7热辐射基本定律和辐射特性分析

合集下载

传热学-热辐射基本定律和辐射特性

传热学-热辐射基本定律和辐射特性
所以,不同方向上辐射能量的强弱,还要 在相同的看得见的辐射面积的基础上才能 作合理的比较
C1 (λT
eC2 /(λT )
)−5
d −1
(
λT
)
=
f
(λT )
f(λT)称为黑体辐射函数,表示温度为T 的黑体所发射的辐射能 中在波段0~λ内的辐射能所占的百分数。
利用黑体辐射函数数值表(360页表8-1)可以很容易地用 下式计算黑体在某一温度下发射的任意波段的辐射能量:
Eb(λ1−λ2 ) = ⎡⎣ Fb(0−λ2 ) − Fb(0−λ1) ⎤⎦ Eb
∫ 显然有
Eb =
∞ 0
Ebλ
d
λ
普朗克定律解释了黑体辐射能按波长分布的规律:
Ebλ
=
c1λ−5
ec 2
(λT )
−1
式中,Ebλ—黑体光谱辐射力,W/m3
λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.7419×10-16 W⋅m2; c2 — 第二辐射常数,1.4388×10-2 W⋅K;
8.1.2 从电磁波角度描述热辐射的特性
8.1.2 从电磁波角度描述热辐射的特性
c 电磁波的数学描述: = λν
c — 电磁波传播速度, m/s ν — 频率, 单位 1/s λ — 波长, 常用μm为单位
从理论上说,物体热辐射的电磁波波长范围可以包括整个波谱,即波长从零到无穷大 然而,在工业上所遇到的温度范围内,即2000K以下,有实际意义的热辐射波长位于 0.38—100μm之间,且大部分能量位于红外线区段的0.76—20μm范围内,而在可见 光区段、即波长为0.38—0.76μm 的区段,热辐射能量的比重不大
τ =0, α + ρ =1

第七章 热辐射基本定律及物体的辐射特性

第七章 热辐射基本定律及物体的辐射特性
2)投入辐射的波长分布规律—— T2
本质原因:物体对不同波长 的光谱吸收比 ( ) 不同
4、灰体——光谱吸收比 ( ) 与波长无关的物体 • ( ) 常数 •灰体吸收比 与外界条件无关 •灰体同黑体一样,是一种理想物体
实际物体常可看作灰体的条件:
1)热辐射能量集中在 0.76 10 m 红外线内, 而 ( ) 在此区内近似不变的物体 2)对投入的热辐射波长范围具有等 ( ) 的物体
若投入辐射来自黑体( T2 )(吸收物体温度 T1 ),则


0
( , T1 ) Eb (T2 )d


0
Eb (T2 )d


0
( , T1 ) Eb (T2 )d T24
(7-23b)
f (T1 , T2,表面1性质)
若投入辐射来自实际物体(T2 ),则
(7-3)
(7-4)
漫反射 (一般工程材料表面形成)
液体
四、几个名词 1、黑体——物体的吸收比 1 ( 0)
2、镜体——物体的镜面反射比 1 ( 0) 3、白体——物体的漫反射比 1 4、透明体——物体的穿透比 1 ( 0)
3、斯忒藩-玻耳兹曼定律(俗称四次方定律) ——黑体辐射力 Eb
T
Eb Eb d
0


0
c1 5 4 d T ec2 ( T ) 1
黑体辐射常数
(7-9)
8 2 4 其中 5.67 × 10 W (m K )

其中
T 4 Eb c0 ( ) 100 ,
b) T 1000 则 Fb (0 ) 0.05%

热辐射基本定律及物体的辐射特性

热辐射基本定律及物体的辐射特性

5、光谱辐射(单色辐射) 对于某一特定波长下的辐射称为光谱辐射或单
色辐射。 对光谱辐射相应有光谱吸收比、光谱反射比和
光谱透射比。 1
()() () 1
关于物体的颜色
我们所看到的物体颜色是由于从该表面发出的 单色光线(辐射)投入到了我们的眼睛。
而从表面发出的辐射可能是自身发射的,也可 能是反射投入其表面上的可见光。
的份额分别称为吸收比、反射比 和透射比 。
G
G
G G
G G
1
3、镜反射和漫反射 视物体表面状况(平整程度)和投入辐射的波
长,表面的反射又分为镜反射和漫反射。
(a)镜反射
(b)漫反射
漫反射是把来自任意方向、任意波长的投入辐
射以均匀的强度(不是“能量”)反射到半球空间所 有方向上去。注:除了经特殊处理的金属表面,大
如果仅考虑某特定
p
波长的辐射,那么相应
可见辐射
的量被称为定向光谱辐
面积
射强度 L(,) 。
dA
(4) 定向辐射力
是指单位时间、单位辐射面积向空间指定方向
所在的单位立体角内发射的全波段辐射能量。用
符号 E 表示。
E
d()
dAd
因此可得:
E L()cos
E 2Ed
§8-2 黑体辐射的基本定律
一、黑体与黑体模型
三、斯忒藩-玻耳兹曼定律
黑体辐射的辐射力与温度的关系遵循斯忒藩-波 尔兹曼定律:
E b0 E d0 eC C 2/1 T 5 1dT4
Eb T4
Eb
C0
T 4 100
5.67108 W/2(m K4)
C05.67W/2(m K4)
波段范围内辐射力的计算

热辐射基本定律及物体的辐射特性

热辐射基本定律及物体的辐射特性
②黑体辐射函数:
第八章 热辐射基本定律及物体的
14
辐射特性
在许多实际问题中,往往需要确定某一特定波长区段内的辐射能量。 黑体在[λ1,λ2]区段所发出的辐射能为(见图7-7)
Eb
2 1
Ebd
通常把这一波段的辐射能表示成同温下黑体辐射力(0-∞)的
百分数,记为Fb(λ1-λ2)。于是
Fb(12) 01 2EEbbddT14 12Ebd
对于服从兰贝特定律的辐射,其定向辐射强度L与辐射力E之间有如 下关系:
Байду номын сангаас
第八章 热辐射基本定律及物体的
16
辐射特性
(1)定向辐射强度
① 先引入立体角的概念(见图7-8)
平面角:θ=s/r [rad](弧度) 式中: 弧长s、半径r 。
立体角:Ω=Ac/r2
式中:Ac —半球体表面被立体角切割的面积, r—球体的半径。
对半球,面积为2πr2,立体角为2π[ sr](球面度)。 微元立体角:dΩ= dAC/r2
(2)单色辐射力Eλ:在热辐射的整个波谱内,不同波长发射出的 辐射能是不同的。见图7-6。对特定波长λ来说:
从λ到λ+dλ区间发射出的能量为dE。则
E
dE
d
第八章 热辐射基本定律及物体的
10
辐射特性
单位时间内物体的单位表面积向半球空间所有方向发射出去的某一 特定波长的辐射能。称为单色辐射力。[w/m3]。
图7-6 Planck 定律的图示
第八章 热辐射基本定律及物体的
12
辐射特性
最大单色辐射力所对应的波长λm亦随温度不同而变化。随着 温度的增高,曲线的峰值向左移动,即移向较短的波长。最大单色 辐射力所对应的波长λm与温度T之间存在着如下的关系:

辐射换热基本定律及物体的辐射特性

辐射换热基本定律及物体的辐射特性

三.实体的辐射特性
☆.基尔霍夫(G.R.Kirchhoff)定律 基尔霍夫(G.R.Kirchhoff) 揭示了物体吸收辐射能的能力与发射辐射能的能力之间的关系. 揭示了物体吸收辐射能的能力与发射辐射能的能力之间的关系.
表达式: 表达式:
αλ (θ,ϕ,T ) = ελ (θ,ϕ,T )
说明吸收辐射能能力愈强的物体的发射辐射能能力也愈强。 说明吸收辐射能能力愈强的物体的发射辐射能能力也愈强。在温度相同的物体 黑体吸收辐射能的能力最强,发射辐射能的能力也最强. 中,黑体吸收辐射能的能力最强,发射辐射能的能力也最强.
热辐射能量的表示方法. ◆. 热辐射能量的表示方法. 辐射力E: 一定温度下, 物体在单位表面积、单位时间内向半球空间所有方向上发射出去 辐射力E: 一定温度下, 物体在单位表面积、单位时间内向半球空间所有方向上发射出去 全部波长的总能量.W/m 的全部波长的总能量.W/m2 光谱辐射能力E 在相同条件下, 物体发射的特定波长的能量. 光谱辐射能力Eλ :在相同条件下, 物体发射的特定波长的能量.
辐射换热基本定律及实体辐射特性
1.热辐射基本概念 1.热辐射基本概念 2.黑体辐射基本定律 2.黑体辐射基本定律 3.实体的辐射特性 3.实体的辐射特性
一.辐射换热
辐射是利用电磁波来传输能量,辐射换热不同于导热和对流方式: 辐射是利用电磁波来传输能量,辐射换热不同于导热和对流方式: 1.它不需要工作介质. 1.它不需要工作介质. 它不需要工作介质 2.传输的能量与涉及物体的温度的四次方或五次方成正比例. 2.传输的能量与涉及物体的温度的四次方或五次方成正比例. 传输的能量与涉及物体的温度的四次方或五次方成正比例
Lambert定律 揭示黑体发射的辐射能按空间方向的分布规律. 定律: 3. Lambert定律:揭示黑体发射的辐射能按空间方向的分布规律.

辐射传热-热辐射基本定律和辐射特性

辐射传热-热辐射基本定律和辐射特性

4.1.1热辐射的定义及基本性质1.热辐射定义热辐射-Thermal Radiation物体由于热的原因(温度高于0 K)而发射电磁波的现象只要温度高于0 K,就会不停地向周围空间发出热辐射1.热辐射定义辐射换热-Radiation Heat Transfer物体之间通过热辐射交换热量的过程当系统达到热平衡时,辐射换热量为零,热辐射仍然不断进行2.热辐射特点近程及远程效应∞-44w T T 而与成正比∞-w T T 换热不再与成正比,伴随能量形式的转变可以在真空中传播可穿过真空或低温区(好处-航天器散热;坏处-保温瓶散热)辐射能与温度和波长均有关具有强烈的方向性3.热辐射具有电磁波的共性f=C电磁波谱激光红宝石0.6943μmCO210.6μm氦氖0.6328μm微波加热原理?高频电磁波300-300000 MHz (相应波长100-0.1cm),使生物组织内偶极分子及蛋白质极性侧链以极高频率振荡,增加分子运动从而导致热量产生热辐射理论上覆盖整个电磁波谱对于太阳辐射(约5800K ):0.2~2μm可见光:0.38~0.76μm红外线:0.76~25~1000μm一般工业范围内(2000K 以下):0.38~100μm0.76~20μm远红外加热技术4.物体对热辐射的吸收、反射和穿透当热辐射投射到物体表面上时,一般会发生吸收、反射和穿透。

transmissivityabsorptivity reflectivity物体对热辐射的吸收、反射和穿透热辐射-Thermal Radiation5.反射同样具有镜反射和漫反射的分别镜反射漫反射对于大多数的固体和液体1,0=+=ρατ1,0=+=ταρ对于不含颗粒的气体只涉及表面整个气体容积假想的1=α1=ρ1=τ透明体黑体镜体或白体三种理想情形4.1.2黑体模型1.黑体定义(Blackbody)可以全部吸收透射到其表面上的所有波长的辐射能( =1)【不存在任何反射和透射】室温条件下:能量集中在长波电磁辐射和远红外波段到一定温度:开始发出可见光【钢材升温过程】 黑体不见得就是黑色的【取决于温度】2.黑体模型理想化模型:自然界并不存在严格意义上的黑体 人工模型黑体模型✓小孔面积占空腔内壁总面积的比值越小,小孔就越接近黑体✓若这个比值小于0.6%,当内壁吸收比为0.6时,计算表明,小孔的吸收比可达99.6%带有小孔的温度均匀的空腔✓温度均匀【保证辐射均匀且各向同性】✓具有黑体性质【小孔及空腔内部】✓举例:晴天远眺窗口黑洞洞的枪口3. 黑体应用黑体炉对辐射温度计的校准、检定,通常采用比较法,就是通过高稳定度的辐射源(通常为黑体辐射源)和其他配套设备,将标准器所复现的温度与被检辐射温度计所复现的温度进行比较,以判断其是否合格或给出校准结果。

传热学-第七章热辐射基本定律及物体的辐射特性

传热学-第七章热辐射基本定律及物体的辐射特性
定向辐射强度L(, ): 定义:单位时间内,物体在垂直发射方向的单位面积上,
在单位立体角内发射的一切波长的能量,参见图8-10。 d( , ) L( , ) dA cos d (6) Lambert 定律(黑体辐射的第 三个基本定律)
d( , ) L cos dA d
第八章 热辐射基本定律和辐射特性 24
本节中,还有几点需要注意
1. 将不确定因素归于修正系数,这是由于热辐射非常复杂,
很难理论确定,实际上是一种权宜之计; 2. 服从Lambert定律的表面成为漫射表面。虽然实际物体的 定向发射率并不完全符合Lambert定律,但仍然近似地认 为大多数工程材料服从Lambert定律,这有许多原因;
3. 物体表面的发射率取决于物质种类、表面温度和表面状况。
这说明发射率只与发射辐射的物体本身有关,而不涉及外
界条件。
第八章 热辐射基本定律和辐射特性 25
§8-4
实际物体对辐射能的吸收与辐射的关系
上一节简单介绍了实际物体的发射情况,那么当外界 的辐射投入到物体表面上时,该物体对投入辐射吸收 的情况又是如何呢?本节将对其作出解答。
1


0
( , T1 ) b ( , T2 ) Eb (T2 )d



0
b ( , T2 ) Eb (T2 )d


0
( , T1 ) Eb (T2 )d


0
Eb (T2 )d
T24 f (T1 , T2 , 表面1的性质)
图8-19给出了一些材料对黑体辐射的吸收比与温度的关系。
第八章 热辐射基本定律和辐射特性
21
对应于黑体的辐射力Eb,光谱辐射力Eb和定向辐射强度L, 分别引入了三个修正系数,即,发射率,光谱发射率( )和定 向发射率( ),其表达式和物理意义如下 实际物体的辐射力与 黑体辐射力之比: 实际物体的光谱辐射 力与黑体的光谱辐射 力之比: 实际物体的定向辐射 强度与黑体的定向辐 射强度之比:

传热学第8章热辐射基本定律和辐射特性

传热学第8章热辐射基本定律和辐射特性

1. 立体角
A r2
sr 球面度
对整个半球:
A 2r 2 2 sr
对微元立体角:
d
dA r2
s in dd
sr
n θ
dΩ r dA1
立体角定义
dθ dA2
φ dφ
r sind
rd
dA2
2. 定向辐射强度(辐射强度) 物体单位时间单位可见辐射面积单位立体角
内发出的辐射能量。
L( ,) d
n
W /(m2 sr)
引入辐射比 Fb(1 2 )
0
1
2
黑体波段内的辐射力
F b(12 )
E d 2
1
b
0 Eb d
1
0T 4
E d 2
1
b
F F b(02 )
b(01 )
其中: Fb(0) 为黑体辐射函数(表8-1)
则波段内黑体辐射力:
Eb(1 2 ) [Fb(02 ) Fb(01 ) ]Eb
8.2.3 兰贝特定律

dAcosd
θ
dA2
对各向同性物体表面:

L( ,) L( )
dA1
dA1cosθ
3. 定向辐射力 单位时间单位面积物体表面向某个方向发射
单位立体角内的辐射能, 称为该物体表面在该 方向上的定向辐射力。Eθ,W/(m2.sr)
4. 兰贝特定律 黑体的定向辐射强度与方向无关, 即半球空间各方向上的辐射强度都相等。
热辐射投射到固体,液体表面上:
1 0
表面性
热辐射投射到气体表面上:
1 0 容积性
(3)固体表面的两种反射现象 ✓镜反射 (Specular reflection) ✓漫反射 (Diffuse reflection) 主要取决于固体表面不平整尺寸 的大小(表面粗糙度)。

传热学-第七章热辐射基本定律及物体的辐射特性

传热学-第七章热辐射基本定律及物体的辐射特性

定律 表示式 说明
韦恩位移定律 λmax = b / T 黑体辐射波长与温度的关系
理想黑体的辐射特性
理想黑体具有尽可能高的吸收率和发射率,同时它是完美的热辐射体,能够根据其温度和波长分布发射出连续 的辐射能量。
实际物体的辐射特性
实际物体的辐射特性受到其表面性质的影响。反射率与吸收率、发射率与辐射率以及雷诺茨定律帮助我们了解 和描述实际物体的辐射情况。
反射率与吸收率
实际物体吸收和反射辐射能量 的能力
发射率与辐射率
实际物体辐射能量的发出能力
雷诺茨定律
物体在达到热平衡后,各表面 温度和总发射能力一致
热辐射的应用和实例
热辐射广泛应用于热工技术、太阳能技术、计算机热管理等领域。例如,太阳能电池利用光照下的热辐射转换 为电能。
太阳能电池
利用光照下的热辐射转换为电能
传热学-第七章热辐射基 本定律及物体的辐射特性
了解热辐射的基本概念和定义,掌握热辐射的三大基本定律:斯特藩-玻尔兹 曼定律,基尔霍夫定律和韦恩位移定律。
斯特藩-玻尔兹曼定律
斯特藩-玻尔兹曼定律揭示了黑体辐射功率与温度的关系,P = εσT4,其中P为辐射功率,ε为辐射率,σ为斯特 藩-玻尔兹曼常数。
定律 表示式 说明
斯特藩-玻尔兹曼定律 P = εσT4 黑体辐射功率与温度的关系
基尔霍夫定律
基尔霍夫定律阐明了一个物体表面的吸收率和发射率相等,α = ε。
1 基尔霍夫定律
物体表面的吸收率和发射率相等
韦恩位移定律
韦恩位移定律描述了黑体辐射波长与黑体温度之间的关系,λmax = b / T,其中λmax是峰值辐射波长,b是韦恩 位移常数。
总结和要点
• 热辐射包括斯特藩-玻尔兹曼定律、基尔霍夫定律和韦恩位移定律 • 理

第八章-热辐射基本定律和辐射基本特性分解

第八章-热辐射基本定律和辐射基本特性分解

8-3 灰体和基尔霍夫定律
一、实际物体的辐射特性和发射率
▲光谱辐射力随波长呈现不规则的变化;
实际物体 辐射特性:
▲辐射力并不严格地同热力学温度四次方成正比;
▲定向辐射强度在不同方向上有变化谱发射率( )
—修正光谱辐射力Eb
定向发射率( )
—修正定向辐射强度I
★发射率(黑度)ε—— 实际物体的辐射力与同温度下黑体的辐射力的比值。
固体和液体对辐射能的吸收和反射基本上属于表面效应: 金属的表面层厚度小于1m;绝大多数非金属的表面层厚度小 于1mm。
二、黑体模型
能吸收投入到其表面上的所有热辐射能的物体,是 一种科学假想的物体,现实中并不存在。
黑体: 白体或镜体:
1
1
透明体:
1
煤烟、炭黑、粗糙的钢板 0.9以上
黑体吸收和发射辐射能的能力最强
热辐射是热量传递的 基本方式之一,以热辐 射方式进行的热量交换 称为辐射换热。
传热学
第八章 热辐射基本定律和辐射特性
§8-1 热辐射现象的基本概念
1. 热辐射特点
(1) 定义:由热运动产生的,以电磁波形式传递的能量;
(2) 特点:a 任何物体,只要温度高于0K,就会不停地向周
围空间发出热辐射;b 可以在真空中传播;c 伴随能量形
可见光波段的辐射能量比例为 0.545 8-0.099 32 = 0.446 5
0.76 m ~ 40 m红外波段的辐射能量比例
1.0-0.545 8 = 0.454 2
计算表明: (1) 大气层外太阳辐射中可见光的能量比例接近45%,而
40 m以内的红外辐射也占大约45%。 (2) 太阳辐射温度下,40m以上的红外辐射能量几乎为零。

传热学热辐射基本定律和辐射特性

传热学热辐射基本定律和辐射特性

黑色油漆对可见光吸收比约0.9 。
4.温室效应
暖房: 玻璃和塑料薄膜对λ< 3μm太阳辐射的穿透率很高 对内部的物体热辐射 λ> 3μm常温辐射的穿透率很低
•温室气体:CO2、CFC制冷剂(R12等)对≥3μm的 红外波段吸收率高,而对于太阳辐射穿透率高
光谱辐射力特征: 光谱辐射力随温度升高而增加;
光谱辐射力随波长增加先增后减,具有最大Ebλ 光谱辐射力最大处的波长随温度不同而不同,随温度增加,λmax减小
(2) 维恩位移定律
光谱辐射力最大处的波长λmax与绝对温度T 的乘积为常数。 λmaxT = 2.898×10-3m·K≈ 2.9×10-3m·K =2900μm·K
E
d( )
dA d
E 2 E d
d():面积dA的微元面积,向空间纬度角方向的微 元立体角d内辐射的能量
兰贝特定律—— 黑体按空间方向的分布规律
表述1:黑体辐射的定向辐射强度与方向无关,即半球空间的各方向上的定 向辐射强度相等:
d( ) dAcos d
=I b
const
表述2:黑体单位辐射面积,单位立体角的定向辐射力
说明: (1)工程上遇到温度范围,热射线集中在红外范 围内( 0.76~20μm ) (2)太阳辐射可见光占44.8%,红外线占45.1%, 紫外线占10.1% (3)常温20℃以下物体辐射几乎在3μm以上的红 外。
➢ 物体表面对热辐射的作用
(1)物体对热辐射的吸收、反射与穿透
根据能量守恒,有以下平衡方程:
微元立体角
d
dAc r2
➢ 黑体的定向辐射强度和定向辐射力:
E
d( )
dA d
实验测定 黑体
Eb,

第八章 热辐射基本定律和辐射特性(20190415)

第八章  热辐射基本定律和辐射特性(20190415)


E Eb
0 ()Ebd T4
实际物体光谱辐射力小于同温度 下黑体同一波长的光谱辐射力。
实际物体光谱辐射力随波长和方 向作不规则变化。
与波长无关----灰体
8.3 实际固体和液体的辐射特性
3 实际物体的定向辐射强度
定向发射率及其随θ角的变化规律
实际物体的定向辐射强度与 黑体的定向辐射强度之比为 定向发射率(定向黑度):
第八章 热辐射基本定律和辐射特性
主讲人:潘冬梅 华南理工大学机械与汽车工程学院
主要内容
8.1 热辐射现象的基本概念 8.2 黑体热辐射的基本定律 8.3 实际固体和液体的辐射特性 8.4 实际物体对辐射能的吸收与辐射的关系
8.1 热辐射现象的基本概念
8.1 热辐射现象的基本概念
1 热辐射的特性
辐射力与黑体半球总辐射力之比。
E E Eb T 4
实际物体的辐射力可以表示为:
E

Eb

T
4

C0
(T 100
)
4
一般通过实验测得,只取 决于物体本身
8.3 实际固体和液体的辐射特性
2 实际物体的光谱辐射力
光谱发射率(单色黑度) ε(λ) = Eλ Ebλ
实际物体的光谱发射率与发射率

1
d
T 4
8.2 黑体热辐射的基本定律
黑体2 辐普射朗函克数定(律黑体辐射能按波段的分布)
从0到某个波长的波段的黑体辐射能

Eb(0 ) 0 Eb d
这份能量在黑体辐射力中所占的百分数为:
可查表

P360
Fb(0)
0 Eb d T 4

传热学 第7章-热辐射的基本定律

传热学 第7章-热辐射的基本定律

第七章热辐射的基本定律在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。

太阳对大地的照射是最常见的辐射现象。

高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。

特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。

本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。

第一节基本概念1-1 热辐射的本质和特征由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。

比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。

人们根据电磁波不同效应把电磁波分成若干波段。

波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。

可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。

因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。

一、热辐射的本质和特点1、发射辐射能是各类物质的固有特性。

当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。

热辐射基本定律和辐射特性

热辐射基本定律和辐射特性

例7-1:试分别计算温度为2000K和5800K的黑
体的最大光谱辐射力所对应的波长m 。
解:按 m T2.910 3m K计算:
当T=2000K时, m2.9 210 0 3K m 0K 01.4 510 6m
当T=5800K时,
m2.9 518 0 3K m 0K 00.510 6m
可见工业上一般高温辐射(2000K内),黑体最大光 谱辐射力的波长位于红外线区段,而太阳辐射 (5800K)对应的最大光谱辐射的波长则位于可见光 区段。
dω为微元立体角
E
d 2Q
ddA
方向辐射力与辐射力之间的关系: E
E d
2
dQ
df
dQλ
r

dA
dA
(a)微元表面总辐射 (b)微元表面单色辐射
dA
(c)微元表面方向辐射
立体角是用来衡量空间中的面相对于某一点所 张开的空间角度的大小,如图c所示,其定义为:
d df r 2
df为空间中的微元面积,r为该面积与发射点之 间的距离。
普朗克定律表示的是黑体的辐射能按波长的分
布规律,给出了黑体的单色辐射力与热力学温 度T、波长之间的函数关系,由量子理论得到 的数学表达式为:
Eb
c1
5 ec2 (T )
1
c1为第一辐射常数,c1=3.74210-16W·m2; c2为第二辐射常数,c2=1.4388 10-2m·K
图中给出了在温度为参变量下的单色辐射力随
解:在热平衡条件下,黑体温度与室温相同, 辐射力为:Eb1c01T104 05.67m2W K4217 2 07 04 3K4
45W 9 2 /m
327℃黑体的辐射力为

第七章-热辐射基本定律-2

第七章-热辐射基本定律-2
T2 E Eb
T1
αEb
(1-α)Eb
T 1、E 、 α和T 2。
发出的辐射能E全部被板 吸收, 板2发出的辐射能 全部被板 吸收,而板 发出的辐 发出的辐射能 全部被板1吸收 而板1发出的辐 射能E 只被板2吸收 吸收α 对板2能量收支为 能量收支为: 射能 b只被板 吸收αEb ,对板 能量收支为:
Iϕ cosϕ Iϕ εϕ = = = Ebϕ Ib cosϕ Ib Eϕ
如果实际物体的方向辐射力遵守兰贝特定律, 如果实际物体的方向辐射力遵守兰贝特定律,该物 体表面称为漫射表面。黑体表面就是漫射表面。 体表面称为漫射表面。黑体表面就是漫射表面。
如果实际物体是漫射表面,则其方向辐射率应等于 如果实际物体是漫射表面,则其方向辐射率应等于 漫射表面 常数,而与角度无关。事实上 常数,而与角度无关。事实上实际物体不是漫发射 体,即辐射强度在空间各个方向的分布不遵循兰贝 特定律,是方向角的函数。 特定律,是方向角的函数。 对于非金属表面在很大 范围内方向黑度为一个 常数值, 常数值,表现出等强辐 射的特征,而在60°之 射的特征,而在 ° 后方向黑度急剧减小
为物体表面对黑体辐射的单色吸收比 αλ (λ,T1) 为物体表面对黑体辐射的单色吸收比(光谱吸
如果投入辐射不是来自黑体, 如果投入辐射不是来自黑体,则必须研究物体表面 单色吸收率随投入辐射波长变化的规律。 单色吸收率随投入辐射波长变化的规律。 如果物体表面的单色吸收比 如果物体表面的单色吸收比为常数 ,即 αλ = const. 那么它的吸收比 那么它的吸收比也就为常数 。
4
发光效率为: 发光效率为
∆E 5.18×104 W 2 /m η= = = 7.27% 5 2 E 7.13×10 W /m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
因而对固体和液体,吸收能力大的物体其反射本领就小。
9
由于热射线不能穿过固体和液体,于是可以把它们的吸收 和反射视为一个表面过程,它们自身辐射也应在表面完成。因 此,固体和液体上的热辐射是表面辐射。
辐射能投射到气体上时,情况与投射到固体或液体上不 同。气体对辐射能几乎没有反射能力,可认为反射比, =
14
若小孔占内壁面积小于0.6%,当内 壁吸收比为0.6时,小孔的吸收比可 大于0.996。
黑体将所有投射在它上面的一切 波长和所有方向上的辐射能全部吸收 ,在所有物体之中,它吸收热辐射的 能力最强。
15
7.2 黑体热辐射的基本定律 (1)辐射力 ① 总辐射力
辐射力也称全色辐射力,其定义为单位时间单位辐射面积 向半球空间辐射出去的一切波长的辐射能量。
能量守恒定律有:
Q
Q
Q

Q
Q
QQ
Q
Q Q Q 1 QQQ
8
各部分百分数Q/Q 、 Q/Q 、Q/Q 分别称为该物体对投 入辐射的吸收比、反射比和透射比,记为 、和 。 于是
1
实际上,当辐射能进入固体或液体表面后,在一个极短的 距离内就吸收完了。故对于固体和液体有
第七章 热辐射基本定律和辐射特性
7.1 热辐射现象的基本概念; 7.2 黑体热辐射的基本定律; 7.3 固体和液体的辐射特性; 7.4 实际物体对辐射能的吸收与辐射的关系; 7.5 太阳与环境辐射;
1
7.1 热辐射现象的基本概念 (1)热辐射的定义和特点
热辐射在机理上与导热、对流有根本的不同。 导热与对流是由于物质微观粒子的热运量和物体的宏观运 动所造成的能量转移。 热辐射是由于物质的电磁运动所引起的能量的传递。
对于透射比τ=1的物体称为透明体。
反射比ρ=1物体称为白体(具有漫反射的表面)或镜体 (具有镜反射的表面)。
物体表面是漫反射还是镜反射,这要取决于物体表面相对 于辐射波长的表面粗糙程度。
12
当表面的不平整尺寸小于投入辐射 的波长时,形成镜面反射,此时入射 角等于反射角。高度磨光的金属板会 形成镜面反射。
3
在工业上所遇到的温度范围内(2000K以下),最感兴趣的 是波长约从0.38μm到0.76μm的可见光和波长从可见光谱的红端 之外延伸到1000μm的红外线。
有时以波长25μm为界,又将红外线区分为近红外区和远红 外区。
热辐射
射线
紫外线
X射线
可 见

红外线
无线电波
0
10-5 10-4 10-3 10-2 10-1 1 10 102 103 104 105
(2)固体和液体对辐射能的吸收和反射基本上属于表面 效应。金属:表面层厚度小于1μm;绝大多数非金属:表面 层厚度小于1mm。
(3)对于固体和液体,τ = 0, α +ρ =1 。
11
由于不同物体的吸收比、反射比和透射比因具体条件不同 差别很大,给热辐射的计算带来很大困难。为了使问题简化, 我们定义了一些理想物体。

辐射力和单色辐射力之间的关系 : E E d
0
17
③ 方向辐射力(定向辐射力)
方向辐射力是定义来描述物体表面辐射能量在半球空间中 的分布特征,其定义为单位时间单位辐射面积向半球空间中某 一个方向上单位立体角内辐射的所有波长的辐射能量。
dω为微元立体角
d 2QE ddA 方向辐射力与辐射力之间的关系: E Ed 2 18
当表面的不平整尺寸大于投入辐 射的波长时形成漫反射。这时从某一 方向投射到物体表面上的辐射向空间 各方向反射出去。
1 2 1= 2
13
吸收比=1的物体,称为绝对黑体,简称黑体。
尽管自然界并不存在黑体,用人工的方法可以制造出十分 接近于黑体的模型。
选用吸收比小于1的材料制造一个空腔, 并在空腔壁面上开一个小孔,再设法使空腔 壁面保持均匀的温度。这时空腔上的小孔就 具有黑体辐射的特性。
6
辐射换热的主要影响因素: (1)物体本身的温度、表面辐射特性; (2)物体的大小、几何形状及相对位置。
7
(2)物体表面对电磁波的作用
当热辐射的能量投射到物体表面上时,会发生吸收、反射
和穿透现象。若外界投射到物体表面上的总能量为Q,一部分
Q被物体吸收,一部分Q被物体反射,一部分Q穿透物体。按
2
辐射是电磁波传递能量的现象。 电磁辐射的波长范围很广,从长达数百米的无线电波到小于 10-14米的宇宙射线。 由于热的原因而产生的电磁辐射称为热辐射。
热辐射
射线
紫外线
X射线
可 见

红外线
无线电波
0
10-5 10-4 10-3 10-2 10-1 1 10 102 103 104 105
/m
0,故有 1
气体对热射线的吸收和穿透是在空间中进行的,其自身 的辐射也是在空间中完成的。因此,气体的热辐射是容积辐 射。
10
注意:
(1) α、ρ、τ属于物体的辐射特性,取决于物体的 种类、温度和表面状况,是波长的函数。
α,ρ,τ 不仅取决于物体的性质,还与投射辐射 能的波长分布有关。
/m
4
理论上热辐射的波长范围从零到无穷大,但在日常生活和 工业上常见的温度范围内,热辐射的波长主要在0.1μm至 100μm之间,包括部分紫外线、可见光和部分红外线三个波段。
辐射换热:以热辐射的方式进行的热量交换。
5
只要物体的温度高于0K,物体总是不断地把热能变化辐射 能,向外发出热辐射。 同时,物体也不断地吸收周围物体投射到它上面的热辐射, 并把吸收的辐射能重新转变成热能。 辐射换热就是指物体之间相互辐射和吸收的总效果。 一个物体如果与另一个物体相互能够看得见,那么它们之 间就会发生辐射热交换。 热辐射不依靠中间媒介,可以在真空中传播。
E dQ dA
式中:E为辐射力,其单位为W/m2;dQ为微元面积dA向半球空 间辐射出去的总辐射能。
16
② 单色辐射力(光谱辐射力)
单色辐射力被定义为单位时间单位辐射面积向半球空间辐 射出去的某一波长范围的辐射能量,用来描述辐射能量随波长
的分布特征。
E

dQ dA

d 2Q
ddA
Eλ为物体表面的单色辐射力;dQλ为微元面积dA向半球空间辐 射出去的某一波长的辐射能;λ为热射线的波长,单位为μm。
相关文档
最新文档