并用其解释金属的特性答:金属键就是金属阳离子和自由电子之间的强烈的相互作用,可以决定金属的很多物理性质。

金属的延展性就是由于在金属被锻造的时候,只是引起了金属阳离子的重新排布,而由于自由电子可以在整块金属内自由流动,金属键并未被破坏。

再如由于自由电子的存在使金属很容易吸收光子而发生跃迁,发出特定波长的光波,因而金属往往有特定的金属光泽。

金属中的自由电子沿着电场定向运动,导电性;自由电子的运动及正离子的震动,使之具有导热性;温度升高,正离子或原子本身振动的幅度加大,阻碍电子的通过,使电阻升高,具有正的电阻温度系数用双原子模型说明金属中原子为什么会呈现周期性规则排列,并趋于紧密排列答:当大量金属原子结合成固体时,为使体系能量最低,以保持其稳定,原子间必须保持一定的平衡距离,因此固态金属中的原子趋于周期性规则排列。

原子周围最近邻的原子数越多,原子间的结合能越低(因为结合能是负值),把某个原子从平衡位置拿走,克服周围原子对它的作用力所需做的功越大,因此固态金属中的原子总是自发地趋于紧密排列。

3.填表:晶格类型原子数原子半径配位数致密度间隙类型间隙半径间隙数目举例原子堆垛方式体心立方2a438 68% 八面体 a 18 α—Fe ABABAB四面体 a 24面心立方4a4212 74% 八面体 a 13 γ—Fe ABCABC四面体 a 8密排六方6a2112 74% 八面体 a 6 Mg ABABAB四面体8a 194什么是晶体结构?什么是晶格?什么是晶胞?答:晶体结构:指晶体中原子(离子,原子,分子集团)的具体的排列情况,也就是指晶体中这些质点在三维空间内有规律的周期性重复排列;晶格:将阵点用一系列平行的直线连接起来构成的空间格架。

晶胞:构成点阵的最基本单元。

5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向6立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章钢的热处理原理9-1 金属固态相变有哪些主要特征?哪些因素构成相变的阻力?答:固体相变主要特征:1、相变阻力大2、新相晶核与母相晶核存在一定的晶体学位向关系。

3、母相中的晶体学缺陷对相变其促进作用。

4、相变过程中易出现过渡相。

相变阻力构成:1、表面能的增加。

2、弹性应变能的增加,这是由于新旧两相的比体积不同,相变时必然发生体积的变化,或者是由于新旧两相相界面的不匹配而引起弹性畸变,都会导致弹性应变能的增加。

3、固态相变温度低,原子扩散更困难,例如固态合金中原子的扩散速度为10-7—10-8cm/d,而液态金属原子的扩散速度为10-7 cm/s。

9-2 何谓奥氏体晶粒度?说明奥氏体晶粒大小对钢的性能影响?答:奥氏体晶粒度:是奥氏体晶粒大小的度量。

当以单位面积内晶粒的个数或每个晶粒的平均面积与平均直径来描述晶粒大小时,可以建立晶粒大小的概念。

通常采用金相显微镜100 倍放大倍数下,在645mm2 范围内观察到的晶粒个数来确定奥氏体晶粒度的级别。

对钢的性能的影响:奥氏体晶粒小:钢热处理后的组织细小,强度高、塑性好,冲击韧性高。

奥氏体晶粒大:钢热处理后的组织粗大,显著降低钢的冲击韧性,提高钢的韧脆转变温度,增加淬火变形和开裂的倾向。

当晶粒大小不均匀时,还显著降低钢的结构强度,引起应力集中,容易产生脆性断裂。

9-3 试述珠光体形成时钢中碳的扩散情况及片、粒状珠光体的形成过程?答:珠光体形成时碳的扩散:珠光体形成过程中在奥氏体内或晶界上由于渗碳体和铁素体形核,造成其与原奥氏体形成的相界面两侧形成碳的浓度差,从而造成碳在渗碳体和铁素体中进行扩散,简言之,在奥氏体中由于碳的扩散形成富碳区和贫碳区,从而促使渗碳体和铁素体不断地交替形核长大,直至消耗完全部奥氏体。

片状珠光体形成过程:片状珠光体是渗碳体呈片状的珠光体。

首先在奥氏体晶界形成渗碳体晶核,核刚形成时与奥氏体保持共格关系,为减小形核的应变能而呈片状。

渗碳体长大的同时,使其两侧的奥氏体出现贫碳区,从而为铁素体在渗碳体两侧形核创造条件,在渗碳体两侧形成铁素体后,铁素体长大的同时造成其与奥氏体体界面处形成富碳区,这又促使形成新的渗碳体片。

渗碳体和铁素体如此交替形核长大形成一个片层相间大致平行的珠光体区域,当其与其他部位形成的珠光体区域相遇并占据整个奥氏体时,珠光体转变结束,得到片状珠光体组织。

粒状珠光体的形成过程:粒状珠光体是渗碳体呈颗粒状分布在铁素体基体上。

粒状珠光体可以有过冷奥氏体直接分解而成,也可以由片状珠光体球化而成,还可以由淬火组织回火形成。

原始组织不同,其形成机理也不同。

这里只介绍由过冷奥氏体直接分解得到粒状珠光体的过程:要由过冷奥氏体直接形成粒状珠光体,必须使奥氏体晶粒内形成大量均匀弥散的渗碳体晶核,即控制奥氏体化温度,使奥氏体内残存大量未溶的渗碳体颗粒;同时使奥氏体内碳浓度不均匀,存在高碳区和低碳区。

再将奥氏体冷却至略低于Ar1 以下某一温度缓冷,在过冷度较小的情况下就能在奥氏体晶粒内形成大量均匀弥散的渗碳体晶核,每个渗碳体晶核在独立长大的同时,必然使其周围母相奥氏体贫碳而形成铁素体,从而直接形成粒状珠光体。

9-4 试比较贝氏体转变与珠光体转变和马氏体转变的异同。

答:贝氏体转变:是在珠光体转变温度以下马氏体转变温度以上过冷奥氏体所发生的中温转变。

与珠光体转变的异同点:相同点:相变都有碳的扩散现象;相变产物都是铁素体+碳化物的机械混合物不同点:贝氏体相变奥氏体晶格向铁素体晶格改组是通过切变完成的,珠光体相变是通过扩散完成的。

与马氏体转变的异同点(可扩展):相同点:晶格改组都是通过切变完成的;新相和母相之间存在一定的晶体学位相关系。

不同点:贝氏体是两相组织,马氏体是单相组织;贝氏体相变有扩散现象,可以发生碳化物沉淀,而马氏体相变无碳的扩散现象。

9-5 简述钢中板条马氏体和片状马氏体的形貌特征和亚结构,并说明它们在性能上的差异。

答:板条马氏体的形貌特征:其显微组织是由成群的板条组成。

一个奥氏体晶粒可以形成几个位向不同的板条群,板条群由板条束组成,而一个板条束内包含很多近乎平行排列的细长的马氏体板条。

每一个板条马氏体为一个单晶体,其立体形态为扁条状,宽度在0.025-2.2 微米之间。

在这些密集的板条之间通常由含碳量较高的残余奥氏体分割开。

板条马氏体的亚结构:高密度的位错,这些位错分布不均匀,形成胞状亚结构,称为位错胞。

片状马氏体的形貌特征:片状马氏体的空间形态呈凸透镜状,由于试样磨面与其相截,因此在光学显微镜下呈针状或竹叶状,而且马氏体片互相不平行,大小不一,越是后形成的马氏体片尺寸越小。

片状马氏体周围通常存在残留奥氏体。

片状马氏体的亚结构:主要为孪晶,分布在马氏体片的中部,在马氏体片边缘区的亚结构为高密度的位错。

板条马氏体与片状马氏体性能上的差异: 马氏体的强度取决于马氏体板条或马氏体片的尺寸,尺寸越小,强度越高,这是由于相界面阻碍位错运动造成的。

马氏体的硬度主要取决于其含碳量。

马氏体的塑性和韧性主要取决于马氏体的亚结构。

差异性:片状马氏体强度高、塑性韧性差,其性能特点是硬而脆。

板条马氏体同时具有较高的强度和良好的塑韧性,并且具有韧脆转变温度低、缺口敏感性和过载敏感性小等优点。

9-6 试述钢中典型的上、下贝氏体的组织形态、立体模型并比较它们的异同。

答:上贝氏体的组织形态、立体模型:在光学显微镜下,上贝氏体的典型特征呈羽毛状。

在电子显微镜下,上贝氏体由许多从奥氏体晶界向晶内平行生长的条状铁素体和在相邻铁素体条间存在的断续的、短杆状的渗碳体组成。

其立体形态与板条马氏体相似呈扁条状,亚结构主要为位错。

下贝氏体的组织形态、立体模型:在光学显微镜下,下贝氏体呈黑色针状。

在电子显微镜下,下贝氏体由含碳过饱和的片状铁素体和其内部析出的微细「碳化物组成。

其立体形态与片状马氏体一样,也是呈双凸透镜状,亚结构为高密度位错。

异同点:相同点:都是铁素体和碳化物的机械混合物,组织亚结构都是高密度的位错。

不同点:组织形态不同,立体模型不同,铁素体和碳化物的混合方式不同。

9-7 何谓魏氏组织?简述魏氏组织的形成条件、对钢的性能的影响及其消除方法?答:魏氏组织:含碳小于0.6%的亚共析钢或大于 1.2%的过共析钢在铸造、锻造、轧制后的空冷,或者是焊缝热影响区的空冷过程中,或者当加热温度过高并以较快速度冷却时,先共析铁素体或先共析渗碳体从奥氏体晶界沿一定的晶面向晶内生长,并且呈针片状析出。

在光学显微镜下可以观察到从奥氏体晶界生长出来的近乎平行或其他规则排列的针状铁素体或渗碳体以及其间存在的珠光体组织,这类组织称为魏氏组织。

前者称铁素体魏氏组织,后者称渗碳体魏氏组织。

魏氏组织的形成条件:魏氏组织的形成与钢中的含碳量、奥氏体晶粒大小及冷却速度有关。

只有在一定含碳范围内并以较快速度冷却时才可能形成魏氏组织,而且当奥氏体晶粒越细小时,形成魏氏组织的含碳量范围越窄。

因此魏氏组织通常伴随奥氏体粗晶组织出现。

对钢性能的影响:其为钢的一种过热缺陷组织,使钢的力学性能指标下降,尤其是塑韧性显著降低,脆性转折温度升高,容易引起脆性断裂。

需要指出的是,只有当奥氏体晶粒粗化,出现粗大的铁素体或渗碳体魏氏组织并严重切割基体时降,才使钢的强度和韧性显著降低。

消除方法:可以通过控制塑性变形程度、降低加热温度、降低热加工终止温度,降低热加工后的冷却速度,改变热处理工艺,例如通过细化晶粒的调质、正火、完全退火等工艺来防止或消除魏氏组织。

9-8 简述碳钢的回火转变和回火组织答:碳钢的回火转变过程及回火组织:1、马氏体中碳原子的偏聚,组织为淬火马氏体+残留奥氏体,与淬火组织相同(马氏体中的碳含量是过饱和的,当回火温度在100C以下时,碳原子可以做短距离的扩散迁移。

在板条马氏体中,碳原子偏聚在位错线附近的间隙位置,形成碳的偏聚区,降低马氏体的弹性畸变能。

在片状马氏体中,除少量碳原子向位错线偏聚外,大量碳原子将垂直于马氏体C轴的(100)晶面富集。

)2、马氏体分解,组织为回火马氏体+残留奥氏体(当回火温度超过100C时,马氏体开始发生分解,碳原子偏聚区的碳原子将发生有序化,继而转变成碳化物从过饱和a相中析出。

将马氏体分解后形成的低碳a相和弥散的&碳化物组成的双相组织称为回火马氏体)3、残留奥氏体转变,组织为回火马氏体(钢淬火后总是存在一些残留奥氏体,其含量随淬火加热时奥氏体中碳和合金元素的含量增加而增多。

当回火温度高于200 r时,残留奥氏体将发生分解。

残留奥氏体在贝氏体转变温度范围内回火将转变为贝氏体,在珠光体转变温度范围内回火将先析出先共析碳化物,随后分解为珠光体。

)4、碳化物的转变,组织为回火托氏体(马氏体分解及残留奥氏体转变形成的&碳化物是亚稳定相,当回火温度升高至250r以上时,将会形成更稳定的x碳化物直至B碳化物。

当回火温度升高至400°C,淬火马氏体完全分解,但a相仍保持针状外形,之前形成的c碳化物和x 碳化物全部转变为9碳化物,即渗碳体。

这种由针状a相和无共格联系的细粒状渗碳体组成的机械混合物称为回火托氏体。

)5、渗碳体的聚集长大和a相的回复、再结晶,组织为回火索氏体。

(当回火温度升高至400C以上时,已脱离共格关系的渗碳体开始聚集长大,按照细粒溶解,粗粒长大的机制进行。

与此同时,a 相的状态也在不断发生变化。

马氏体晶格是通过切变方式重组的,晶格缺陷密度很高,自由能高,因此在回火过程中a相也会要发生变化来降低自由能。

当回火温度升高至400C 以上时,a相开始出现回复现象,使位错密度减少或孪晶消失,但是a相晶粒仍保持板条状或针状。

当回火温度升高至600C以上时,板条状或针状a相消失,形成等轴的a相。

将淬火钢在500-650C回火得到的回复或再结晶了的a 相和粗粒状渗碳体的机械混合物称为回火索氏体。

)9-9 比较珠光体、索氏体、托氏体和回火珠光体、回火索氏体、回火托氏体的组织和性能。

答:组织比较:珠光体:片状铁素体+片状渗碳体,片间距0.6-1 um形成温度:A1-650 C。

索氏体:片状铁素体+片状渗碳体,片间距0.25-0.3陶形成温度:650-600C。

托氏体:片状铁素体+片状渗碳体,片间距0.1-0.15 um形成温度:600C以下。

以上三类珠光体是由过冷奥氏体直接转变而得。

回火索氏体:将淬火钢经高温回火后得到的回复或再结晶了的a相和粗粒状渗碳体的机械混合物称为回火索氏体。

回火托氏体:将淬火钢经中温回火后得到的由针状a相和无共格联系的细粒状渗碳体组成的机械混合物称为回火托氏体。

通过以上分析,可以看到以上珠光体组织主要区别在于碳化物的形状不同,可以分为片状珠光体和粒状珠光体两类组织。

性能比较:1、与片状珠光体相比,粒状珠光体的硬度和强度较低,塑性和韧性较好。

相关文档
最新文档