因式分解经典题目【最新】
因式分解练习100题及答案
一、 提取公因式
( 1) (9a+5)(-4b+5)+(b+2)(9a+5) (2) (3m-2)(-2n+3)+(3m-2)(-9n-1)+(3m-2)(-6n+4) (3) (9a-4)(2b+3)+(9a-4)(2b-2) (4) I4a3x4 -35a4x3y3 (5) 18x千-I2x 3y 千 (6) 2ab4c2— 8bc2 (7) x 3y4+5ax3y4 (8) (9x— 4)(—8x+l)+(9x— 4)(9x+2)
(57) (3a2+2ab-2b2 )(3a2 -2ab-2b2 ) (58) (2x2 +5x+9)(2x 2 -5x + 9) (59) (8x+7y-3)(8x-7y-1 1) (60) (9m + 7n-7)(9m-7n-3)
五、 十字相乘法
(6 1) 2(3b+2)(1lb-4) (62) -(4m+I)(2m-9) (63) (b+3)(8b+l) (64) 6(9a+4)(a+2) (65) 2(4x-5y)(l lx+5y) (66) -6(a-b)(4a+5b) (67) (x+17)(x+2) (68) -(b+4)(l lb-2) (69) (2a+9)(13a— 4) (70) —(7n— 5)(2n— 5) (7 1) 2(8x-1)(5x-4) (72) (12b+19)(4b + 3) (73) 4(y+5)(5y+3) (74) 13(x-l)(4x+15) (75) —24(m— 2n)(m+2n) (76) -6(5y+l)(y+2)
精选因式分解练习题(打印版)
精选因式分解练习题(打印版)# 精选因式分解练习题## 一、基础题1. 题目:将下列多项式进行因式分解。
- \( x^2 - 4 \)- \( x^2 + 5x + 6 \)- \( a^2 - b^2 \)2. 题目:找出下列多项式的公因式,并进行因式分解。
- \( 6x^2 - 9x \)- \( 12a^3 - 18a^2b \)3. 题目:使用公式法进行因式分解。
- \( x^2 + 8x + 16 \)- \( a^2 - 2ab + b^2 \)## 二、进阶题4. 题目:将下列多项式进行分组后因式分解。
- \( x^3 - 8 \)- \( a^3 - b^3 \)5. 题目:使用配方法进行因式分解。
- \( x^2 + 6x + 9 \)- \( a^2 - 4a + 4 \)6. 题目:找出下列多项式的公因式,并进行因式分解。
- \( 15x^2 - 10x \)- \( 8a^3 - 12a^2b + 6ab^2 \)## 三、综合题7. 题目:将下列多项式进行因式分解,并说明分解方法。
- \( x^4 - y^4 \)- \( a^3 + 2a^2b + ab^2 \)8. 题目:使用综合方法进行因式分解。
- \( x^3 - 3x^2 + 2x \)- \( a^4 - b^4 \)9. 题目:将下列多项式进行因式分解,并验证分解后的乘积是否等于原多项式。
- \( x^2 - 4xy + 4y^2 \)- \( a^2 + 2ab + b^2 \)## 四、挑战题10. 题目:将下列多项式进行因式分解,并给出分解过程。
- \( x^3 + 3x^2 - 4x - 12 \)- \( a^3b - ab^3 \)11. 题目:使用代换法进行因式分解。
- \( x^4 - 4x^2 + 4 \)- \( a^4 - 2a^2b^2 + b^4 \)12. 题目:将下列多项式进行因式分解,并说明分解的难点。
因式分解练习题加答案-200道
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
超经典的因式分解练习题有答案精品
超经典的因式分解练习题有答案精品1. 因式分解.(1) a(a-b) -2(w-b).(2)x²-2x²+x.2.因式分解:(1)12m²κ⁻¹−8m²κ⁴;(2) x³-4x²y+4xy².3.将下列多项式因式分解:(1) 2x²-6x;(2) -6x²+12a-6;(3) 4x²-(y²-4y-4).4. 因式分解: (m+1) (m-9) +8m.5.因式分解:25x²{a-b}+49y² (b-a).6.因式分解:2x¹-8r³y8xy².7.因式分解:(1) 4a²-9;(2) 16m³-8me+n³.8. 因式分解:(1) 2ax²-2m²;(2) 3a²-6a²b+3ab².9. 因式分解:(1) m²-m;(2) x³-4x²+4x.10. 因式分解:4.²(x-1) -9 (x+7).11.因式分解:-3a+12a²-12a³.12. 因式分解:(1) m²-y³;(2) x(x-y) ty(y-x).参考答案10. 因式分解.(1) a(a-b) -2(a-b).(2) x³2x³+x.【分析】(1) 原式提取公因式分解即可;(2) 原式提取公因式,再利用完全平方公式分解即可.【解答】解: (1) a (a -b) -2(a -b) = (a-b) ( a -2).(2)x³-2x²+x=x (x²-2x-1)=x(x-1)².【点评】此题考查了提公园式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.因式分解:(1) 12m³k⁴-8m²n³;(2)x³-4r³y+4xy².【分析】(1) 找到公因式,提取公因式即可:(2) 先提取公因式,再看用完全平方公式.【解答】解: (1) 原式=4m²n⁴ (3m-2m²);(2)原式: =x(x²-4xy-4y²)=x (x-2y)².【点评】本题考查了整式的因式分解,掌握提取公因式法,公式法是解决本题的关键。
初二因式分解经典题35题
初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
因式分解经典题型(含详细答案)
因式分解经典题型【编著】黄勇权经典题型一:1、x3+2x2-12、4x2+4x-4y2+13、3x+xy-y-34、3x3+5x2-25、3x2y-3xy-6y6、x2-7x-607、3x2-2xy-8y28、x(y-2)-x2(2-y)9、x2+8xy-33y210、(x2+3x)4-8(x2+3x)2+16经典题型一:【答案】1、x32-1将2x2拆分成x2+x2=x3+x2+x2-1=(x3+x2)+(x2-1)=x2(x+1)+(x+1)(x-1)提取公因式(x+1)=(x+1)[x2+(x-1)]=(x+1)(x2+x-1)2、4x2+4x-4y2+1将-4y2与+1 位置互换=4x2+4x+1-4y2=(4x2+4x+1)-4y2=(2x+1)2-4y2=[(2x+1)+2y][(2x+1)-2y]=(2x+2y+1)(2x-2y+1)3、3x+xy-y-3将前两项结合,后两项结合=(3x+xy)+(-y-3)= x(3+y)-(y+3)提取公因式(y+3)=(y+3)(x-1)4、3x3+5x2-2将5x2拆分成3x2+2x2=3x3+3x2+2x2-2=(3x3+3x2)+(2x2-2)=3x2(x+1)+2(x2-1)=3x2(x+1)+2(x+1)(x-1)提取公因式(x+1)=(x+1)[3x2+2(x-1)]=(x+1)(3x2+2x-2)5、3x2y-3xy-6y将-6y拆分成-3y-3y=3x2y-3xy-3y-3y将3x2y与-3y结合,-3xy与-3y结合=(3x2y-3y)+(-3xy-3y)=3y(x2-1)-3y(x+1)=3y(x+1)(x-1)-3y(x+1)提取公因式3y(x+1)=3y(x+1)[(x-1)-1]=3y(x+1)(x-2)6、x2-7x-60用十字叉乘法,将-60拆分成-12与5的乘积X -12X 5=(x-12)(x+5)7、3x2-2xy-8y2【详细讲解十字叉乘法】用十字叉乘法,用逐一罗列(1)3x2只能拆分成3x与x的乘积,(2)-8y2,可拆分成①-8y与y的乘积②8y与-y的乘积③-4y与2y的乘积④4y与-2y的乘积逐一尝试,看哪一组结果是-2xy(1)3X -8yX y3xy-8xy=-5xy(结果不是-2xy,舍去)(2)3X yX -8y-24xy+xy=-23xy(结果不是-2xy,舍去)(3)3X 8yX -y-3xy+8xy=5xy(结果不是-2xy,舍去)(4)3X -yX 8y24xy-xy=23xy(结果不是-2xy,舍去)(5)3X -2yX 4y12xy-2xy=10xy(结果不是-2xy,舍去)(6)3X 4yX -2y-6xy+4xy=-2xy(结果是-2xy,符合题意)(7)3X 2yX -4y-12xy+2xy=-10xy(结果不是-2xy,舍去)(8)3X -4yX 2y6xy-4xy=2xy(结果不是-2xy,舍去)通过逐一尝试,第(6)就是我们要的答案,所以:3x2-2xy-8y2用十字叉乘法,3X 4yX -2y=(3x+4y)(x-2y)8、x(y-2)-x2(2-y)将(2-y)变为-(y-2)= x(y-2)+x2(y-2)提取公因式x(y-2)-2)(1+x)整理一下(y-2)、(1+x)的顺序= x(1+x)(y-2)9、x2+8xy-33y2用十字叉乘法X 11yX -3y=(x+11y)(x-3y)10、(x2+3x)4-8(x2+3x)2+16把(x2+3x)4看着(x2+3x)2看平方,把16 看着4的平方。
最新因式分解(竞赛题)含答案
1因式分解2一、导入:3有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是4最精美的石头。
甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选5一个最精美的就够了。
”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断6地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!7启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。
8二、知识点回顾:91.运用公式法10在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1112(1)a2-b2=(a+b)(a-b);13(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);1415(4)a3-b3=(a-b)(a2+ab+b2).16下面再补充几个常用的公式:17(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;18(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);19(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;20(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;21(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.22运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正23确恰当地选择公式.24三、专题讲解25例1 分解因式:26(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz;27解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)28=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]29=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.3031(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)32=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.3334本题实际上就是用因式分解的方法证明前面给出的公式(6).35分析我们已经知道公式36(a+b)3=a3+3a2b+3ab2+b337的正确性,现将此公式变形为38a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.3940解原式=(a+b)3-3ab(a+b)+c3-3abc41=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)4243=(a+b+c)(a2+b2+c2-ab-bc-ca).44说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们45将公式(6)变形为46a3+b3+c3-3abc474849显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即50a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.51如果令x=a3≥0,y=b3≥0,z=c3≥0,则有5253等号成立的充要条件是x=y=z.这也是一个常用的结论.54※※变式练习551分解因式:x15+x14+x13+…+x2+x+1.56分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,57由此想到应用公式a n-b n来分解.58解因为59x16-1=(x-1)(x15+x14+x13+…x2+x+1),60所以6162说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等63式变形中很常用.642.拆项、添项法65因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类66项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,67需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多68项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使69多项式能用分组分解法进行因式分解.70例3 分解因式:x3-9x+8.71分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、72添项的目的与技巧.73解法1 将常数项8拆成-1+9.74原式=x3-9x-1+975=(x3-1)-9x+976=(x-1)(x2+x+1)-9(x-1)77=(x-1)(x2+x-8).78解法2 将一次项-9x拆成-x-8x.79原式=x3-x-8x+880=(x3-x)+(-8x+8)81=x(x+1)(x-1)-8(x-1)82=(x-1)(x2+x-8).83解法3 将三次项x3拆成9x3-8x3.84原式=9x3-8x3-9x+885=(9x3-9x)+(-8x3+8)86=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).8788解法4 添加两项-x2+x2.89原式=x3-9x+8=x3-x2+x2-9x+89091=x2(x-1)+(x-8)(x-1)92=(x-1)(x2+x-8).93说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并94无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分95解诸方法中技巧性最强的一种.※※变式练习96971分解因式:98(1)x9+x6+x3-3;99(2)(m2-1)(n2-1)+4mn;100(3)(x+1)4+(x2-1)2+(x-1)4;101(4)a3b-ab3+a2+b2+1.102解 (1)将-3拆成-1-1-1.103原式=x9+x6+x3-1-1-1104=(x9-1)+(x6-1)+(x3-1)105=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) 106=(x3-1)(x6+2x3+3)107=(x-1)(x2+x+1)(x6+2x3+3).108(2)将4mn拆成2mn+2mn.109原式=(m2-1)(n2-1)+2mn+2mn110=m2n2-m2-n2+1+2mn+2mn111=(m2n2+2mn+1)-(m2-2mn+n2)112=(mn+1)2-(m-n)2113=(mn+m-n+1)(mn-m+n+1).114(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.115原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4116=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2117=[(x+1)2+(x-1)2]2-(x2-1)2118=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).119(4)添加两项+ab-ab.120原式=a3b-ab3+a2+b2+1+ab-ab121=(a3b-ab3)+(a2-ab)+(ab+b2+1)122=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)123=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)124125=(a2-ab+1)(b2+ab+1).126说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,127128找到公因式.这道题目使我们体会到129拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.1303.换元法131换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字132母替代这个整体来运算,从而使运算过程简明清晰.133例4 分解因式:(x2+x+1)(x2+x+2)-12.134分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看135作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.136解设x2+x=y,则137原式=(y+1)(y+2)-12=y2+3y-10138=(y-2)(y+5)=(x2+x-2)(x2+x+5)139=(x-1)(x+2)(x2+x+5).140说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结141果,有兴趣的同学不妨试一试.142例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.143144分析先将两个括号内的多项式分解因式,然后再重新组合.145解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90146147=(2x2+5x+3)(2x2+5x+2)-90.148令y=2x2+5x+2,则149原式=y(y+1)-90=y2+y-90150=(y+10)(y-9)151=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).152153说明对多项式适当的恒等变形是我们找到新元(y)的基础.154※※变式练习1.分解因式:155156(x2+4x+8)2+3x(x2+4x+8)+2x2.157解设x2+4x+8=y,则158原式=y2+3xy+2x2=(y+2x)(y+x)159=(x2+6x+8)(x2+5x+8)160=(x+2)(x+4)(x2+5x+8).161说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题162目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多163项式.1641.双十字相乘法165分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式166(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.167例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作168常数,于是上式可变形为1692x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.170171对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为172173即:-22y2+35y-3=(2y-3)(-11y+1).174再利用十字相乘法对关于x的二次三项式分解175所以,原式=[x+(2y-3)][2x+(-11y+1)]176177=(x+2y-3)(2x-11y+1).178上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图179合并在一起,可得到下图:180181它表示的是下面三个关系式:182(x+2y)(2x-11y)=2x2-7xy-22y2;183(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.184185这就是所谓的双十字相乘法.186用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:187(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);188(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉189之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.190例1 分解因式:(1)x2-3xy-10y2+x+9y-2;191192(2)x2-y2+5x+3y+4;193(3)xy+y2+x-y-2;194(4)6x2-7xy-3y2-xz+7yz-2z2.195解 (1)196原式=(x-5y+2)(x+2y-1).197(2)198199原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.200201202原式=(y+1)(x+y-2).203(4)原式=(2x-3y+z)(3x+y-2z).204说明 (4)中有三个字母,解法仍与前面的类似.2052.求根法206我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项207式,并用f(x),g(x),…等记号表示,如208f(x)=x2-3x+2,g(x)=x5+x2+6,…,209当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)210f(1)=12-3×1+2=0;211f(-2)=(-2)2-3×(-2)+2=12.212若f(a)=0,则称a为多项式f(x)的一个根.213定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x) 214有一个因式x-a.215根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对216于任意多项式f(x) 要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整217数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.218定理2219的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式220f(x)的整数根均为an 的约数.221我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行222因式分解.223例2 分解因式:x3-4x2+6x-4.224225分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4 226的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,227228即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.229解法1 用分组分解法,使每组都有因式(x-2).230原式=(x3-2x2)-(2x2-4x)+(2x-4)231=x2(x-2)-2x(x-2)+2(x-2)232=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),233234235所以原式=(x-2)(x2-2x+2).236237说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.238239※※变式练习2401. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±241242243为:244245所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2246247=9x4-3x3-2x2+9x2-3x-2248=x2(9x3-3x-2)+9x2-3x-2249=(9x2-3x-2)(x2+1)250=(3x+1)(3x-2)(x2+1)251说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,252如上题中的因式253可以化为9x2-3x-2,这样可以简化分解过程.254总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可255以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对256g(x)进行分解了.2573.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解258259中的应用.260在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于261262这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原263有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这264种因式分解的方法叫作待定系数法.265例3 分解因式:x2+3xy+2y2+4x+5y+3.266分析由于267(x2+3xy+2y2)=(x+2y)(x+y),268若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应269用待定系数法即可求出m和n,使问题得到解决.270解设271x2+3xy+2y2+4x+5y+3272=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,273274比较两边对应项的系数,则有275解之得m=3,n=1.所以276277原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.278279※※变式练习2801.分解因式:x4-2x3-27x2-44x+7.281分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则282只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原283式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设284285原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,286287所以有288289由bd=7,先考虑b=1,d=7有290291292所以293原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果294295b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直296到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找297298到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.299四、巩固练习:3001. 分解因式:(x2+xy+y2)-4xy(x2+y2).301分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的302多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分303解因式.304解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则305原式=(u2-v)2-4v(u2-2v)306=u4-6u2v+9v2307=(u2-3v)2308=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.309310311312313314315五、反思总结。
因式分解经典实例及解析50题(打印版)
12.(分解因式):4小瓶—4十九—炉机+人2九
解:原式=4q2(m 一九)一炉(加一九)
=(4。2 —》2)(加—九)
=(2Q + b)(2α —
一九)
13.(分解因式):%(% - 2) -(y + l)(y - 1) 解:原式二%2 - 2% - V + 1 二(/ - 2% + 1) -y2 = (% — I)? — y2 =(% — 1 + y)(% - 1 - y)
10.(分解因式):/ 一 4孙+ 8y + 4y2 一轨 解:原式二(/ - 4%y + 4y2) + (8y - 4%) =(% — 2y7 — 4(% — 2y) =(% - 2y)(% - 2y - 4)
11.(分解因式):%4 - 2/ + %2 - 36 解:原式=%2(%2 一 2% + 1) - 36 =%2(χ - 1)2 — 36 = [%(% — 1) + 6] [%(% — 1) — 6] =(%2 — % + 6)(%2 _ % _ 6) =(%? — % + 6)(% — 3)(% + 2)
二.答案解析
L(分解因式):α% — b% + αy — by 解:原式=%(α - b) + y(α - b)
=(α-b)(% + y)
2.(分解因式):2mα — IOmb + 5献)一九Q 解:原式=2m(α — 5b)—九(G — 5b) =(2租 一 九)(Q _ 5b)
3.(分解因式):/ — %y + * - yz 解:原式二%(% - y) + z(% - y) 二(% + z)(% — y)
因式分解经典练习100道及答案
因式分解经典练习100道及答案一、提取公因式(1)3332-4518ab c a b c(2)334434343++243024x y z x y z x y z(3)(94)(92)(1)(94)--+----x x x x(4)(83)(2)(83)(75)-+---m x m x(5)(51)(5)(51)(54)(51)(31)--++--++---m n m n m n(6)344c b c+630(7)(3)(52)(3)(51)(3)(93)---+--++-+x x x x x x(8)334+412ac a c(9)2443+x y ax y(10)(54)(95)(54)(21)(54)(35)x x x x x x+-+++--+++ (11)44324++142835x z x yz x yz(12)2342-a x y a xy1220(13)2423+2012a b c a bc(14)43242-+20520x y x y z xyz(15)(41)(31)(41)(84)---+-+a b a b(16)33-xz y4016(17)(41)(45)(41)(52)+++++m x m x(18)(94)(83)(55)(94)m n n m ----+-(19)2232718x y z xyz-(20)222242x z x y z+二、公式法(21)2249369849x y x -+-(22)22144600625a ab b -+(23)228114464m n m -+-(24)224001160841a ab b ++(25)22361529a b -(26)22x y-121289(27)2x-814(28)212136x-(29)22-+78428025a ab b(30)22-+m mn n48422025三、分组分解法(31)48321812--++xy x y(32)22----a c ab bc ca5435543033 (33)221+--ab a b(34)22+-+-7653043a c ab bc ca(35)22x y xy yz zx+--+3512443035 (36)35257050+--ax ay bx by (37)3287218xy x y-++-(38)20410020+--ax ay bx by (39)48564856-+-mx my nx ny (40)40408080--+xy x y(41)22x y xy yz zx-++-2430163542 (42)22---+x y xy yz zx2449144928 (43)8756-+-ax ay bx by(44)2216538216a b ab bc ca----(45)2212353541a c ab bc ca+-+-(46)81648ax ay bx by+--(47)227228271231a c ab bc ca-+-+(48)224220591221a b ab bc ca++++(49)221851249x z xy yz zx----(50)63362112mx my nx ny--+四、拆添项(51)424169x x -+(52)2216162455a b a b --++(53)22362524305x y x y --+-(54)2281161081632a b a b --++(55)222581609011m n m n ---+(56)422442125x x y y -+(57)226469627x y x y ----(58)42244910516x x y y -+(59)4225111x x -+(60)42246416149m m n n -+五、十字相乘法(61)22+-+++x xy y x y20196441824 (62)222+-+++x y z xy yz xz3621575841 (63)22---+x xy y x y251083528 (64)222x y z xy yz xz-+--+635826646 (65)22--+++x xy y x y24112847820 (66)22x xy y x y+--++4536831328 (67)22x xy y x y---++1612422127 (68)22++--+ 284715654128x xy y x y(69)22569359192m mn n m n ---+-(70)22491435145824p pq q p q --++-(71)2235692829296x xy y x y -++-+(72)2221401627206x xy y x y +++++(73)22921101576x xy y x y ++++-(74)22213723112x xy y x y --++-(75)22228216612329a b c ab bc ac+++--(76)2225421221218x y z xy yz xz+-+++(77)2225465602921a b c ab bc ac+-+--(78)222204912634932x y z xy yz xz++--+(79)2282620324930x xy y x y -++-+(80)2223018621328x y z xy yz xz-+--+六、双十字相乘法(81)2291481586x xy y x y ---++(82)2228152537512x xy y x y +-+++(83)22251418173627a b c ab bc ac+--+-(84)22104121284016x xy y x y +++++(85)2224652137x xy y x y-++-(86)22291216243224a b c ab bc ac+++++(87)22991024337a ab b a b ---++(88)222091943x xy y x y +++++(89)2236306242521x xy y x y -----(90)225272822368x xy y x y -+-++七、因式定理(91)33112x x --(92)322163a a a --+(93)321257360x x x +-+(94)3266132x x x --+(95)32331315x x x ---(96)321624196x x x --+(97)321037960x x x +--(98)324721x x x ++-(99)32472x x x ---(100)324x x -+因式分解经典练习100道答案一、提取公因式(1)2229(52)ab c bc a-(2)3336(454)x y z z xz y++ (3)(94)(103)x x---(4)(83)(67)m x---(5)(51)(98)m n--+(6)346(15)c b c+(7)(3)(2)x x--+(8)324(13)ac a c+(9)232()x y y ax+(10)(54)(89)x x+-+ (11)22337(245)x z x z xy yz++ (12)2224(35)a xy x a y-(13)2324(53)a bcb c+(14)32325(44)xy x y xy z z-+(15)(41)(53)a b-+(16)338(52)xz y-(17)(41)(97)m x++(18)(94)(138)m n--+ (19)29(32)xyz xyz-(20)222(2)x z z y+二、公式法(21)(767)(767)x y x y++-+ (22)2(1225)a b-(23)(98)(98)m n m n++-+ (24)2(2029)a b+(25)(1923)(1923)a b a b+-(26)(1117)(1117)x y x y+-(27)(92)(92)x x+-(28)(116)(116)x x+-(29)2(285)a b-(30)2(225)m n-三、分组分解法(31)2(83)(32)x y--+(32)(667)(95)a b c a c--+(33)(21)(1)a b-+(34)(6)(75)a c ab c---(35)(76)(525)x y x y z--+(36)5(2)(75)a b x y-+ (37)2(49)(41)x y---(38)4(5)(5)a b x y-+(39)8()(67)m n x y+-(40)40(2)(1)x y--(41)(467)(65)x y z x y+--(42)(677)(47)x y z x y++-(43)(7)(8)a b x y+-(44)(252)(8)a b c a b--+(45)(35)(47)a c ab c---(46)4(2)(2)a b x y-+(47)(94)(837)a c ab c-++(48)(74)(653)a b a b c+++(49)(3)(645)x z x y z+--(50)3(3)(74)m n x y--四、拆添项(51)22(223)(223)x x x x+---(52)(411)(45)a b a b+---(53)(655)(651)x y x y+--+(54)(948)(944)a b a b+---(55)(591)(5911)m n m n+---(56)2222(25)(25)x xy y x xy y+---(57)(83)(89)x y x y++--(58)2222(774)(774)x xy y x xy y+---(59)22(51)(51)x x x x+---(60)2222(877)(877)m mn n m mn n+---五、十字相乘法(61)(44)(566)x y x y-+++(62)(93)(475)x y z x y z+-++(63)(54)(527)x y x y-+-(64)(72)(954)x y z x y z++-+(65)(344)(875)x y x y-+++(66)(934)(527)x y x y--+-(67)(221)(827)x y x y--+-(68)(734)(457)x y x y+-+-(69)(752)(871)m n m n+--+(70)(776)(754)p q p q-++-(71)(743)(572)x y x y-+-+(72)(742)(343)x y x y++++(73)(356)(321)x y x y+++-(74)(24)(73)x y x y+--+(75)(473)(732)a b c a b c+-+-(76)(62)(926)x y z x y z+-++(77)(66)(95)a b c a b c+++-(78)(573)(474)x y z x y z-+-+(79)(456)(245)x y x y-+-+ (80)(563)(632)x y z x y z-+++六、双十字相乘法(81)(946)(21)x y x y+---(82)(453)(754)x y x y++-+(83)(26)(573)a b c a b c---+ (84)(534)(274)x y x y++++ (85)(831)(37)x y x y-+-(86)(364)(324)a b c a b c++++(87)(327)(351)a b a b+---(88)(51)(43)x y x y++++ (89)(667)(63)x y x y--++(90)(44)(572)x y x y----七、因式定理(91)2(2)(361)x x x-++ (92)2(3)(251)a a a-+-(93)(3)(34)(45)x x x+--(94)2(2)(661)x x x-+-(95)2(3)(365)x x x-++ (96)(2)(43)(41)x x x-+-(97)(3)(54)(25)x x x-++ (98)2(1)(41)x x+-(99)2(2)(41)x x x-++ (100)2(2)(22)x x x+-+。
经典因式分解练习题100道
经典因式分解练习题100道1.3a³b²c - 12a²b²c² + 9ab²c³ can be factored as 3ab²c(a - 2c)².2.16x² - 81 can be factored as (4x + 9)(4x - 9).3.xy + 6 - 2x - 3y can be simplified as (x - 3)(y - 2).4.x²(x - y) + y²(y - x) simplifies to -xy(x - y).5.2x² - (a - 2b)x - ab can be factored as (2x + b)(x - a).6.a⁴ - 9a²b² can be factored as (a² - 3ab)(a² + 3ab).7.x³ + 3x² - 4 can be factored as (x + 1)(x + 2)(x - 2).8.ab(x² - y²) + xy(a² - b²) simplifies to ab(x + y)(x - y) + xy(a + b)(a - b).9.(x + y)(a - b - c) + (x - y)(b + c - a) can be simplified as 2bx - 2ay - 2cy.10.a² - a - b² - b can be factored as (a - b)(a + b) - (a + b).11.(3a - b)² - 4(3a - b)(a + 3b) + 4(a + 3b)² can be simplified as (a - 5b)².12.(a + 3)² - 6(a + 3) can be factored as (a - 3)(a + 9).13.(x + 1)²(x + 2) - (x + 1)(x + 2)² simplifies to -(x + 1)(x - 2)².14.This n is a repeat of n 2.15.9x² - 30x + 25 can be factored as (3x - 5)².16.x² - 7x - 30 can be factored as (x - 10)(x + 3).17.x(x + 2) - x simplifies to x² + x.18.x² - 4x - ax + 4a can be factored as (x - 4)(x - a).19.25x² - 49 can be simplified as (5x + 7)(5x - 7).20.36x² - 60x + 25 can be simplified as (6x - 5)².21.4x² + 12x + 9 can be simplified as (2x + 3)².22.x² - 9x + 18 can be simplified as (x - 3)(x - 6).23.2x² - 5x - 3 can be simplified as (2x + 1)(x - 3).24.12x² - 50x + 8 can be simplified as 2(2x - 1)(3x - 4).25.3x² - 6x can be simplified as 3x(x - 2).27.6x² - 13x + 5 can be simplified as (2x - 5)(3x - 1).28.x² + 2 - 3x can be simplified as (x - 1)².29.12x² - 23x - 24 can be simplified as (4x + 3)(3x - 8).30.(x + 6)(x - 6) - (x - 6) can be simplified as (x + 6)(x - 2).31.3(x + 2)(x - 5) - (x + 2)(x - 3) can be simplified as 2x(x - 7).32.9x² + 42x + 49 can be simplified as (3x + 7)².33.x⁴ - 2x³ - 35x can be factored as x(x - 7)(x + 5)(x² + 5x + 7).34.3x⁶ - 3x² can be factored as 3x²(x - 1)(x + 1)(x² + 1).35.x² - 25 can be factored as (x - 5)(x + 5).36.x² - 20x + 100 can be simplified as (x - 10)².37.x² + 4x + 3 can be simplified as (x + 1)(x + 3).38.4x² - 12x + 5 cannot be ___.39.3ax² - 6ax can be simplified as 3ax(x - 2).40.) (x+2)(2x+1)2x²+5x+241.) 4ax²-3x-34ax²+2ax-5ax-32ax(2x+1)-3(2x+1)2ax-3)(2x+1)42.) (3x-11)²43.) 2x²-82(x²-4)2(x+2)(x-2)44.) ___ negative.45.) (3x-5)²46.) -(4x+5)(5x-4)47.) (3x-5)(4x-3)48.) (6x+3)(6x+3)49.) (7x+2)(3x-11)50.) (3x²-1)(3x²+4)51.) (4x+2)(2x-2)8(x-1)52.) 4ax²+2ax-3x-32ax(2x+1)-3(2x+1)2ax-3)(2x+1)53.) x(y+1)-y-1x(y+1)-1(y+1)x-1)(y+1)54.) x²-2x+955.) (3x-11)²56.) -2(x²-4)2(x+2)(x-2)57.) (x²+1)(x+1)(x-1)58.) (x+2)²-x(y+2)59.) 4x² - 12x + 5 = (2x - 1)(2x - 5)60.) 21x² - 31x - 22 = (3x + 2)(7x - 11)74.) 2xy与12xy的公因式是2xy75.) 若mn/(x+y)(x-y) = 2224,则m=56,n=39.76.) 在多项式中,可以用平方差公式分解为:(a+b)(a-b)、(x+4y)(x+4y)、(2x-3)(2x-3)。
因式分解专练题
1、下列因式分解正确的是()A. x2 - 4 + 3x = (x + 4)(x - 1)B. x2 - 9 = (x - 3)2C. x2 - 2x - 3 = (x - 3)(x + 1)D. 4x2 - 1 = (2x - 1)2(答案)C。
解析:A选项展开后不等于原式;B选项应为(x + 3)(x - 3);D选项应为(2x + 1)(2x - 1);C选项展开后与原式相等。
2、多项式a2 - b2 - 2a + 1可以因式分解为()A. (a - b)(a + b) - 2(a - 1)B. (a - b - 1)(a + b - 1)C. (a - b)2 - 2(a - 1)D. (a - 1)2 - b2(答案)D。
解析:首先观察多项式,可以发现它具有平方差的形式。
通过调整项的顺序,可以将其写为(a - 1)2 - b2,然后利用平方差公式进行因式分解。
3、下列多项式不能进行因式分解的是()A. x2 - 4B. x2 + 2x + 1C. x2 + y2D. x2 - 2x - 3(答案)C。
解析:A选项可以分解为(x + 2)(x - 2);B选项可以分解为(x + 1)2;D选项可以分解为(x - 3)(x + 1);而C选项x2 + y2是两个平方项的和,没有实数因子可以分解。
4、多项式x3 - 4x2 + 4x可以提取的公因式是()A. xB. x2C. 4xD. x(x - 2)2(答案)A。
解析:观察多项式的每一项,可以发现它们都有x这个公因式。
提取公因式x 后,得到x(x2 - 4x + 4),其中(x2 - 4x + 4)还可以继续分解,但题目只问公因式,所以答案是x。
5、多项式x2 - 5x + 6可以因式分解为()A. (x - 2)(x - 3)B. (x - 1)(x - 6)C. (x + 2)(x + 3)D. (x + 1)(x - 6)(答案)A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲:因式分解一提公因式法【知识要点】1分解因式的概念把一个多项式公成几个整式的积的形式,这种变形叫做把这个多项式2、分解因式与整式乘法的关系分解因式与整式乘法是的恒等变形。
3.分解因式的一些注意点(1)结果应该是的形式;(2)必须分解到每个因式都不能为止;(3)如果结果有相同的因式,必须写成的形式。
4.公因式多项式中各项都含有的公共的因式,我们把这个因式叫做这个多项式的5.提公因式法如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方示叫做提公因式法.6.确定公因式的方法(1)系数公因式:应取多项式中各项系数为(2)字母公因式:应取多项式中各项字母为《重点辨析》提取公因式时的注意点【学堂练习】1.下列各式从左边到右边的变形,哪些是分解因式,哪些不是?2 21x +x =x (1 +—);x2 2(m +n)(m -n) = m -n3x 2-2xy + x =x(3x -2y)(5) 2.把下列各式分解因式 (1) 9a2-6ab+3a【经典例题】例1、把下列各式分解因式(1) 2a(x -2y) -3b(x-2y)2a(x-2y)2 +b(2y-x)3 a 2-2b = (a + 5)(a-5) -1X 2 + 4x + 4 = (x + 2)2 (x-3)(x + 1) -x 2-2x-3(2) -4x 4 y-6x 2y 3 + 2xy 4(2) 2a(x-2y)-3b(2y-x)-4c(x-2y)(4) 15b(3a-b)2+25(b-3a)3(x-y)2 -3(y-x)3+2(y-x)4(6) (a+x^+e+x)""1 —(a + x)m (b+x)n例2.利用分解因式计算(1) 29x1234.5 +11.7x1234.5-4.6x1234.5例 3.已知 a +b =2,ab =2,求代数式 a 2b +2a 2b 23例4、利用因式分解说明:367 -612能被140整除。
【随堂练习】1. 下列各式从左到右的变形中是因式分解的是(C 、X - y = (J x +7y)(J x - J y) + bx+c 分解因式2(x-3)(x +1),则b,c 的值为(2 2B 、4ma+6maC 、 5a +10ab 4.将3a(x-y)-b(x-y)用提公因式法分解因式,应提出的公因式是(A 、(a -1)(a +b) =a 2 +a -2 11 1=(x + -)(x ——) y y y A 、 b =3, C = —1B 、b =—6,C = 2 C 、b = -6,c=—4b = —4,c =—6 3.下列各式的公因式是 a 的是(O 9998(2) —~ 2_ 100_ 992 - 2+ ab 2的值。
m(m + 4)+4 = (m + 2)22.已知二次二项式2x 2A 、ax 中ay +5a 2-4a + maA、 3a —B、3(x-y)C、 x-yD、3a+b b5.把多项式m 2(a-2)+m(2-a)分解因式的结果为(A 、(a-2)(m2+m)B 、(a-2)(m2-m)C 、m(a-2)(m-1)D 、m(a-2)(m + 1)8 已知:a + b =133, ab =1000。
a 2b +ab 2 的值为 9.把下列各式分解因式(2) - 3a 2bc 2 +12a 3b 2c 2 + 9a 2bc 3【课后强化]1. 3x 2+mx-4分解因式为(3x+4)(x-1),则m 的值为3. 把下列各式分解因式2(2) 3x(X - y) + 6x(y -x)2 2(1) 3x y —6xy +12xyz6.多项式2x 2y-xy 的公因式是;多项式是6a 2b 3 -9ab 2c 3的公因式是 27 .分解因式:xy - xy =。
a(m-n)3-b(n- m)^ (m-n)3()。
(1) 2a 2b-6a 2b 2 +2ab 2 (3) a(x-y)-b(x-y)2(4) 2(y-x) -x(x —y)2. -3xy -6mxy +9nxy = -3xy () a(x-a)+ b(a - X)-c(x - a)=(4) a(a +b)(a -b) -a(a + b)2⑶ 2(x-y)3+4(y-x)23、把下列各式分解因式:第四讲:因式分解一公式法、分组分解法【知识要点】1.乘法公式逆变形(1)平方差公式:a 2-b 2=(a+b)(a-b)(2 )完全平方公式:a 2+ 2ab + b 2=(a +b)2,a 2-2ab + b 2=(a-b)22.常见的两个二项式幕的变号规律:①(a-b)2n=(b-a)2n ;②(a-bf =-(b-a)2n ,(n 为正整数)3.把一个多项式分解因式,一般可按下列步骤进行:(1)如果多项式的各项有公因式,那么先提公因式;(2)如果多项式没有公因式,那么可以尝试运用公式来分解; (3)如果上述方法不能分解,那么可以尝试用分组分解方法。
【学堂练习】21、如果9x +kx +25是一个完全平方式,那么k 的值是(A 15B ±152、下列多项式,不能运用平方差公式分解的是(C 30)±30-m 2+4B 、2 2-X -y 2 2.C 、 x y -12 2D 、(m — a ) -(m + a )(1)4a 2 —b 2 16—9a 2(3)"22 ,16x y -1(4)—12m +36-x 2 +2xy- y 2x 22-y +ax+ay4(8) 4x 4 -a 2-6a-9【经典例题】例1.用公式法分解因式:⑸ 16(x-1)3 -25(x +2)2(x 2 -X)2 +6(x 2 - X)+9例2.用分组分解法分解因式3(1) (a2 *+b 2)2 -4a 2b 2(2)(x+2)2-(y-3)22 2(3) a b -4ab +4(4)X 4 -8x 2 +16(1) 4ax -4ay - X + y(2)a 2 -9+ 8ab +16b 2(3) a2-b 2-4a +4b例3 .用合适的方法分解因式:2 2 2 2(2) 12m n -12m n +3m(4) 4m2+9(m + n)2 +12m(m + n)例4 •利用分解因式计算:2 2(1) 1.222 X 9 -1.332X 42 2(2) 2022 +202X196+982=-2,求 a3+a 2b + ab 2 +b 3 值。
【随堂练习】+ X 2-1有如下四种分组方法:其中分组合理的是(①(X5-x 3)+(x 2-1)②(X 5+x 2)-(x 3+1)③(X5-x 3+x 2)-1④ X 5-(x3-x 2+ 1)A .①②B .①③C .②④42 22 242.^ABC 的三边满足 a +b c -a c -b = 0,则^ ABC 的形状是 _______ ^a 2 +ab + ^b 2。
2 2/、厂2 4 _ 2. 4 (1) 5m a -5m b (3) 4a2(m — n) + b 2(n —m)例 5.若 a + b = 3, ab 1.对于多项式x 5-x3D .③④3.已知a + b = 2,利用分解因式,求代数式4、分解下列因式:2 5、计算:(1) 2003 -2002X2004【课后强化】(1) 8x2—2 2 2(2) 16a -9b3 2 (3) a b + ab -2a b(1)—3x3—12x2+ 36x(2) (x2+1)2 -4x22m +2n -mn -2m (4) a2+ 2ab + b2—a—b分解因式第五讲:因式分解综合复习【考点分析】考点1:分解因式的意义1、下列从左到右的变形,属于分解因式的是( )2A. (x+3)(x — 2)=x +x — 6B. ax— ay+1=a(x— y)+1c 2 1 , 1 \, 1 \C. x — p=(x+ —)(x —-) y y y2、若多项式x4+ax+b可分解为(x+1)(x — 2),试求a、b的值。
考点2:提公因式法分解因式1.多项式6a5b2— 3a2b2— 21a2b3分解因式时,应提取的公因式是(2 23 2A. 3a2 bB. 3ab2C. 3a3b23.下列各组代数式没有公因式的是(A. 5a— 5b 和 b — aC. (a— b)2和— a + b4、分解下列因式/ 八 c 2n+2 n+2 n+1 2n+3 (1)— 8x y + 12x yax+1 和 1+ay a2— b2和(a + b)(a + 1)2(2) x y(x — y) + 2xy(y — x)4 把多项式2(x — 2)2— (2 — x)3分解因式的结果是(5 16 (x — y) 2— 24xy (y—x) )D. 3a2b22A. (x — 2)2(42B. x (x —2C. — x (xD. (x — 2)2(2 — x)2D. 3xB.(4) - 27x2(3x-y)2-9y(y-3x)考点3:运用公式法分解因式21 .如果9 x +kx+25是一个完全平方式,那么k 的值是()2. (1)( 2009 年北京)分解因式:-a 2+14ab +49b 2=3( 2005年上海市)分解因式:m 4-16n 43、分解下列因式:(1) 1 m 2 —3n 23考点4:分组分解法分解因式 ⑴ 4x 2-2x-y 2-y(3) (1-a 2)(1-b 2)-4ab(4) a 2 -4a + 4 - c 2A 、 15C 、 30D 3±2 2(2) a b -14ab + 49(3) 9(a-bf -16(a+b 2(4) 9(a-bf+24a-b)+162 24m -9n -4m + 1考点5:综合运用提公因式法、公式法分解因式1、(1) (2009年北京)分解因式:4m3-m=(2) (2008年上海)分解因式:8x2y-8xy+2y=2、分解下列因式:(1)8a— 2a 2 2(2) 9x (m - n )—y (n -m)(3) (a-b)2-4m2(b-a)2(4) a2(16x-y+1) + b2(y—1-16X)考点6:分解因式的应用1、利用因式分解方法计算:(1)4.45X13.7 +445x0.889 -44.5x0.26 2 2⑵ 800 -1600X798 + 7982 22、已知b-a =6, ab =7,求a b-ab 的值。
2 23、厶ABC的三边满足a-2bc=c-2ab,则^ ABC是(A、等腰三角形B、直角三角形C、等边三角形)D、锐角三角形4、若a为整数,证明(2a +1)2 -1能被8整除。