太阳能电池的特性测量
太阳能电池特性的测量实验报告
太阳能电池特性的测量实验报告竭诚为您提供优质文档/双击可除太阳能电池特性的测量实验报告篇一:太阳能电池特性测量实验本科学生实验报告学号姓名学院物电学院专业、班级12级光电子班实验课程名称太阳能电池特性测量实验教师及职称开课学期学期填报时间日云南师范大学教务处编印一、实验设计方案篇二:实验报告--太阳能电池伏安特性的测量实验报告姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期:太阳能电池伏安特性的测量【实验目的】1.了解太阳能电池的工作原理及其应用2.测量太阳能电池的伏安特性曲线【实验原理】1.太阳电池的结构以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图2.光伏效应图二太阳电池发电原理示意图当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区.如果外电路处于开路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结上产生一个光生电动势.这一现象称为光伏效应(photovoltaiceffect,缩写为pV).3.太阳电池的表征参数太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n区到p区的光生电流Iph.同时,由于pn结二极管的特性,存在正向二极管电流ID,此电流方向从p区到n区,与光生电流相反.因此,实际获得的电流I为(1)式中VD为结电压,I0为二极管的反向饱和电流,Iph为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n称为理想系数(n值),是表示pn结特性的参数,通常在1~2之间.q为电子电荷,kb为波尔茨曼常数,T为温度.。
太阳能电池特性测量
实验一太阳能电池的特性曲线测定
【实验目的】
测定太阳能电池的电流—电压特性及其功率曲线。
【实验原理】
太阳能电池模块的性能不仅与电池本身的特性有关,同时也和回路中的负载有关。
通过实验可以测定最大功率点,及MPP点,在此位置可以获得太阳能电池模块的最大输出功率。
测试电路如下:
【实验仪器】
太阳能电池模块1个,光源1个,电阻箱1个,电压、电流传感器各1个,
750型数据转换器1台,微型计算机1台。
【操作程序和数据】
如图连接电路。
将电压传感器和电流传感器与转换器连接并打开电源。
打开光源使灯光直射到太阳能电池板上。
等待一分钟以避免由于温度起伏引起的误差。
然后从开路状态(R=∞)开始测量电流—电压曲线,之后逐渐减小电阻,对每一个阻值记录相应得电压和
电流。
为了得到有代表性的结果,每一对数据测量的时间持续20秒左右。
【数据记录及数据处理】
根据记录的数据画出电流—电压曲线和电流—功率曲线。
【注意事项】
1.光源距离太阳能电池板的距离不宜太近,以免损坏太阳能电池。
2.实验过程中要注意观察回路中的输出电流,最大电流不能超过1.5A,以免损坏电流传感器。
1。
太阳能电池基本特性的测量
太阳能电池基本特性的测量一、实验目的:1、在没有光照时,太阳能电池主要结构为一个二极管,测量该二极管在正向偏压时的伏安特性曲线,并求得电压和电流关系的经验公式。
2、测量太阳能电池在光照时的输出伏安特性,作出伏安特性曲线图,从图中求得它的短路电流(SC I )、开路电压(OC U )、最大输出功率m P 及填充因子FF ,)]U I /(P FF [O C SC m ∙=。
3、测量太阳能电池的光照特性:测量短路电流SC I 和相对光强度0T T 之间关系,画出SC I 与相对光强0T T 之间的关系图;测量开路电压OC U 和相对光强度0T T之间的关系,画出OC U 与相对光强0T T之间的关系图。
二、实验原理:1、太阳能电池工作原理:太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 的关系式为:)1e (I I Uo -∙=β (1)(1)式中,o I 和β是常数。
由半导体理论,二极管主要是由能隙为V C E E -的半导体构成,如图1所示。
CE 为半导体导电带,V E 为半导体价电带。
当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。
电子和空穴对会分别受到二极管之内电场的影响而产生光电流。
假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻sh R 与一个电阻s R 所组成,如图2所示。
图2中,ph I 为太阳能电池在光照时的等效电源输出电流,d I 为光照时通过太阳能电池内部二极管的电流。
由基尔霍夫定律得:0R )I I I (U IR sh d ph s =---+ (2)(2)式中,I 为太阳能电池的输出电流,U 为输出电压。
由(1)式可得,dshph sh s I R U I )R R 1(I --=+(3) 假定∞=sh R 和0R s =,太阳能电池可简化为图3所示电路。
这里,)1e (I I I I I U 0ph d ph --=-=β。
太阳能电池特性测量
太阳能电池无光照特性测量实验目的在没有光照时,太阳能电池主要结构为一个二极管,测量该二极管在正向偏压时的伏安特性曲线实验器材THQTN-1型太阳能电池特性测试仪(太阳能电池板、光功率计探头、直流电压表、直流电流表、直流稳压电源、负载电阻、入射光强指示、白炽灯、导轨等)实验原理一.太阳能电池板结构以硅太阳能电池为例,结构示意如图1。
硅太阳能电池是以硅半导体材料制成的大面积PN 结经串联、并联构成。
在N 型材料层面上制作金属栅线为面接触电极,这样就形成了太阳能电池板。
为了减少光电池表面的反射损失,一般在表面覆盖一层减反射膜。
二.无光照时,太阳能电池正向U I -特性太阳能电池工作原理基于光伏效应。
当光照射到太阳能电池板时,太阳能电池能够吸收光的能量。
并将所吸收的光子的能量转换为电能。
在没有光照时,可将太阳能电池视为一个二极管,其正向电压与通过的电流I 的关系为0(1)U I I e β=- 式中,o I 和β是常数。
实验步骤:一.测量太阳能电池无光照时的伏安特性实验条件:用遮光罩挡光,使太阳能电池无光照。
太阳能电池正向电压测量范围:0~3.00V ,测量10个点,变化明显处测量间隔要小。
测量电路如图2所示。
太阳光电极 N P 型射膜图1 太阳能电池板结构示意图图2二.步骤:1.用导线按照电路图将实物连接好。
2.太阳电池合上暗室盖,电流表选择2mA档。
3.调节直流稳压电源,使电压值显示为数据表所示4.记录相应数据填入数据表中。
5.根据表格画出太阳电池无光照下的伏安特性曲线。
实验完成,整理好导线及器材。
实验结论:画出太阳能电池无光照时的伏安特性曲线。
仪器介绍:太阳能电池特性测试实验仪主要由两部分组成:1.太阳能电池实验仪部分有:太阳能电池板及锁紧螺钉,光功率计探头,白炽灯,导轨,底座,实验装置如图2所示。
图22.太阳能电池测试仪部分有:直流电压表,直流电流表,入射光强指示,直流稳压电源,负载电阻。
测试仪面板如图3所示。
太阳能电池的特性测量
太阳能电池的特性测量实验目的1. 测量不同照度下太阳能电池的伏安特性、开路电压U 0和短路电流I s 。
2. 在不同照度下,测定太阳能电池的输出功率P 和负载电阻R 的函数关系。
3. 确定太阳能电池的最大输出功率P max 以及相应的负载电阻R max 和填充因数。
原理当光照射在距太阳电池表面很近的pn 结时,只要入射光子的能量大于半导体材料的禁带宽度E g ,则在p 区、n 区和结区光子被吸收会产生电子-空穴对(如图1)。
那些在 pn 结附近n 区中产生的少数载流子由于浓度梯度而要扩散。
只要少数载流子离pn 结的距离小于它的扩散长度,总有一定几率扩散到结界面处。
在p 区与n 区交界面的两侧即结区,存在一空间电流区,也称为耗尽区。
在耗尽区中,正负电荷间形成一电场,电场方向由n 区指向p 区,这个电场称为内建电场。
只有p 区的光生电子和n 区的光生空穴和结区的电子空穴对(少子)扩散到结电场附近时能在内建电场作用下漂移过结。
光生电子被拉向n 区,光生空穴被拉向p 区,即电子空穴对被内建电场分离。
这导致在n 区边界附近有光生电子积累,在p 区边界附近有光生空穴积累。
它们产生一个与热平衡pn 结的内建电场方向相反的光生电场,其方向由p 区指向n 区。
这一现象称为光伏效应(Photovoltaic effect )。
图1 太阳能电池的工作原理太阳能电池的工作原理是基于光伏效应的。
当光照射太阳电池时,将产生一个由n 区到p 区的光生电流I s 。
同时,由于pn 结二极管的特性,存在正向二级管电流I D ,此电流方向从p 区到n 区,与光生电流相反。
因此,实际获得的电流I 为两个电流之差:)()(D S U I ΦI I -= (1)如果连接一个负载电阻R ,电流I 可以被认为是两个电流之差,即取决于辐照度Φ的负方向电流I s ,以及取决于端电压U 的正方向电流I D 。
由此可以得到太阳能电池伏安特性的典型曲线(见图2)。
大学物理研究性实验报告_太阳能电池的特性测量
大学物理研究性实验报告_太阳能电池的特性测量摘要:本实验旨在通过特性测量方法研究太阳能电池的工作机理和特性参数,并验证太阳能电池的光伏效应。
在实验中,使用太阳能电池组分别测量其短路电流、开路电压、最大功率输出和填充因子等参数,并绘制出其伏安特性曲线和功率曲线。
实验结果表明,太阳能电池的输出电流、输出电压和输出功率都随光照强度的增加而增加,但是衰减左右场景不同,衰减较快的为室外光照强度较强场景。
太阳能电池的最大功率输出点需根据不同光照强度下自行求解,而填充因子对太阳能电池的输出功率有显著影响。
关键词:太阳能电池;特性测量;伏安特性曲线;功率曲线;光伏效应;填充因子 1. 实验原理太阳能电池是一种将光能直接转换为电能的装置,其工作原理是基于光伏效应。
当光照射在半导体材料上时,会在材料内部产生电子-空穴对,即通过光照,半导体材料内的电子从价带跃升到导带,留下空穴。
由于这些电子和空穴在电场作用下会分别向相反的电极移动,因此在同一方向引出电流,形成光生电动势。
太阳能电池的主要参数包括短路电流$I_{sc}$、开路电压$V_{oc}$、最大功率输出$P_{max}$和填充因子$FF$。
短路电流是在电池组端口短路状态下的输出电流,而开路电压是在电池组端口开路状态下的电压。
最大功率输出是在负载电阻为某一特定值时,电池组所输出的最大功率。
填充因子是指在最大功率输出条件下,电池组实际输出功率与在同等照射强度下能产生的最大功率之比,即$FF=P_{max}/(V_{oc}\times I_{sc})$。
2. 实验方法(1)测量太阳能电池的短路电流$I_{sc}$将太阳能电池组放置在光源下,使其所在平面与光线垂直,调节光源照射强度至较大值,记录短路电流的数值。
此时,太阳能电池组端口暂时不接任何负载电阻。
(图1)(3)测量太阳能电池的最大功率输出$P_{max}$和填充因子$FF$将太阳能电池组放置在光源下,使其所在平面与光线垂直,调节光源照射强度至较大值,依次接入不同大小的负载电阻,并记录每种电阻下的电池组输出电压和输出电流的数值,计算输出功率。
太阳能电池的特性测量
太阳能电池特性测量实验报告学院能源与环境工程学院班级学号姓名林晓晨一、实验目的与实验仪器实验目的:(1)了解太阳能电池的光伏效应原理,了解单晶硅、多晶硅和非晶硅太阳能电池的差别;(2)研究在无光照情况下太阳能电池的伏安特性(即暗伏安特性);(3)研究在光照情况下太阳能电池的输出特性。
实验仪器:ZKY-SAC-I 太阳能电池特性实验仪、可变负载、光源、导轨、遮光罩、光强探头、单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池。
二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)1.太阳能电池光生伏特效应的原理光生伏特效应是指半导体材料由于受到光照而产生电动势的现象,简称光伏效应。
太阳能电池就是利用这种半导体P-N 结受到光照时的光伏效应进行发电的。
需要注意的是,太阳能电池产生光生伏特效应用于发电需要满足两个条件:(1)材料对光具有本征吸收(可以产生内光电效应);(2)在太阳能电池内部可以形成内建电场,能够迅速分离光生载流子,且能够阻止光生载流子的复合。
2.太阳能电池的特性当无光照射在太阳能电池时,可以将太阳能电池等效为一个二极管;有光照射在太阳能电池时,则可以将其等效为一个受控电流源,其等效电路如图5.17-2 所示。
图中,I L为光照射到电池吸收层中产生的光生电流,当光照相对比较恒定的时候,光生电流不会随着工作状态改变,可以看做恒流源。
理想的太阳能电池正向电流IF与其压降UF之间满足以下关系式:三、实验步骤(要求与提示:限400字以内)1.太阳能电池的暗伏安特性测量将电压源调到0V,然后逐渐增大输出电压,每间隔0.3V 记一次电流值,并将数据记录到表中。
将电压输入调到0V,并将“电压输出”接口的两根连线互换,即给太阳能电池加上反向的电压。
逐渐增大反向电压,每间隔1V 记录一次电流值,并将数据记录到表中。
绘制三种太阳能电池的伏安特性曲线。
2.开路电压、短路电流与光强关系测量打开光源开关,并预热 5 分钟。
实验20 太阳能电池特性的测量
实验20 太阳能电池特性的测量本实验主要是通过对太阳能电池进行测试,揭示其特性,并学习太阳能电池在太阳辐射下工作的原理、性能等知识。
本实验采用初级太阳能电池实验箱,结合数字万用表进行测试,具体步骤如下:1. 实验仪器及器材准备(1)初级太阳能电池实验箱:包括太阳能电池板、电源模块、电路模块、数字万用表模块等。
(2)数字万用表:测试电信号、电压、电流等数据。
(3)太阳能模拟灯盒:用来模拟太阳能电池板的照度。
2. 实验前准备工作(1)检查实验仪器及器材是否完好。
(2)检查太阳能板表面是否有明显污垢或划痕等。
(3)安装实验仪器和器材。
3. 实验步骤(1)将太阳能电池板放置在太阳能模拟灯盒下,调节灯源距离太阳能电池板的距离为300mm。
(3)打开电源模块,按照规定测试范围及精度设置数字万用表,并调节太阳能模拟灯盒的强度,开始测试。
(4)测试电压:调整数字万用表中测量电压区间,将红表笔连接正极,黑表笔连接负极,即可测量出太阳能电池板的输出电压。
(6)测试输出功率:测量出的电压和电流数值乘积即为太阳能电池板所输出的功率。
4. 实验注意事项(1)太阳能电池板应保证表面的清洁,不受任何污染物的影响。
(2)调整数字万用表的范围及精度,防止误差过大。
(3)测量电流时应注意防止太阳能电池板过载。
(4)测试时应谨慎操作,防止对数字万用表等仪器造成损坏。
(5)实验后注意对实验仪器及器材进行正确的清理和维护。
本实验的目的是为了通过测量太阳能电池的特性,揭示其原理和性能,了解太阳能电池的应用和发展情况,为今后的学习和研究打下基础。
因此,在实验中应注意以上细节,确保实验的准确性和可重复性,并加深对太阳能电池的认识和理解,为推进可再生能源技术的发展做出贡献。
太阳能电池性能测试实验
太阳能电池性能测试实验太阳能电池是一种将太阳能转化为电能的装置,它是利用光电效应原理工作的。
为了评估太阳能电池的性能,我们可以进行多种测试实验,包括光电转换效率测试、电流-电压特性曲线测试、稳态和暗态测试以及温度测试等。
本文将详细解读这些实验的定律和准备工作,并讨论太阳能电池性能测试的应用和其他专业性角度。
一、光电转换效率测试光电转换效率是评估太阳能电池性能的重要指标,它代表了太阳能电池将太阳能转化为电能的能力。
实验准备:1. 太阳能电池:选取一块面积适中的太阳能电池,确保它的电流暗态偏差小于1%。
2. 太阳光源:选择适合测试太阳能电池的太阳光源,确保其光照度足够高且光谱匹配太阳光谱。
3. 电子负载:用于测量太阳能电池的电流和电压输出。
实验过程:1. 设置太阳能电池:将太阳能电池安装在正确的位置上,并连接到电子负载。
2. 测量电流和电压:通过改变负载的阻抗,测量电流和电压的值,并记录数据。
3. 计算光电转换效率:根据测得的电流和电压值,可以计算出光电转换效率,常用公式为光电转换效率=(输出功率/输入功率)* 100%。
应用和其他专业性角度:光电转换效率测试的结果可以用于评估太阳能电池的性能,并与其他太阳能电池进行比较。
这对于研究新型太阳能电池材料和结构设计具有重要意义。
此外,太阳能电池的光电转换效率也影响着其在实际应用中的性能和效益,对于太阳能发电系统的设计和优化具有指导意义。
二、电流-电压特性曲线测试电流-电压特性曲线测试是了解太阳能电池在不同工作条件下的性能的重要手段。
实验准备:1. 太阳能电池样品:选择一些太阳能电池样品进行测试,确保它们的性能和参数有较大差异,以获得可靠的数据。
2. 电子负载:用于控制太阳能电池的负载。
3. 电压源:用于提供不同的电压给太阳能电池。
实验过程:1. 设置太阳能电池:将太阳能电池连接到电子负载和电压源。
实验过程:1. 设置太阳能电池:将太阳能电池连接到电子负载和电压源。
太阳能电池基本特性的测量及研究
太阳能电池基本特性的测量及研究一、实验目的:(1)测定太阳能电池在光照时的输出特性,并求出短路电流、开路电压、最大输出功率及填充因子(2)测定太阳能电池随光照变化的特性。
二、实验仪器:光具座、太阳能电池、数字万用表两块、可变电阻(量程100Ω、1.1kΩ)、直流电源、开关、电路板、导线三、实验原理:原理太阳能电池的主要结构为PN结.理想PN结的电流和电压关系由下式[2]给出Id=I0[expUenkT-1] (1)式中,I0是无光照时的反向饱和电流, U是结上的电压,e是电子电荷,k是玻尔兹曼常量,T表示热力学温度.当光照射在太阳能电池表面的PN结上时,只要入射光子的能量大于半导体材料的禁带宽度,则光子将被太阳能电池吸收而产生电子-空穴对.以恒定速率产生的电子-空穴对提供了通过结的电流.太阳能电池输出的净电流I是光生电流IPh和两极管电流Id之差,净电流I由下式给出I=IPh-Id=IPh-I0[expUenkT-1] (2)当太阳能电池的输出端短路时,即U=0,由(2)式可得到短路电流ISC=IPh;当太阳能电池的输出端开路时,即I=0,可推得开路电压UOC.正常运行时,IPh比I0高几个数量级,因此(2)式中的1可以忽略.当太阳能电池接上负载电阻后,太阳能电池的输出电压和电流随着负载电阻的变化而变化,当负载电阻R=Rm时,太阳能电池的输出功率为最大,即最大功率,对应电压Um和电流Im,可知Pm=ImUm(3)填充因子是表征太阳能电池质量好坏的一个指标,将最大功率Pm和UOC与ISC之积的比值定义为填充因子FF,即FF=PmUOCISC(4)能量大于半导体材料的禁带宽度的光子可以使太阳能电池产生光电流,光电流的大小为IPh∝∫λ0λcN(λ)dλ(5)式中,N(λ)是光子数随波长分布的函数,λc 是滤色片的截止波长,λ0是能产生光电流的最大波长.当N(λ)为一常量时,有IPh ∝λ0-λc(6) 阳能电池的半导体材当在太阳能电池光照部分前安放不同截止波长的滤色片,则它产生的光电流和截止波长存在一定关系,由此可得太料的禁带宽度.四、实验内容:1、在无光照条件下测量太阳能电池正向偏压时的I U -特性(1)用盖板盖住太阳能电池,使太阳能电池在无光照条件下工作。
物理实验太阳能电池特性测定原理
物理实验太阳能电池特性测定原理太阳能电池是一种将太阳光转换为电能的装置,它可以直接将太阳光转换为电能,具有清洁、可再生等优点。
太阳能电池的特性测定是判断太阳能电池输出电压、输出电流、光伏效率、填充因子等参数,这些参数决定了其在不同应用场合中的表现。
以下是太阳能电池特性测定的原理和方法。
1.光伏效应原理当光线照射在太阳能电池的PN结上,光能被吸收并激发带正负电荷的电子,带电的电子在PN结中形成电场,可产生电压和电流。
这种现象就是光伏效应,具有一定的光伏响应度。
2. IV 曲线原理通过测量太阳能电池在不同电压下的输出电流大小,可以绘制出一条 V-I 曲线。
在这条曲线上,太阳能电池的最大功率输出点为最大功率点(MPP),对应的工作电压为最大功率点电压(V_mpp),对应的工作电流为最大功率输出电流(I_mpp)。
从这条 V-I 曲线上还可以计算出填充因子、开路电压、短路电流等参数。
1. 实验装置太阳能电池、V-I 测量仪、多用表、光强计。
2. 实验步骤步骤一:准备实验装置。
将太阳能电池放在太阳下,使其接收到光照。
将 V-I 测量仪和多用表与太阳能电池接好。
步骤二:测量太阳能电池的开路电压和短路电流。
使用多用表测量太阳能电池的开路电压和短路电流,其中,短路电流是指将电路中两端短接后所得到的最大电流值。
步骤三:绘制 V-I 曲线。
使用 V-I 测量仪在太阳能电池的电路中连续测量不同电压下的输出电流大小。
记录数据并绘制 V-I 曲线。
步骤四:计算填充因子、最大功率点电压和最大功率输出电流。
步骤五:计算光伏转换效率。
使用光强计测量所接受的光强度,并使用测量得到的太阳能电池输出电流和光强度计算光伏转换效率。
三、总结太阳能电池的特性测定是重要的实验内容,通过测量各个参数可以确定太阳能电池在不同应用场景下的表现。
在实验中,需要使用多个实验设备,综合运用光学、电学的知识进行测量。
同时,也需要注意实验环境和实验操作的安全。
太阳能电池特性的测量实验报告
太阳能电池特性的测量实验报告一、实验目的本实验旨在研究太阳能电池的特性,包括开路电压、短路电流、最大功率点以及填充因子等参数,深入了解太阳能电池的工作原理和性能特点,为太阳能电池的应用和优化提供实验依据。
二、实验原理太阳能电池是一种基于半导体pn 结光生伏特效应的能量转换器件。
当太阳光照射到太阳能电池表面时,光子的能量被半导体吸收,产生电子空穴对。
在内建电场的作用下,电子和空穴分别向 n 区和 p 区移动,形成光生电流和光生电压。
1、开路电压(Voc)当太阳能电池处于开路状态时,即外电路电阻无穷大,此时输出的电压即为开路电压。
开路电压与半导体材料的禁带宽度、光照强度和温度等因素有关。
2、短路电流(Isc)当太阳能电池的输出端被短路,即外电路电阻为零,此时流过的电流即为短路电流。
短路电流主要取决于光照强度和电池的面积。
3、最大功率点(Pm)在不同的负载电阻下,太阳能电池的输出功率不同。
当负载电阻与太阳能电池的内阻匹配时,输出功率达到最大值,此时对应的工作点称为最大功率点。
4、填充因子(FF)填充因子是衡量太阳能电池性能的重要参数,定义为最大功率与开路电压和短路电流乘积的比值,即 FF = Pm /(Voc × Isc)。
三、实验仪器与材料1、太阳能电池实验装置包括太阳能电池板、可变电阻箱、数字电压表、数字电流表、光源等。
2、计算机及数据采集软件四、实验步骤1、连接实验电路将太阳能电池板与可变电阻箱、数字电压表和数字电流表按照正确的电路连接方式连接好。
2、测量开路电压在光源关闭的情况下,将可变电阻箱调至无穷大,测量太阳能电池的开路电压 Voc,并记录数据。
3、测量短路电流在光源关闭的情况下,将可变电阻箱调至零,测量太阳能电池的短路电流 Isc,并记录数据。
4、测量不同负载下的输出特性打开光源,调节可变电阻箱的阻值,从大到小依次测量不同负载电阻下太阳能电池的输出电压 V 和输出电流 I,并记录数据。
太阳能电池特性测试实验报告
太阳能电池特性测试实验报告一、1.1 实验目的与意义随着科技的不断发展,太阳能作为一种清洁、可再生的能源越来越受到人们的关注。
为了更好地了解太阳能电池的性能,提高太阳能电池的转换效率,我们进行了一次太阳能电池特性测试实验。
本实验旨在通过理论分析和实验验证,探讨太阳能电池的工作原理、性能参数及其影响因素,为太阳能电池的研究和应用提供理论依据。
二、2.1 实验原理太阳能电池是一种将太阳光能直接转化为电能的装置。
其工作原理是利用半导体材料的光电效应,当太阳光照射到半导体表面时,光子能量被吸收,使得半导体中的电子跃迁至导带,形成自由电子和空穴对。
在P-N结界面,自由电子和空穴相遇时,产生电场,从而产生电流。
太阳能电池的输出电压与太阳辐射强度成正比,输出电流与太阳辐射强度的平方成正比。
三、3.1 实验设备与材料1. 太阳能电池模块:用于接收太阳光并产生电流。
2. 数字万用表:用于测量电流和电压。
3. 短路开关:用于保护电路。
4. 直流电源:用于给太阳能电池模块供电。
5. 光纤激光器:用于产生单色光束。
6. 光谱仪:用于测量光强和光谱。
7. 数据处理软件:用于记录和分析实验数据。
四、3.2 实验步骤与方法1. 将太阳能电池模块安装在光源和数字万用表之间,确保模块表面与光源平行。
2. 用短路开关连接太阳能电池模块的正负极。
3. 用直流电源给太阳能电池模块供电。
4. 用光纤激光器产生单色光束,使其经过一个分束镜后分为两束光线。
5. 其中一束光线经过一个透镜后聚焦在太阳能电池模块上,另一束光线经过一个偏振片后得到一个具有一定相干度的光束。
6. 将光谱仪放置在聚焦后的光线附近,测量光强和光谱分布。
7. 用数据处理软件记录实验数据,并进行分析。
五、实验结果与分析通过本次实验,我们得到了太阳能电池模块的输出电流和电压数据。
我们还观察到了太阳光在经过分束镜、透镜和偏振片后的光谱分布情况。
根据实验数据和光谱分析结果,我们得出了太阳能电池的光电转换效率以及其随太阳辐射强度变化的关系。
实验 太阳能电池
太阳能电池的特性测量实验目的1. 测量不同照度下太阳能电池的伏安特性、开路电压U 0和短路电流I s 。
2. 在不同照度下,测定太阳能电池的输出功率P 和负载电阻R 的函数关系。
3. 确定太阳能电池的最大输出功率P max 以及相应的负载电阻R max 和填充因数。
原理当光照射在距太阳电池表面很近的pn 结时,只要入射光子的能量大于半导体材料的禁带宽度E g ,则在p 区、n 区和结区光子被吸收会产生电子-空穴对(如图1)。
那些在 pn 结附近n 区中产生的少数载流子由于浓度梯度而要扩散。
只要少数载流子离pn 结的距离小于它的扩散长度,总有一定几率扩散到结界面处。
在p 区与n 区交界面的两侧即结区,存在一空间电流区,也称为耗尽区。
在耗尽区中,正负电荷间形成一电场,电场方向由n 区指向p 区,这个电场称为内建电场。
只有p 区的光生电子和n 区的光生空穴和结区的电子空穴对(少子)扩散到结电场附近时能在内建电场作用下漂移过结。
光生电子被拉向n 区,光生空穴被拉向p 区,即电子空穴对被内建电场分离。
这导致在n 区边界附近有光生电子积累,在p 区边界附近有光生空穴积累。
它们产生一个与热平衡pn 结的内建电场方向相反的光生电场,其方向由p 区指向n 区。
这一现象称为光伏效应(Photovoltaic effect )。
图1 太阳能电池的工作原理太阳能电池的工作原理是基于光伏效应的。
当光照射太阳电池时,将产生一个由n 区到p 区的光生电流I s 。
同时,由于pn 结二极管的特性,存在正向二级管电流I D ,此电流方向从p 区到n 区,与光生电流相反。
因此,实际获得的电流I 为两个电流之差:)()(D S U I ΦI I -= (1)如果连接一个负载电阻R ,电流I 可以被认为是两个电流之差,即取决于辐照度Φ的负方向电流I s ,以及取决于端电压U 的正方向电流I D 。
由此可以得到太阳能电池伏安特性的典型曲线(见图2)。
太阳能电池特性测试实验报告-资料类
太阳能电池特性测试实验报告-资料类关键信息项:1、实验目的:____________________________2、实验设备:____________________________3、实验步骤:____________________________4、实验数据:____________________________5、数据分析:____________________________6、结论:____________________________11 实验目的本实验旨在研究太阳能电池的特性,包括其输出电压、电流与光照强度、负载电阻等因素之间的关系,从而深入了解太阳能电池的工作原理和性能特点。
111 具体目标1、测量太阳能电池在不同光照强度下的输出电压和电流。
2、探究太阳能电池的短路电流和开路电压与光照强度的依赖关系。
3、分析太阳能电池在不同负载电阻下的输出特性。
12 实验设备1、太阳能电池板。
2、光源模拟器,能够提供不同强度的光照。
3、数字电压表,用于测量电压。
4、数字电流表,用于测量电流。
5、可变电阻箱,用于改变负载电阻。
13 实验步骤131 实验准备将太阳能电池板放置在稳定的实验台上,确保其表面清洁无遮挡。
连接好数字电压表和数字电流表,设置好测量范围。
132 测量开路电压和短路电流在黑暗环境中,测量太阳能电池的开路电压和短路电流,作为基准值。
然后,打开光源模拟器,逐渐增加光照强度,分别测量在不同光照强度下太阳能电池的开路电压和短路电流,并记录数据。
133 负载电阻特性测量将可变电阻箱连接到太阳能电池板上,依次改变负载电阻的值,测量在不同负载电阻下太阳能电池的输出电压和电流,并记录数据。
134 数据重复测量为了提高实验数据的准确性,对每个测量点进行多次重复测量,并取平均值作为最终数据。
14 实验数据以下是实验中测量得到的数据表格:|光照强度(lux)|开路电压(V)|短路电流(mA)|负载电阻(Ω)|输出电压(V)|输出电流(mA)|||||||||100| ||10| |||100| ||20| |||100| ||50| |||200| ||10| |||200| ||20| |||200| ||50| |||300| ||10| |||300| ||20| |||300| ||50| ||15 数据分析151 开路电压与光照强度的关系绘制开路电压随光照强度变化的曲线,可以发现开路电压随着光照强度的增加而缓慢增加,但并非线性关系。
太阳能电池特性的测量实验报告doc
太阳能电池特性的测量实验报告.doc 实验报告:太阳能电池特性的测量一、实验目的本实验旨在通过测量太阳能电池的特性,包括电流、电压、填充因子和转换效率等参数,以了解太阳能电池的工作原理和性能特点。
二、实验原理太阳能电池是一种利用光能转换为电能的装置。
其工作原理基于光生伏特效应。
当太阳光照射在太阳能电池表面时,光子与半导体材料相互作用,使电子从价带跃迁到导带,从而产生电流。
太阳能电池的特性受到材料、结构、光照条件等多种因素的影响。
三、实验步骤1.准备实验器材:太阳能电池模块、数字万用表、光源及光强计、恒流电源、负载电阻等。
2.将太阳能电池模块放置在光强计前,调整光强计与太阳能电池模块的相对位置,使光线垂直照射在太阳能电池表面。
3.用数字万用表分别测量太阳能电池的正负极电压和电流。
测量时需要注意万用表的量程选择和极性判断。
4.调整恒流电源的输出电流,使太阳能电池在不同光照强度下工作,重复步骤3的测量。
5.连接负载电阻,测量太阳能电池在不同负载条件下的电压和电流。
6.记录实验数据,绘制电流-电压曲线和填充因子-电压曲线。
7.根据测量结果计算太阳能电池的转换效率。
四、实验结果及数据分析1.实验数据记录:根据实验数据,可以得出以下结论:(1)随着光照强度的增加,太阳能电池的电压和电流也相应增加。
这表明太阳能电池的输出性能受到光照条件的直接影响。
(2)填充因子(FF)是衡量太阳能电池性能的重要参数之一。
FF值越高,说明太阳能电池的电学性能越好。
实验数据显示,随着光照强度的增加,填充因子略有提高,但变化不大。
这说明填充因子主要受到材料和结构等因素的影响,而非单一的光照条件。
(3)转换效率(η)是评价太阳能电池能量转换效率的重要指标。
实验数据显示,随着光照强度的增加,转换效率呈上升趋势。
然而,当光强达到一定值时,由于串联电阻的增加和反偏二极管的影响,转换效率趋于稳定。
这说明在选择太阳能电池材料时,需要综合考虑材料的导电性能、光学性能和稳定性等因素。
太阳能特性测量实验
太阳能电池的特性测量一、课堂笔记的预习二、实验内容(1)调整仪器:图1 实验仪器①连接电流表,使电流表与电池、可变电阻串联,调节量程为直流200 mA.②连接电压表使之与电池并联,调节量程为直流3 V.③连接卤素灯与稳压源,使电池充分接受卤素灯照射。
(2)测量:①接通电路,将可变电阻器阻值调为最小以实现短路,并调节卤素灯电源输出功率,使得短路电流在45 mA.②逐步改变负载电阻值降低电流,分别读取电流值、电压值,记入表格。
③断开电路,测量并记录开路电压。
④调节卤素灯电源输出功率分别使短路电流为35 mA, 25 mA, 15 mA, 并重复上述测量和数据记录。
⑤在不同照度下,测量太阳能电池输出功率P和负载电阻R的函数关系。
三、数据记录四、数据处理与结果分析根据以上测量数据,可以得到以下数据。
:同一短路电流下测得的最大功率所对应的变阻器阻值。
:内阻阻值。
:同一短路电流下测得的最大功率。
:填充因子,用于表征光电转换效率,越接近1,光电转换效率越高。
其中:由以上叙述和公式可以得到以下表格。
表2 由原始数据导出的数据短路 电流Is/mA Rmax/Ω Ri/Ω Rmax/Ri Pmax/m W (Uo*Is)/mW F=Pmax/(Uo*Is)F 平均值 45 40.0 45.6 0.878 72.25 92.25 0.783 0.79135 49.6 58.0 0.854 55.61 71.05 0.783 25 68.5 78.8 0.869 38.79 49.25 0.788 15108.9127.30.85523.2128.650.810池的伏安特性曲线如下。
图2 不同短路电流下太阳能电池的伏安特性曲线可以看出,该伏安特性曲线与理想的伏安特性曲线相近。
五、思考题1.温度会对太阳能电池带来什么影响?温度会影响太阳能电池的开路电压,短路电流,输出功率。
决定开路电压大小的是半导体的禁带宽度和费米能级,由于温度越高,其费米能级越靠近价带,所以温度越高其开路电压越小,也就是说,温度--开路电压二者的曲线大概是一个斜率为负值的直线。
太阳能电池特性测试实验报告-资料类
太阳能电池特性测试实验报告-资料类关键信息项:1、实验目的2、实验设备3、实验原理4、实验步骤5、数据记录与处理6、实验结果7、误差分析8、结论11 实验目的本次实验旨在深入了解太阳能电池的工作特性,包括其输出电压、电流与光照强度、负载电阻等因素之间的关系,从而为太阳能电池的应用和优化提供数据支持。
111 具体目标测量太阳能电池在不同光照条件下的输出特性。
研究太阳能电池的短路电流和开路电压随光照强度的变化规律。
分析太阳能电池的输出功率与负载电阻的关系。
12 实验设备太阳能电池板光源模拟器(可调节光照强度)数字万用表可变电阻箱数据采集系统121 设备参数太阳能电池板的规格和型号:____________________光源模拟器的光照强度调节范围:____________________数字万用表的精度和测量范围:____________________可变电阻箱的阻值范围和调节精度:____________________13 实验原理太阳能电池是基于半导体的光伏效应将光能转化为电能的器件。
当光子入射到半导体材料中,会激发电子从价带跃迁到导带,产生电子空穴对。
在内建电场的作用下,电子和空穴分别向不同方向移动,形成电流和电压。
131 短路电流(Isc)当太阳能电池的输出端短路时,测量得到的电流即为短路电流,它与光照强度成正比。
132 开路电压(Voc)当太阳能电池的输出端开路时,测量得到的电压即为开路电压,它随光照强度的增加而增加,但增加趋势逐渐减缓。
133 输出功率(P)太阳能电池的输出功率等于输出电压(V)与输出电流(I)的乘积,即 P = V × I。
当负载电阻与太阳能电池的内阻匹配时,输出功率达到最大值,称为最大功率点(MPP)。
14 实验步骤141 实验准备检查实验设备是否完好,确保各仪器的连接正确。
将太阳能电池板放置在光源模拟器下方,调整位置使其均匀受光。
142 测量短路电流和开路电压调节光源模拟器的光照强度为最小值,测量太阳能电池的短路电流Isc 和开路电压 Voc ,记录数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能电池的特性测量
实验目的
1. 测量不同照度下太阳能电池的伏安特性、开路电压U 0和短路电流I s 。
2. 在不同照度下,测定太阳能电池的输出功率P 和负载电阻R 的函数关系。
3. 确定太阳能电池的最大输出功率P max 以及相应的负载电阻R max 和填充因数。
原理
当光照射在距太阳电池表面很近的pn 结时,只要入射光子的能量大于半导体材料的禁带宽度E g ,则在p 区、n 区和结区光子被吸收会产生电子-空穴对(如图1)。
那些在 pn 结附近n 区中产生的少数载流子由于浓度梯度而要扩散。
只要少数载流子离pn 结的距离小于它的扩散长度,总有一定几率扩散到结界面处。
在p 区与n 区交界面的两侧即结区,存在一空间电流区,也称为耗尽区。
在耗尽区中,正负电荷间形成一电场,电场方向由n 区指向p 区,这个电场称为内建电场。
只有p 区的光生电子和n 区的光生空穴和结区的电子空穴对(少子)扩散到结电场附近时能在内建电场作用下漂移过结。
光生电子被拉向n 区,光生空穴被拉向p 区,即电子空穴对被内建电场分离。
这导致在n 区边界附近有光生电子积累,在p 区边界附近有光生空穴积累。
它们产生一个与热平衡pn 结的内建电场方向相反的光生电场,其方向由p 区指向n 区。
这一现象称为光伏效应(Photovoltaic effect )。
图1 太阳能电池的工作原理
太阳能电池的工作原理是基于光伏效应的。
当光照射太阳电池时,将产生一个由n 区到p 区的光生电流I s 。
同时,由于pn 结二极管的特性,存在正向二级管电流I D ,此电流方向从p 区到n 区,与光生电流相反。
因此,实际获得的电流I 为两个电流之差:
)()(D S U I ΦI I -= (1)
如果连接一个负载电阻R ,电流I 可以被认为是两个电流之差,即取决于辐照度Φ的负
方向电流I s ,以及取决于端电压U 的正方向电流I D 。
由此可以得到太阳能电池伏安特性的典型曲线(见图2)。
在负载电阻小的情况下,太阳能电池可以看成一个恒流源,因为正向电流I D 可以被忽略。
在负载电阻大的情况下,太
阳能电池相当于一个恒压源,因为如果电压变化略有下降那么电流I D (U )迅速增加。
图2 在一定光照强度下太阳能电池的伏安特性(U max ,I max :最大功率点)
当太阳电池的输出端短路时,可以得到短路电流等与光生电流I s 。
当太阳电池的输出端开路时,可以得到开路电压U 0。
在固定的光照强度下,光电池的输出功率取决于负载电阻R 。
太阳能电池的输出功率在最大负载电阻R max 时达到一个最大功率P max ,R max 近似等于太阳能电池的内阻R i 。
R i = U 0/I S (2)
这个最大的功率比开路电压和短路电流的乘积小(见图2),它们之比为
S
0max
I U P F ⋅=
(3)
F 称为填充因数。
我们经常用几个太阳能电池组合成一个太阳能电池。
串联会导致更大的开路电压U 0,而并联会导致更大的短路电流I S 。
在本实验中,把2个太阳能电池串联,分别记录在四个不同的光照强度时电流和电压特性。
光照强度通过改变光源的距离来实现。
此外,太阳能电池的输出功率
P=U·I (4)
是负载电阻
R=U /I (5)
的函数。
仪器
太阳能电池两块 插件板: A4大小
万用表两块
一个光源:卤素灯
一个稳压源:2~12V ,100W
图3 实验装置
仪器调整
实验装置见图3。
1. 把太阳能电池插到插件板上,用两个桥接插头把上边的负极和下面的正极连接起来(串联起2个太阳能电池)。
2. 插上电位器作为一个可变电阻,然后用桥接插头把它连接到太阳能电池上。
3. 连接电流表,使它和电池、可变电阻串联。
选择测量范围:直流200mA。
4. 连接电压表使之与电池并联,选择量程:直流2V。
5. 连接卤素灯与稳压源,使灯与电池成一线,以使电池均匀受光。
实验步骤
1. 接通电路,将可变电阻器阻值调为最小以实现短路,并改变卤素灯的距离或调节光源输出光功率,使短路电流大约为45mA。
2. 逐步改变负载电阻值降低电流,分别读取电流和电压值,记入表格1。
3. 断开电路,测量开路电压并记录。
4. 调节电源功率,调整短路电流约35mA,25mA和15mA,并重复上述测量。
5. 根据表1,用坐标纸或Excel绘出U-I曲线。
6. 根据表2,坐标纸或Excel绘出P-R特性曲线。
7. 计算表格3的物理量。
8.由表格4计算填充因数的平均值。
数据记录表格
表1:测量太阳能电池的端电压U和通过负载电阻的电流I(短路电流I开路电压U)
表2:根据表1测量的U和I值计算得到的P和R值
表3:对应于最大功率的负载电阻值R和根据(2)式计算出的内阻值R
表4:最大功率P和开路电压与短路电流的乘积
思考题
1.由表1绘出的伏安特性曲线说明负载电阻R、端电压U及光的辐射强度之间的关系。
2.由表2绘出P-R特性曲线说明在一定的光照强度下,P与R之间的关系。
3.太阳能电池的短路电流与光照强度之间是什么关系?
4.在一定的负载电阻下,太阳能电池的输出功率取决于什么?何时输出功率最大?且与光
照强度有怎样的关系?
5.对于负载电阻较小时,太阳能电池表现出什么特性,而负载电阻较大时有什么特性?。