废水生化处理理论基础

合集下载

废水生化处理的原理与工艺

废水生化处理的原理与工艺

废水生化处理的原理与工艺废水生化处理是处理工业废水的一种有效方法,它通过利用微生物对有机物质进行降解和转化来使废水达到排放标准。

废水生化处理一般包括通气池、曝气系统、污泥回流系统、污泥浓缩系统和沉淀系统等组成,下面将详细介绍废水生化处理的原理和工艺。

废水生化处理的原理主要涉及废水中有机物的降解过程。

在传统的废水处理过程中,有机物质的去除主要通过物理和化学方法,但这些方法存在着技术操作复杂、投入较大等问题。

而废水生化处理则利用微生物类群的特性和代谢活动,将有机物质转化为微生物生物质、水和CO2等无害物质,从而实现废水的处理和净化。

废水生化处理的工艺主要包括进水预处理、生物处理和污泥处理等环节。

进水预处理是为了将废水中的杂质去除或减少,以减少对生物处理工艺的干扰。

主要操作包括除砂、除油、除渣等,常用的预处理设备有格栅、沉砂池和油水分离器等。

预处理后的废水进入生物处理系统。

生物处理是废水生化处理的核心环节,主要通过微生物代谢来降解和转化有机物质。

生物处理系统包括通气池(活性污泥池)、曝气系统和污泥回流系统。

通气池内有大量自由悬浮菌群和被吸附在污泥团聚体上的微生物,在有机物质的作用下进行吸附、降解和转化。

曝气系统通过气体进入废水中,增加氧气供应,促进微生物的生长和代谢活动。

污泥回流系统是为了维持生物处理系统内微生物的浓度和代谢状态,提高处理效果。

废水生化处理过程中,微生物对有机物质的降解可以分为两个阶段:废水中的有机物质首先由外源菌降解为简单有机物,然后被内源菌进一步降解为微生物生物质、水和CO2等无害物质。

在这个过程中,微生物的降解能力和代谢效率起着至关重要的作用。

因此,为了提高废水生化处理的效果,需要选择适宜的菌种和提供合适的环境条件,包括温度、pH值、溶解氧浓度、COD/N的比值等。

废水生化处理过程中产生的污泥需要进行处理和回收利用。

常用的污泥处理方法有浓缩、脱水和干化等。

污泥浓缩可以通过重力沉淀、离心沉淀或压滤等方式进行;脱水可以利用压力过滤、离心脱水或浓缩沉降等方法进行;污泥干化可以通过压榨、高温干燥等方式进行。

水污染控制工程:第十一章 污水生物处理的基本概念和生化反应动力学基础

水污染控制工程:第十一章  污水生物处理的基本概念和生化反应动力学基础
在去除SOM的生化处理过程中,许多呈 胶体状的不溶性有机物被微生物捕获利用, 并最终转化为稳定的不再受微生物活动影响 的稳定产物,这种稳定产物的形成过程称为 稳定化。
第十一章 污水生物处理的基本概念和生化反应动力 学基础
(1)生化转化:
C、溶解性无机物的转化(氮和磷的转化)
生活废水中氮的形态:氨和有机氮(包括氨基 酸、蛋白质、核苷)的形式存在。
Ⅱ 生物处理基本原理
2、微生物主要种类和作用
• 微生物主要种群:古细菌、细菌和真核生 物。生物处理中起作用的微生物属于古细 菌和细菌类群,但原生动物和其他微型真 核生物也有一定作用。
(1)细菌:细菌的分类方式很多,从水处理 工程角度,最重要的是从操作方式上分类。
第十一章 污水生物处理的基本概念和生化反应动力 学基础
第十一章 污水生物处理的基本概念和生化反应动力 学基础
•依据功能分类:
• 硝化菌
• 硝化反应是将氨氮转化为硝酸盐氮的过程。 在一群自养型好氧微生物的作用下,首先由 亚硝酸菌将氨氮转化为NO2-,称为亚硝酸反 应,第二阶段由硝酸菌将NO2-进一步氧化为 硝酸盐,称为硝化反应。
第十一章 污水生物处理的基本概念和生化反应动力 学基础
(3)真核生物:真菌和原生动物常常在 生物处理中出现。
第十一章 污水生物处理的基本概念和生化反应动力 学基础
第十一章 污水生物处理的基本概念和生化反应动力 学基础
(b)无氧呼吸 是指以含氧无机物,如NO3-, NO2-, SO42-, S2O32-, CO2等代替分子氧,作为最 终受氢体的生物氧化作用。
C6H12O6 + 6H2O —— 6 CO2 + 24 H 24 H + 4 NO3- —— 2N2 + 12 H2O 总反应式:

污水生化处理

污水生化处理

污水生化处理引言概述:污水生化处理是一种通过利用微生物降解有机物质的方法,将污水中的有害物质转化为无害物质的过程。

这种处理方式在环保领域中具有重要的意义,可以有效地减少污水对环境的污染。

本文将从五个方面详细介绍污水生化处理的相关内容。

一、生化处理原理1.1 微生物降解污水生化处理的核心是利用微生物对污水中的有机物质进行降解。

微生物通过吸附、吸附解吸、酸化、脱氮、脱磷等一系列过程,将有机物质转化为无机物质,从而实现对污水的净化作用。

1.2 氧化还原反应在污水生化处理过程中,微生物通过氧化还原反应将有机物质降解为无机物质。

其中,氧化反应是有机物质被氧化为二氧化碳和水,而还原反应是无机物质被还原为有机物质。

这些反应通过微生物的代谢过程实现。

1.3 生化反应动力学污水生化处理的效果受到生化反应动力学的影响。

生化反应动力学研究微生物对有机物质降解的速率和效率,从而确定最佳的处理条件。

常用的动力学参数有降解速率常数、半饱和常数等。

二、生化处理工艺2.1 好氧生化处理好氧生化处理是指在富氧条件下进行的污水处理过程。

在好氧条件下,微生物通过氧化反应将有机物质降解为无机物质,同时释放出能量。

这种处理工艺适合于有机物质浓度较高的污水处理。

2.2 厌氧生化处理厌氧生化处理是指在缺氧或者无氧条件下进行的污水处理过程。

在厌氧条件下,微生物通过还原反应将有机物质降解为无机物质,同时释放出能量。

这种处理工艺适合于有机物质浓度较低的污水处理。

2.3 生化处理的辅助工艺生化处理过程中,往往需要借助一些辅助工艺来提高处理效果。

常见的辅助工艺包括曝气、混合、沉淀等。

这些工艺能够增加氧气供应、促进微生物的生长和降解,提高处理效率。

三、生化处理设备3.1 活性污泥法活性污泥法是一种常用的生化处理设备,通过悬浮生物膜将污水中的有机物质降解。

在活性污泥池中,微生物通过吸附和降解的方式将有机物质转化为无机物质,从而净化污水。

3.2 生物膜反应器生物膜反应器是一种将微生物附着在固定载体上进行生化处理的设备。

第十一章 废水生物处理的基本概念和生化反应动力学基础

第十一章  废水生物处理的基本概念和生化反应动力学基础

酶促反应
微生物的酶是微生物体内合成的对生物化学反应具 有高度专一催化功能的特殊蛋白质。
酶促反应速度受酶浓度、底物浓度、pH、温度、 反应产物、活化剂和抑制剂等因素的影响。
3.5.1米 氏 方 程 式
1913年前后,米歇里斯和门坦提出了表示整个反应 中底物浓度与酶促反应速度之间关系的式子,称为米 歇里斯-门坦方程式,简称米氏方程式,即:
C6H12O6 6H 2O 6CO 2 24[H]
24[H] 4NO3 2N2 12H2O
总反应式: C6H12O6 4NO3 6CO2 6H2O 2N2 1755.6kJ
好氧呼吸、无氧呼吸、发酵三种呼吸方式, 获得的能量水平不同, 如下表所示。
呼吸方式 受氢体
化学反应式
好氧呼吸
能量利用率42%
分子氧
C6H12O6+6O2→ 6CO2+6H2O+2817.3kJ
无氧呼吸
发酵
能量利用率26%
无机物 有机物
C6H12C6+4NO3 - → 6CO2+6H2O+2N2↑+1755.6kJ
C6H12C6 →2CO2+2CH3CH2OH+92.0kJ
3.2.1 废水的好氧生物处理
v k,dA k
dt
A A0 kt
式中:v——反应速度; t——反应时间; k——反应速度常数
反应速度与反应物浓度的一次方成正比关系,称 这种反应为一级反应。对反应物A而言,一级反应:
v

k
,dA
A dt
kA
lg
A

lg
A0

kt 2.3

第十二章.废水生化处理

第十二章.废水生化处理

无氧呼吸 发酵 能量利用率26 26% 能量利用率26%
无机物 有机物
C6H12C6 →2CO2+2CH3CH2OH+92.0kJ
依据细胞炭源、电子供体、 依据细胞炭源、电子供体、电子受体和最终产物对微生物分类
细菌类型 好氧异养菌 好氧自养菌 常用 反应名称 好氧氧化 硝化 铁氧化 硫氧化 兼性异养菌 厌氧异养菌 缺氧脱氮反 应 酸发酵 铁还原 硫酸盐还原 甲烷化 炭源 有机化合物 CO2 CO2 CO2 有机化合物 有机化合物 有机化合物 有机化合物 有机化合物 电子供体 (基质) 基质) 有机化合物 NH3、NO2- Fe(Ⅱ) ( H2S、S0、 、 - S2O32- 有机化合物 有机化合物 有机化合物 有机化合物 VFAs 电子受体 O2 O2 O2 O2 NO2-、NO3
酶 反 应 速 度 v
vmax
n=0 1/2 vmax 0<n<1
n=1
KS
底物浓度[S] 底物浓度
中间产物假说: 酶促反应分两步进行, 中间产物假说: 酶促反应分两步进行,即酶与底 物先络合成一个络合物(中间产物),这个络合物再进 物先络合成一个络合物(中间产物),这个络合物再进 ), 一步分解成产物和游离态酶,以下式表示: 一步分解成产物和游离态酶,以下式表示:
温度超过最高生长温度时,蛋白质迅速变性及酶系统 温度超过最高生长温度时, 遭到破坏而失活,严重者可使微生物死亡。 遭到破坏而失活,严重者可使微生物死亡。 低温会使微生物代谢活力降低,生长繁殖停止状态, 低温会使微生物代谢活力降低,生长繁殖停止状态, 但仍保存其生命力。 但仍保存其生命力。
pH值 值 影 响 微 生 物 生 长 的 环 境 因 素 不同的微生物有不同的pH适应范围。 不同的微生物有不同的 适应范围。 适应范围 细菌、放线菌、藻类和原生动物的 适应范围是 细菌、放线菌、藻类和原生动物的pH适应范围是 之间。 ~ 之间 在4~10之间。 大多数细菌适宜中性和偏碱性(pH=6.5~7.5)的 大多数细菌适宜中性和偏碱性( = ~ ) 环境。 环境。 废水生物处理过程中应保持最适pH范围。 废水生物处理过程中应保持最适 范围。 范围 当废水的pH变化较大时,应设置调节池, 当废水的 变化较大时,应设置调节池,使进入 变化较大时 反应器(如曝气池)的废水,保持在合适的 范围 范围。 反应器(如曝气池)的废水,保持在合适的pH范围。

废水生化处理理论基础

废水生化处理理论基础

废水生化处理理论基础废水处理是指对工业、农业、生活等生产和生活活动中所产生的废水进行处理,将废水中的各种有害物质去除或降低,使其达到环境排放标准,保护环境、维护生态平衡。

废水处理技术较为复杂,其中生化处理是一种常用的处理方法。

本文将介绍废水生化处理的理论基础。

1. 废水生化处理概述废水生化处理是利用微生物的生物化学作用,将有机物质降解成较为稳定、不易污染环境的无机物质,以实现对废水的净化处理。

生化处理一般包括好氧生物处理和厌氧生物处理两种方式。

•好氧生物处理:好氧生物处理是指在充氧的条件下,利用好氧微生物将废水中的有机物质氧化分解为二氧化碳和水。

这种处理方式对细菌的要求较高,需要提供足够的氧气。

•厌氧生物处理:厌氧生物处理是指在没有氧气的条件下,利用厌氧微生物将废水中的有机物质降解成沼气、二氧化碳等产物。

这种处理方式对微生物的适应能力要求较高,处理效果也较好。

2. 废水生化处理原理废水生化处理的基本原理是将废水中的有机物质通过生物作用转化为无机物质。

有机物质能够为微生物提供能量和生长所需的碳、氮、磷等元素,而微生物则通过代谢作用将有机物质降解为无机物质。

生化处理的主要过程包括:•底物的降解:微生物利用底物(有机物质)作为碳源和能源,在水体中进行降解反应,生成底物降解产物和生物体。

•底物的转化:底物降解产物经过一系列酶类的作用,逐步转化为无害的终产物,如CO2、H2O等。

•生物体的生长:底物的降解还伴随着微生物的生长和繁殖,微生物的数量和种类变化也会影响处理效果。

3. 废水生化处理的关键技术废水生化处理的关键技术包括微生物培养、废水处理工艺设计、氧气供给等方面。

其中,微生物在生化处理中扮演着重要的角色,其培养和管理对处理效果至关重要。

•微生物培养:合理选择适应性强、活性高的微生物种类,进行培养和管理,提高其降解效率和处理能力。

•工艺设计:根据废水特性和处理要求设计合理的生化处理工艺,包括反应器设置、曝气方式、混合方式等。

废水生物处理理论基础.ppt

废水生物处理理论基础.ppt
的有机物和无机物(如有机酸、CO2、H2O等),再 被甲烷菌进一步转化为甲烷和CO2等,并释放能 量的过程。
❖ 按照代谢过程中受氢体的不同,又分为发酵和无氧呼吸。
➢ 发酵:指供氢体都是有机化合物的生物氧化作用,最终 受氢体是供氢体的分解中间产物(有机物)。发酵是一 种厌氧状态。
➢ 无氧呼吸:指以无机含氧化合物,如NO3-、NO2- 、SO42- 、 S2O32- 、CO2等代替分子氧作为最终受氢体的生物氧化作 用。无氧呼吸是一种缺氧状态。
第3篇 污水的生物处理法
第1章 第2章
第3章
第4章 第5章
污水生物处理理论基础 污水好氧生物处理(一) ——活性污泥法 污水好氧生物处理(二) ——生物膜法 污水厌氧生物处理 污水的自然生物处理
2020/5/2
1
第1章 废水生化处理理论基础
1.1 废水生化处理微生物基础 1.2 反应速度和酶促反应速度 L 1.3 微生物的生长动力学 L 1.4 废水的可生化性 L 1.5 废水生化处理方法概述 L
好氧分解代谢:是好氧微生物和兼性微生物 参与,在有溶解氧的条件下,将有机物分解 为CO2和H2O,并释放出能量的代谢过程。在有 机物氧化过程中脱出的氢[H]是以氧作为受氢 体。通常称为有氧(好氧)呼吸。
2020/5/2
6
厌氧分解代谢:是厌氧微生物和兼性微生物参与,
在无溶解氧的条件下,将复杂有机物分解成简单
物、后生动物。
2020/5/2
3
主要内容:
微生物的新陈代谢 微生物的生长规律 微生物的生长环境
2020/5/2
4
二、微生物的新陈代谢
概念:微生物在生命活动过程中,不断从外界环境中
摄取营养物质,并通过复杂的酶催化反应,将其加以 利用,提供能量并合成新的生物体,同时又不断向外 界环境排泄废物。这种为了维持生命活动过程与繁殖 下代而进行的各种化学变化称为新陈代谢。

废水生化处理基础知识

废水生化处理基础知识

混合液悬浮固体浓度
MLSS(混合液悬浮固体浓度):指曝气池 中污水和活性污泥混合后的混合液悬浮固 体数量,用MLSS表示,单位是mg/L。它近 似的表示曝气池中活性微生物的浓度,是 运行管理的一个重要参数。
MLVSS(混合液挥发性悬浮固体浓度): 指混合液中悬浮固体中有机物的含量,用 MLVSS表示,它较MLSS更能确切的代表 活性污泥微生物的数量。
营养元素
营养元素在工业废水生化处理中作用至关重要。生物培养的微生物按 照其细胞组成及代谢性质,在生长繁殖过程中需要一定量的营养元素, 主要以氮磷为主。所以工业废水生物培养过程中,需要经常性的投加 营养物质,以保证废水中有足够的氮和磷。 BOD:N:P=100:5:1,这是好氧生化系统中的比例,在好氧生化 培养中,缺乏氮元素将导致丝状的或者分散状的微生物群体产生,使 其沉降性能差。另外,缺乏氮元素使新的细胞难以形成,而老的细胞 继续去除BOD物质,结果微生物向细胞壁外排泄过量的副产物——绒 毛状絮状物,这些絮状物沉淀性能差。根据经验,从废水中每去除 100kgBOD需要加5kg氮和1kg磷。 在许多条件下,氮以氨形式,磷 以磷酸形式加入废水中。细菌需要氮以产生蛋白质,需要磷以产生分 解废水中有机物质的酶。一般细菌较易利用氨态氮,在处理工业废水 时,如果废水含氮量低,不能满足微生物的需要,需要另外补加氮营 养,如尿素、硫酸铵、粪水等。微生物中主要以细菌对磷的要求较多, 工业废水中一般需要补加磷元素,如磷酸钾、磷酸钠等。
污泥的沉降比
SV30(污泥的沉降比):污泥的沉降比是指曝气 池中的混合液在1000ml的量筒中,静置30min后, 沉降污泥与混合液的体积之比,一般用SV30表示。 SV30是衡量活性污泥沉降性能和浓缩性能的一个 指标。对于某种浓度的活性污泥,SV30越小,说 明其沉降性能和浓缩性能越好。正常的活性污泥 其MLSS浓度为1500~4000mg/L。SV30一般在 15%~30%的范围内。

废水生化处理的原理与工艺

废水生化处理的原理与工艺

废水生化处理的原理与工艺一、废水生化处理的原理废水生化处理是基于微生物的生物降解作用来去除有机污染物。

废水中的有机物质可以作为微生物的营养源,微生物通过代谢作用将有机物质分解成较为简单的物质,如水、二氧化碳和微生物体。

废水生化处理主要包括以下原理:1.微生物降解:废水中的有机物质可以被微生物降解成较为简单的物质。

微生物通常包括细菌、真菌和原生动物等,它们利用废水中的有机物质作为碳源和能源进行生长繁殖,同时产生一些酶来降解有机污染物。

2.好氧降解和厌氧降解:废水生化处理可以分为好氧降解和厌氧降解两种方式。

在好氧条件下,微生物通过氧化废水中的有机物质来获得能量,产生二氧化碳和水。

而在厌氧条件下,微生物则在缺氧或无氧的环境中降解有机物质,产生二氧化碳、甲烷和硫化物等。

3.混合液中的微生物种类和数量:废水生化处理的效果与混合液中微生物种类和数量有密切关系。

一般情况下,通过调控混合液中微生物的种类和数量,可以提高废水处理的效率和稳定性。

可以通过投加活性污泥或者合成填料等方式来增加微生物的数量和种类。

二、废水生化处理的工艺1.活性污泥法:活性污泥法是废水生化处理的传统工艺,主要包括曝气池、第一沉淀池、生化池和第二沉淀池等单元。

曝气池通过强制通入空气来为微生物提供氧气,促进微生物的生长和降解有机物质。

在生化池中,有机物质被微生物消耗并降解,生成二氧化碳、水和生物体。

第一沉淀池用于沉淀一部分混合液中的固体物质,而第二沉淀池则用于进一步沉淀微生物。

沉淀后的污泥可以通过回流的方式再次进入生化池,延长微生物的生命周期。

2.膜生物反应器法:膜生物反应器法是近年来发展起来的一种废水生化处理工艺,主要包括MBR(膜生物反应器)和MBBR(移动床生物反应器)两种。

MBR通过在生化池内安装微孔膜,将废水与微生物有效分离,使废水中的微生物无法进入出流液中。

MBBR则通过在生化池内加入流态填料,提高微生物的附着和生长面积,从而增加废水的处理效果。

废水生化处理知识汇总(详细全面)

废水生化处理知识汇总(详细全面)

废水生化处理知识汇总(详细全面)1、什么叫废水的生化处理?废水的生物化学处理是废水处理系统中最重要的过程之一,简称生化处理。

生化处理是利用微生物的生命活动过程将废水中的可溶性的有机物及部分不溶性的有机物有效地去除,使水得到净化。

事实上,我们对生化处理并不是很陌生的,天然的水体中存在着一条食物链,即大鱼吃小鱼,小鱼吃虾米,虾米吃小虫,小虫吃微生物,微生物吃污水,如果没有这条食物链,自然界就要乱套了。

在天然的河流中,有着大量的、依靠有机物生活的微生物,它们日日夜夜地将人们排入河流中的有机物(如工业废水、农药化肥、粪便等等有机物质)氧化或还原,最终转化为无机物质,如果没有微生物的存在,我们周围的河流,少则几个月,多则一、二年,就会成为臭河了,只是由于微生物太微小太分散,以致人们的肉眼看不见罢了。

而废水的生化处理工程则是在人工条件下对这一过程的强化。

人们将无以计数的微生物全部集中在一个池子内,创造一个非常适合微生物繁殖、生长的环境(如温度、pH值、氧气、氮磷等营养物质),使微生物大量增殖,以提高其分解有机物的速度和效率。

然后再往池内泵入废水,使废水中的有机物质在微生物的生命活动过程中得到氧化降解,使废水得到净化和处理。

与其他处理方法相比,生化法具有能耗低、不加药、处理效果好、处理费用低等特点。

2、微生物是通过何种方式将废水中的有机污染物分解去除掉的?由于废水中存在碳水化合物、脂肪、蛋白质等有机物,这些无生命的有机物是微生物的食料,一部分降解、合成为细胞物质(组合代谢产物),另一部分降解氧化为水份,二氧化碳等(分解代谢产物),在此过程中废水中的有机污染物被微生物降解去除。

3、微生物与哪些因素有关?微生物除了需要营养,还需要合适的环境因素,如温度、pH值、溶解氧、渗透压等才能生存。

如果环境条件不正常,会影响微生物的生命活动,甚至发生变异或死亡。

4、微生物最适宜在什么温度范围内生长繁殖?在废水生物处理中,微生物最适宜的温度范围一般为16-30℃,最高温度在37-43℃,当温度低于10℃时,微生物将不再生长。

11废水生物处理基本原理

11废水生物处理基本原理


⑶真菌:活性污泥中的真菌主要是腐生或寄 生的丝状菌。具有分解碳水化合物、脂肪、 蛋白质及其他含氮化合物的功能,但若大量 异常地增殖会导致产生污泥膨胀现象。真菌 在活性污泥中的大量出现往往与水质有关, 某些含碳较高或pH较低的工业废水处理系统 中常可观察到较多的霉菌出现。


⑷原生动物:废水净化由差变好的过程中,依次出 现:肉足虫→游泳型纤毛虫→固着型纤毛虫 ⑸微型后生动物:后生动物在活性污泥系统中并不 经常出现,只有在处理水质良好时才有一些微型后 生动物存在,主要有轮虫、线虫和寡毛类。它们多 以细菌、原生动物以及活性污泥碎片为食。一般来 说,轮虫的出现反映了有机质的含量较低,水质较 好;线虫可在城市污水厂的活性污泥中大量存在。 活性污泥中的寡毛类以颤蚯蚓为代表,是活性污泥 中体形最大、分化较高级的一种多细胞生物。
轮虫、线虫、 寡毛类的沙 蚕、顠体虫 去除滤池内的 污泥、防止污 泥积聚和堵塞
生物组成
以菌胶团为主 要组分,辅以 固着型纤毛虫及 浮游球衣菌、 游泳型纤毛虫 藻类等 净化和稳定 污、废水水质 促进滤池净化速 度,提高滤池整 体的处理效率
功能
(二)生物膜对有机物质的降解及其生长
①有机物从流动水中通过扩散作用转移到附着水中去,同时氧 也通过流动水、附着水进入生物膜的好氧层; ②生物膜中的有机物进行好氧分解;代谢产物如CO2、H2O等 无机物沿相反方向排至流动水层及空气中;
厌氧消化机理
厌氧生物处理(或称厌气生物处理)是在无氧的条件
下,借厌氧微生物(包括兼性微生物),主要是厌氧菌 (包括兼性菌)的作用来进行的。
厌氧活性污泥净化废水的作用机理:
三阶段理论:
▲水解发酵阶段
▲产氢、产乙酸阶段 ▲产甲烷阶段 乙酸

第十一章-污水生物处理的基本概念生化反应动力学基础

第十一章-污水生物处理的基本概念生化反应动力学基础
②原水中含有的有机碳;
③内源呼吸碳源——细菌体内的原生物质及其贮存 的有机物。
反硝化反应的适宜pH值为6.5~7.5。pH 值高于8或低于6时,反硝化速率将迅速 下降。
反硝化反应的温度范围较宽,在5℃~ 40℃范围内都可以进行。但温度低于 15℃时,反硝化速率明显下降。
4.同化作用
11.2 微生物的生长规律和生长环境
一、微生物的生长 规律
1、停滞期
2、对数期 3、静止期 4、衰老期
实际运用中,将活性污泥控制在哪个生长期?为什么?
11.2 微生物的生长规律和生长环境
原生动物 5
后生动物
11.2 微生物的生长规律和生长环境
二、微生物的生长环境 (一)、微生物的营养
水处理中微生物对C、N、P三大营养元素的要求:
好氧吸磷:进入好(缺)氧状态后,聚磷菌将储存 于体内的PHB进行好氧分解并释出大量能量供聚磷菌 增殖,部分供其主动吸收污水中的磷酸盐,以聚磷 的形式积聚于体内,这就是好氧吸磷。
由于活性污泥在运行中不断增殖,为了系统的稳定 运行,必须从系统中排除和增殖量相当的活性污泥, 也就是剩余污泥。剩余污泥中包含过量吸收磷的聚 磷菌,也就是从污水中去除的含磷物质。 (正常细 胞含磷1%~3%,聚磷菌吸磷量可达12%)
3.反硝化作用
污水中的硝态氮NO3--N和亚硝态氮NO2--N, 在无氧或低氧条件下被反硝化细菌还原成氮气的 过程。具体反应如下: 6NO2-+3CH3OH→ 3N2+3CO2+3H2O+6OH- 6NO3-+5CH3OH→ 3N2+7H2O+5CO2+6OH-
反硝化菌属异养型兼性厌氧菌,在 有氧存在时,它会以O2为电子受体进行 好氧呼吸;在无氧而有NO3-或NO2-存在 时,则以NO3-或NO2-为电子受体,以有 机碳为电子供体和营养源进行反硝化反 应。

水处理技术之——废水处理的基本知识

水处理技术之——废水处理的基本知识

水处理技术之——废水处理的基本知识废水的生化培养过程是一项复杂的工作。

其理论基础涵盖物理学、无机化学、有机化学、微生物学、流体力学等诸多学科,虽然最早的活性污泥过程已有近百年的历史。

然而,许多理论在学术界仍无定论。

因此,在本项目的废水生化处理过程中,经营者和管理者必须在深入的理论研究的基础上,结合公司废水的具体情况,不断探索和实践生化培养过程,并实现了系统的正常运行。

在保证废水达标的前提下,提高其理论深度,丰富其实践经验,完成技术储备。

废水生化处理的调试主要是在微生物培养的基础上进行的,根据微生物的好氧条件可分为好氧处理、同步好氧处理和厌氧处理,根据微生物的生长形态可分为活性污泥法和生物膜法。

根据废水和微生物的形态,可分为完全混合型、序批式等,而反应器的形式又可分为更多的类型。

1、温度温度在生化培养过程中起着重要的作用。

各个生化反应系统和各个运行阶段的温度的测量和分析仍然对生化污泥的驯化和培养过程起着指导作用,并帮助管理者和运营者对系统的运行和管理做出正确而及时的判断。

温度极大地影响活性污泥中的微生物活性程度(包括厌氧、兼性和好氧)以及诸如溶解氧、通气等的影响,同时影响生化反应的速率。

不同类型的微生物在不同的温度范围内生长。

根据微生物适应的温度范围,微生物可分为三类:中温、高热、高寒。

中温微生物的生长温度为20~45℃,低温好微生物在20℃以下,高温好微生物在45℃以上。

一般废水处理中主要是中等温度的细菌进行生物需氧生物处理,生长和繁殖的最佳温度为20℃~37℃。

当温度超过最高生物生长温度时,会迅速使微生物的蛋白质变性,破坏酶系统,失去活性。

在严重的情况下,微生物会死亡。

低温会降低微生物的代谢活性,进而停止生长繁殖,但仍保存其生命力。

厌氧生物处理中温甲烷细菌的最佳温度范围在20℃至40℃之间,高温为50℃~60℃。

厌氧生物处理通常使用33℃~38℃和50℃~57℃的温度。

2、pH值不同的微生物具有不同的pH适应范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


污水的厌氧生物处理法(15章)

城市污水的深度处理(16章)


污水的自然处理法(17章 稳定塘和污水的土地处理)
污泥的处理和处置(19章)
污水处理处理后的再利用与排放(18章) 污水处理厂的设计(20章)
第十二章 废水生化处理理论基础
第一节 第二节 第三节 第四节 第五节
废水处理微生物基础 酶及酶反应 微生物生长动力学 废水的可生化性 废水生化处理方法总论
第一节 废水处理微生物基础
一 微生物的新陈代谢
新陈代谢:微生物不断从外界环境中摄取营养物质,通过生物酶 催化的复杂生化反应,在体内不断进行物质转化和交换的过程。
分解代谢:分解复杂营养物质,降解高能化合物,获得能量。 合成代谢:通过一系列的生化反应,将营养物质转化为复杂的 细胞成分,机体制造自身。
根据受氢体的不同分为
好氧呼吸
厌氧呼吸
根据氧化底物、产物不同
按反应过程最终受氢体不同
异养型微生物 自养型微生物
发酵
无氧呼吸
好氧呼吸
分子氧参与生物氧化, 最终受氢体是分子氧。 底物中的氢被脱氢酶活化,并从底物中脱出交给辅酶 (递氢体),同时放出电子,氧化酶利用底物放出的电子 激活游离氧、活化氧和从底物中脱出的氢结合成水。
如有机污泥的厌氧消化过程中产生的甲烷,是含有相当能量的可燃 气体。
厌氧呼吸按反应过程中的最终受氢体的不同,可分 为发酵和无氧呼吸。
发酵 供氢体和受氢体都是有机化合物的生物氧化作用,最终 受氢体就是供氢体的分解产物(有机物)。 有机物氧化不彻底,最终形成的还原性产物,是比原来 底物简单的有机物,在反应过程中,释放的自由能较少,故 厌氧微生物在进行生命活动过程中,为了满足能量的需要, 消耗的底物要比好氧微生物的多。 例如,葡萄糖的发酵过程
第十二章 废水生化处理理论基础
废水生物处理过程是污水自净的人工强化过程。
食料移动
产物移动
有机物 溶解性 N、P 胶体状
细菌 原生动物 后生动物
处理出水 增殖微生物
提供条件
反应器
分离
废水生化处理理论基础(12章)
污水的好氧生物处理--活性污泥法(13章)

污水的好氧生物处理--生物膜法(14章)

分解代谢 (异化作用)
新陈代谢
合成代谢 (同化作用)
复杂物质分解为简单物质
释放能量 吸收能量
能量代谢
简单物质合成为复杂物质
物质代谢
能量循环:三磷酸腺苷ATP(adenosine triphosphate) AMP+~P→ADP+ ~P →ATP
ADP磷酸化生成ATP;ATP水解产生能量。
低能化合物 高能化合物
ATP
磷酸根
+
ADP
细胞合成
能 量
生理需要
热能释放
微生物的呼吸
通过呼吸作用,复杂有机物逐步转化为简单物质。呼吸作用过 程中吸收和同化各种营养物质。
呼吸作用中发生能量转换:供细胞合成、其他生命活动,多余 的能量以热量形式释放。
呼吸作用的本质是生物氧化和还原的统一
微生物的呼吸类型
微生物呼吸指微生物获取能量的生理功能
内源呼吸产物 + 能量
(CO2、H2O、NH3、SO42-…)
内源呼吸残留物
O2
净增细胞物质
剩余污泥
好氧生物处理中自养微生物代谢途径
无机代谢产物
少量能量
代谢产物
+ 能量
O2
(N02、NO3、SO42、Fe3+ …)
污水中的无机污染物
(NH3、NO2、H2S、Fe2+…) + 自养菌
CO2
氧化
C6H12O6 2CH 3COCOOH 4[H]
2CH 3COCOOH 2CO 2 2CH 3CHO
4[H] 2CH 3CHO 2CH 3CH 2OH
总反应式:
C6H12O6 2CH 3CH 2OH 2CO 2 226kJ
无氧呼吸
是指以无机氧化物,如NO3-,NO2-,SO42-,S2O32-, CO2等代替分子氧,作为最终受氢体的生物氧化作用。
光能自养微生物:以光能作为能源,依靠体内的光合 作用色素合成有机物。
CO2+H2O

叶绿素
[CH2O]+O2
化能自养微生物:不具备色素,合成有机物所需的能量 来自氧化NH3、H2S等无机物。
H2S 2O 2 H2SO4 能量
大型合流污水沟道和污水

NO
NAD(P)
2H

NAD(P)H
H
2H
NAD(P)烟酰胺腺嘌呤二核苷酸(磷酸)
好氧呼吸过程实质上是脱氢和氧活化相结合的过程。在 这个过程中,同时放出能量。
异养型微生物 异养型微生物以有机物为底物(电子供体),产物为 二氧化碳、氨和水等无机物,同时放出能量。如下所示:
C6H12O6 6O 2 6CO 2 6H 2O 2817.3kJ
C11H29O7 N
14O
2

H
11CO
2
13H
2O

NH
4
能量
异氧微生物可分为化能异氧微生物和光能异氧微生物。 化能异氧微生物:氧化有机物产生化学能的微生物。 光能异氧微生物:以光为能源,以有机物为供氢体还 原CO2,合成有机物的微生物。
自养型微生物 自养型微生物以无机物为底物(电子供体),最终产 物也是无机物,同时放出能量。
如反硝化过程,受氢体为NO3-,可用下式所示:
总反应式:
C6H12O6 6H 2O 6CO 2 24[H] 24[H] 4NO3 2N2 12H2O
合成
新的细胞物质 (C5H7NO2)
内源呼吸
O2
净增细胞物质
内源呼吸产物 + 能量
(CO2、H2O、NH3、SO42…)
内源呼吸残留物
剩余污泥
厌氧呼吸
厌氧呼吸是在无分子氧(O2)的情况下进行的生物 氧化。
厌氧微生物只有脱氢酶系统,没有氧化酶系统。在 呼吸过程中,底物中的氢被脱氢酶活化,脱下来的氢 经辅酶传递给除氧以外的有机物或无机物,使其还原。 厌氧呼吸的受氢体不是分子氧。在厌氧呼吸过程中, 最终产物不是二氧化碳和水,而是一些较原来底物简 单的化合物。释放能量较少。
3

2H

H2O
能量
生物脱氮工艺中的生物硝化过程
好氧生物处理中异养微生物代谢途径
无机代谢产物
污水中的可 降解有机物
+ 异养微生物
代谢产物
+ 能量
O2
(CO2、H2O、NH3、SO42-…)
(1/3) 分解代谢
少量能量
(2/3) 合成代谢
新细胞物质
(C5H7NO2)
~80%
内源呼吸
~20%
相关文档
最新文档