DSP原理与应用论文
DSP原理及应用课程论文
DSP原理及应用课程论文题目: 利用DSP设计IIR滤波器姓名:学院:专业:班级:学号:指导教师: 职称:安徽科技学院教务处制目录摘要 (2)1 设计的目的及意义 (2)2 基本原理 (2)2.1 IIR数字滤波器的设计 (2)2.2 IIR滤波器差分方程的一般形式 (2)2.3 设计用的是直接IIR滤波器的结构 (3)2.4 步骤 (3)3 硬件设计 (3)3.1 流程图 (3)3.2 电路图 (4)3.3 芯片参数 (5)3.4 设计工具 (6)4 程序设计 (6)4.1 程序说明 (7)4.1.1 定标说明 (7)4.1.2 数据存放要求 (7)4.1.3 指令说明 (7)4.1.4 常量和参数说明 (7)5 设计总结 (7)参考文献 (7)利用DSP设计IIR滤波器摘要:IIR滤波器是具有无限持续时间冲激响应的数字滤波器。
其结构简单、运算量下。
本设计采用归一化低通模拟滤波器,运用MATLAB得出滤波器的系数,再根据直接II型的结构特点和前面得出的系数,编写DSP程序,可在TMS320C5402DSK板上进行仿真,可将得出的结果与MATLAB仿真比较,来确定滤波器的性能。
关键字:IIR滤波器;DSP;MATLAB1 设计的目的及意义在数字滤波器中,IIR滤波器由于具有结构简单、运算量下的特点,IIR数字滤波器幅频特性精度很高,不是线性相位的,可以应用于对相位信息不敏感的音频信号上,因而得到了较广泛的应用。
2 基本原理2.1 IIR数字滤波器的设计IIR数字滤波器采用递归型结构,即结构上带有反馈环路。
IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。
IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,其设计工作量比较小,对计算工具的要求不高。
在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。
dsp原理及应用的结课论文
DSP原理及应用的结课论文引言数字信号处理(Digital Signal Processing,DSP)是指将模拟信号转换为数字信号,并对数字信号进行处理和分析的技术。
DSP技术在现代通信、音视频处理、图像处理等领域有着广泛的应用。
本文将介绍DSP的基本原理以及其在实际应用中的一些案例。
DSP的基本原理1.数字信号处理的基本概念–数字信号:离散时间的信号,在时间上进行离散分布。
–连续时间信号:在时间上具有连续分布的信号。
–采样定理:它保证了模拟信号的采样频率要大于模拟信号频谱的带宽,才能在数字域中完整重建原始模拟信号。
2.数字信号处理的基本过程–信号采样:将模拟信号在时间上进行采样,转换为离散时间信号。
–数字滤波:对离散时间信号进行滤波,去除不需要的频率成分。
–数字变换:对滤波后的信号进行变换,如傅里叶变换、离散余弦变换等。
–数字重建:将变换后的数字信号进行反变换,恢复为模拟信号。
DSP在通信中的应用1.语音信号处理–信号压缩:对语音信号进行压缩,实现高效的传输和存储。
–语音增强:通过滤波和降噪技术,改善语音信号的质量。
2.图像处理–图像降噪:利用数字滤波技术去除图像中的噪声。
–图像增强:通过锐化滤波器和对比度增强算法,提高图像的清晰度和对比度。
3.无线通信–调制解调:将数字信息转换为适合传输的模拟信号,并在接收端进行解调。
–信道均衡:对信道中的失真进行补偿,提高信号质量。
DSP在音视频处理中的应用1.音频处理–声音合成:利用数字信号处理算法合成逼真的人声、乐器音色等。
–音频编码:将音频信号转换为数字数据流,实现高效的传输和存储。
2.视频处理–视频压缩:使用从模拟信号到数字信号的转换、DCT、运动补偿等技术,将视频信号压缩到较小的数据量。
–视频解码:将压缩后的视频信号进行解码,恢复为原始的视频图像。
结论DSP技术在现代通信、音视频处理等领域有着广泛的应用。
本文介绍了DSP的基本原理,以及在通信和音视频处理中的一些具体应用。
DSP原理与应用
《DSP原理与应用》结课论文设计题目:TMS320C54X时钟发生器分析与应用目录摘要 (3)第一章前言 (4)1.1 时钟发生器的样式 (4)1.2 时钟发生器的作用 (4)1.3 时钟发生器的意义 (4)第二章TMS320C54x的时钟发生器的分析 (5)2.1 TMS320C54x的时钟发生器综述 (5)2.2 锁相环PLL (5)2.2.1硬件配置PLL (6)2.2.2软件可编程PLL (7)第三章 TMS320C54x的时钟发生器的应用 (10)第四章总结与展望 (11)4.1 DSP的历史 (11)4.2 DSP的发展趋势 (11)4.3 总结 (12)参考文献 (12)摘要数字信号处理技术是20世纪后半期发展最为迅速的一门学科,它不仅在理论上给人们提供了利用计算机等工具从事离散时间信号处理的观念和方法,而且还带动了综合数字信号处理技术和微电子技术的数字信号处理器的产生和发展。
作为一类专门为数字信号处理设计的期间,数字信号处理器(Digital Signal Processor,简称DSP)是专为实时数字信号处理而设计的一种可编程的嵌入式微处理器。
它采用改进型哈佛总线结构,内部配置了硬件乘法器,使用多级流水线工作方式。
它具有运行速度高,处理能力强,片内外围设备丰富等的诸多特点。
它的问世与飞速发展,为将数字信号处理理论应用于工程实际提供了低成本的软、硬平台。
随着DSP技术在我国的应用日趋广泛,培养更好的DSP应用人才,造就一批DSP开发研究的骨干力量,满足国内高新技术发展的需要,已经越来越紧迫的摆在教育工作者面前。
因此,DSP技术的学习和掌握对当代大学生有着重要的意义。
本文首先介绍了时钟发生器,由一个普通的时钟发生器作为引子,先粗略的描述下大方向的时钟发生器的作用和意义。
在此之后,将详细的介绍TMS320C54x的时钟发生器。
在介绍TMS320C54x的时钟发生器的过程中,本文的主要着手点在于分析TMS320C54x的时钟发生器的工作原理,然后详细的剖析了它各部分元件的作用和原理。
DSP应用论文(完成)
浅谈DSP技术的应用摘要:本文简要介绍了什么是DSP技术以及DSP技术的主要优缺点;详细介绍了DSP技术在当前信号处理、通信、语音处理、图像处理、军事、仪器仪表、自动控制、医疗、家用电器等领域的主要应用及其发展趋势。
关键字:DSP 优缺点应用趋势1 引言数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
DSP数字信号处理技术(Digital Signal Processing)指理论上的技术,是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法;而DSP数字信号处理器(Digital Signal Processor)是指一种对数字信号进行大量处理的微处理器,它具有强大的数据处理能力和较高的运行速度,是数字化电子世界中日益重要的电脑芯片。
因此,DSP既可以代表数字信号处理技术,也可以代表数字信号处理器,两者是不可分割的,前者要通过后者变成实际产品,而后者以前者的理论为基础。
2 DSP的主要优缺点DSP的优点包括以下几个部分:1)对元件值的容限不敏感,受温度、环境等外部因素影响小;2)容易实现集成;3)可以分时复用,共享处理器;4)方便调整处理器的系数实现自适应滤波;5)可实现模拟处理不能实现的功能:线性相位、多抽样率处理、级联、易于存储等;6)可用于频率非常低的信号;7)DSP可以工作在省电状态,节省能源。
DSP的缺点包括以下几个部分:1)需要模数转换;2)受采样频率的限制,处理频率范围有限;3)数字系统由耗电的有源器件构成,没有无源设备可靠。
虽然DSP目前还有一些缺点,但是它的优点远远超过其缺点,我相信随着科学技术的发展,DSP将会不断完善和壮大。
3 DSP的应用自从DSP芯片诞生以来,DSP芯片得到了飞速的发展。
DSP应用技术论文
摘要介绍DSP的发展和在对电机控制方面的优势和电动机在控制领域的应用。
着重说明了如何利用DSP来实现对直流电机,交流异步电机等的控制。
因DSP具有灵活的指令集;内在的操作灵活性;高速的运算能力;改进的并行结构;有效的成本,使得TMS320系列成为很多处理应用的理想选择"通过简单的介绍其控制电路的功能来详细说明了电动机专用DSP的应用。
通过对电动机专用DSP的应用的分析来引出直流电动机的DSP控制,在此章中详细的描述了直流电动机的控制原理和直流电动机的DSP控制方法,包括硬件和软件上的配置等。
描述了交流异步电动机的DSP控制。
首先介绍了交流异步感应电动机变频调速原理,通过其原理引出SPWM的控制技术,然后用DSP系统来实现SPWM波的生成,从而起到利用DSP来控制交流异步电动机的转速控制。
然后描述了永磁同步伺服电机控制。
通过介绍矢量控制的基本原理来研究基于DSP的永磁同步伺服电机的控制包括硬件和软件部分。
关键词:电动机;控制原理;DSP控制目录摘要1目录2基于DSP的电机控制方法研究31.前言31.1课题背景31.2研究意义32.DSP系统在电机控制领域的应用42.1T MS320F2812介绍42.2拉制电路的功能52.3电机专用DSP的应用63.直流电动机的DSP控制73.1直流电动机的拉制原理73.2直流电动机的DSP控制方法和编程例子93.2.1系统硬件设计93.2.2系统软件设计103.2.3数字PI调节器的DSP实现方法113.3单极性可逆PWM系统DSP控制方法和编程例子134.永磁同步伺服电机控制144.1矢量控制的基本原理144.2矢量控制在三相永磁同步伺服电机中的应用154.2.1系统组成154.2.2硬件部分154.2.3软件部分165.总结17参考文献18基于DSP的电机控制方法研究1.前言1.1课题背景数字信号处理(DSP)是一门涉和许多学科而又广泛应用于许多领域的新兴学科。
dsp原理与应用论文
黑龙江八一农垦大学HEI LONG JIANG BAYI AGRICULTURALUNIVERSITY“DSP原理与应用”课程结题设计论文项目名称: 基于DSP技术的MP3播放器的研究与设计任课教师:荣丽红专业班级:电气工程及其自动化一班学生姓名:李鸿升学号:2011年11月摘要:随着数字编解码及压缩技术的发展,语音文件也朝着高压缩比、高保真的方向发展,从MP1、MP2到目前的MP3格式。
本文设计了一种廉价基于DSP的MP3播放器,利用硬件存储语音文件,并能够从PC 机下载,从而可以随时更新MP3音乐。
该MP3播放器同时附加了文本阅读的功能,可做到语音和文本的同步输出。
关键词:MP3播放器DSP 编码前言现在市场上推出了各种型号的MP3随身听,它们采用先进的智能控制技术,利用先进的芯片,不仅实现了MP3格式语音的播放,而且集多种功能于一身。
但这些精巧的随身听价格较昂贵,因此本文根据要求设计了一种廉价MP3播放器,利用硬件存储语音文件,并能够从PC 机下载,从而可随时更新MP3音乐。
该MP3播放器同时附加了文本阅读的功能,可做到语音和文本的同步输出。
MP3播放器中,DSP芯片的Bootloader采用了HPI口方式。
由于在硬件上HPI引脚与DSP 的数据、地址总线引脚是相互独立的,同时HPI口内部又有控制机制,所以外部主机通过HPI口访问DSP内部RAM时不会影响DSP的正常运行。
HPI利用DSP芯片上1000H地址开始的一块具有共享存储器功能的2K字RAM,来实现主机与从机间的数据交换。
DSP扩展了一片64K字高速静态RAM(CY7C1021V33-10),作为DSP芯片的片外RAM,用以适应各种音频处理算法对存储器容量的要求。
DSP芯片处理后的信号由D/A输出到耳机,我们就可听到MP3音乐。
D/A变换由LM4545实现,它具有48K字转换速度,可直接和DSP芯片的输出相连。
而MPU主要完成三项功能,分别是LCD显示,控制DSP芯片的运行和文件的串口下载。
dsp芯片的原理与应用论文
DSP芯片的原理与应用论文引言•DSP芯片(Digital Signal Processor,数字信号处理器)是一种特殊用途的集成电路,主要用于处理数字信号,并在实时性要求较高的应用领域中发挥重要作用。
•本文将介绍DSP芯片的基本原理及其在各个领域的应用情况。
DSP芯片的原理•DSP芯片是一种专门用于数字信号处理的硬件设备,其内部的架构和运算规则与通用微处理器不同。
•DSP芯片通过并行运算、硬件加速等技术,提供高效的数字信号处理能力。
•DSP芯片的内部包含算术逻辑单元(ALU)、数字信号处理核心(DSP Core)、存储器等主要模块。
DSP芯片的应用领域1. 通信领域•DSP芯片在通信领域中扮演着重要的角色,主要用于无线通信、音频信号处理、图像和视频处理等方面。
•在调制解调器中,DSP芯片能够高效处理调制、解调等数字信号处理任务,提供稳定可靠的通信质量。
•在移动通信领域,DSP芯片广泛应用于手机、基站等设备中,以实现高速数据传输、音频处理、语音识别等功能。
2. 汽车电子领域•DSP芯片在汽车电子领域中也有广泛的应用,例如车载娱乐系统、车载导航系统等。
•在车载音频处理方面,DSP芯片可以对音频信号进行降噪、声音平衡、音效处理等,提供更好的音频体验。
•在车载导航系统中,DSP芯片可以进行语音识别、指令处理等,提供准确可靠的导航功能。
3. 视频与图像处理领域•DSP芯片在视频与图像处理领域中有很高的应用价值,例如视频编解码、图像处理、计算机视觉等方面。
•在视频编解码方面,DSP芯片能够高效处理视频的压缩、解压缩等任务,提供流畅的视频播放效果。
•在图像处理方面,DSP芯片能够对图像进行滤波、边缘检测、图像识别等操作,提供更精细的图像处理效果。
4. 工业自动化领域•DSP芯片在工业自动化领域中也有重要的应用,例如机器人控制、运动控制、工业监控等方面。
•在机器人控制方面,DSP芯片能够处理机器人的运动轨迹规划、动力学控制等任务,提供灵活高效的控制能力。
《DSP原理及应用》课程论文题目及要求
《DSP原理及应用》课程论文题目及要求
《DSP原理及应用》课程论文题目及要求
一、论文题目:
设计一个以DSP为主要部件的能实现一定功能的系统,完成一篇《基于DSP 的×××系统设计》课程论文。
二、论文格式和内容要求:
1.封面:
《DSP原理及应用》课程论文题目:基于DSP的×××系统设计
班级:
姓名(学号):
2.正文部分:
一、系统功能:用文字、图形描述系统实现的功能。
二、设计方案:说明系统采用的方案及采用该方案的原因。
三、硬件设计:给出用CAD软件绘制的硬件原理图并作简明扼要的说明。
四、软件设计:模块划分说明,程序流程图及带注释的程序清单。
五、系统测试:说明系统测试方案与测试的结果。
六、心得体会:设计调试过程中遇到的问题及解决办法;学习这门课程
的所获;对这门课程的教学建议等。
七、参考文献。
三、上交的材料:
1、课程论文的打印文档;
2、课程论文的电子文档(以“学号姓名论文题目”做主文件名)、以“学号”命名的CCS工程文件夹。
DSP结课论文
DSP结课论文DSP芯片原理及应用结课论文摘要DSP技术已成为目前电子工业领域发展最迅速的技术,在各行各业的应用越来越广泛,在我国的市场全景也越来越广阔,了解和学习DSP技术知识也越来越重要。
本文简要介绍了本学期我们进行学习的DSP芯片原理及应用这门课的教学内容、基于DSP数字广告大屏幕显示系统的具体设计、基于DSP的卷积算法的实现以及DSP的应用等几个方面。
对于基于DSP数字广告大屏幕显示系统的具体设计,下文从LED显示屏屏体电路和LED显示屏主控系统两个方面对整个系统的硬件设计作了说明。
在屏体电路设计方面,介绍了屏体模块化设计的方法,针对系统具体指标要求,采用了行扫描列控制的动态扫描方案,给出了具体的行列驱动电路设计方法。
在主控系统设计方面,对基于TMS320LF2407的主控系统各个模块,包括电源模点DSP芯片;1983年,日本Fujitsu公司推出的MB8764,指令周期为120ns,具有双内部总线,使数据吞吐量发生了一个大的飞跃;1984年,AT&T公司推出DSP32,是较早的具备较高性能的浮点DSP芯片1.2第二阶段,DSP的成熟阶段(1990年前后)硬件结构:更适合数字信号处理的要求,能进行硬件乘法和单指令滤波处理,其单指令周期为ns。
如:TI公司的TMS320C20和TMS320C30,CMOS制造工艺,存储容量和运算速度成倍提高,为语音处理、图像处理技术的发展奠定了基础。
主要器件有:TI公司的TMS320C20、30、40、50系列,Motorola公司的DSP5600、9600系列,AT&T公司的DSP32等。
1.3第三阶段,DSP的完善阶段(2000年以后)信号处理能力更加完善,而且使系统开发更加方便、程序编辑调试更加灵活、功耗进一步降低、成本不断下降;各种通用外设集成到片上,大大地提高了数字信号处理能力;DSP运算速度可达到单指令周期10ns左右,可在Windows 下用C语言编程,使用方便灵活;广泛应用:通信、计算机领域,并渗透到日常消费领域。
DSP原理与应用论文--DSP在语音处理方面的应用
DSP原理与应用论文题目:DSP在语音处理方面的应用姓名:张天宇学院:信息与电气工程学院专业:通信工程班级: 01班学号: 1254040608 指导教师:谢平阳2015 年11 月7 日摘要语音信号处理是研究数字信号处理技术和语音信号进行处理的一门学科,是一门新型的学科,是在多门学科基础上发展起来的综合性技术,它涉及到数字信号处理、模式识别、语言学。
语音信号处理是研究用数字信号处理技术对语音信号处理的一门学科。
处理的目的是要得到一些语音参数以便高效的传输或存储;或者是通过处理的某种运算以达到某种用途的要求。
语音信号处理又是一门边缘学科。
如上所诉,它是“语言语音学”与“数字信号处理”两个学科相结合的产物。
语音信号处理属于信息科学的一个重要分支,大规模集成技术的高度发展和计算机技术的飞速前进,推动了这一技术的发展。
在数字音频技术和多媒体技术迅速发展的今天,传统的磁带语音录放系统因体积大、使用不便、放音不清晰而受到了巨大挑战。
本文结合人们对宾馆客房中电气设备应用的需求,提出一种用DSP实现的说话人识别系统,对客房中基本电气功能进行语音控制,从而将语音识别技术应用到宾馆客房控制中。
关键词:DSP;宾馆;语音识别; 特征参数提取 ;前言传统的宾馆客房门多采用钥匙或磁性门卡,这使得人们在外出时不得不多携带一把钥匙或是一张门卡,这对在外旅行的人造成了不大不小的麻烦;另外从市场的角度来看,存在这样的需求,当我们到一个陌生的客房时,完全不了解不熟悉它的电器控制开关的位置、对应关系及特点,给我们的旅途带来诸多的不便。
宾馆客房的电气控制系统还有待于作进一步的人性化设计。
语音识别是近二十几年发展起来的信息学科,特别是近十年来国内外竞相研究的热点。
语音识别具有最自然、最快速、最方便等优点。
始于二十世纪六十年代的语音识别研究,识别率有了很大的提高,基本可达实用水平。
但是因为语音识别的计算量非常大,难以实时实现,因此一直制约着它的应用。
DSP原理在生活中的应用论文
DSP原理在生活中的应用论文引言数字信号处理(Digital Signal Processing,DSP)是将连续时间信号转化为离散时间信号,并对该信号进行处理和分析的一种技术。
它广泛应用于许多领域,包括通信、音频处理、图像处理等。
本文将探讨DSP原理在生活中的应用,并列举一些例子来说明其重要性和效果。
应用领域一:音频处理1. 音乐压缩DSP原理在音频处理中发挥了重要的作用。
例如,通过使用离散余弦变换(Discrete Cosine Transform,DCT)和量化技术,可以将音频信号进行压缩,减小文件大小,提高传输效率,例如MP3和AAC音频格式就是通过DSP原理实现音乐压缩的。
2. 噪声抑制在日常生活中,我们经常会遇到噪声污染的问题。
DSP原理可以通过滤波、降噪算法等技术,将噪声从音频信号中去除,提高音频的质量。
这在语音通信、音乐录制等领域中都有广泛应用。
3. 音频效果处理DSP原理还可以应用于音频效果处理中。
例如,在音乐制作中,通过混响、均衡器、声场模拟等技术,可以为音频信号增加各种效果,使音乐更加丰富多样。
应用领域二:图像处理1. 图像压缩与音频处理类似,DSP原理在图像处理中也可以实现图像的压缩。
通过离散余弦变换(Discrete Cosine Transform,DCT)和零树编码(Zero-Tree Coding)等技术,可以将图像信号进行高效压缩,并减小文件大小。
JPEG图像格式就是通过DSP原理实现的。
2. 图像增强图像增强是图像处理中常见的任务。
通过DSP原理中的滤波、锐化等算法,可以对图像信号进行增强,使得图像的细节更加清晰,色彩更加鲜艳。
3. 图像识别DSP原理也广泛应用于图像识别领域。
例如,通过使用卷积神经网络(Convolutional Neural Network,CNN)等技术,可以对图像进行分类、识别和分割,实现人脸识别、目标追踪等应用。
应用领域三:智能手机智能手机是近年来的热门产品,其中涵盖了许多DSP原理的应用。
DSP结课论文
DSP原理及应用结课论文概述:DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
DSP(Demand-Side Platform),就是需求方平台。
这一概念起源于网络广告发达的欧美,是伴随着互联网和广告业的飞速发展新兴起的网络广告领域。
它与Ad Exchange和RTB一起迅速崛起于美国,已在全球快速发展,2011年已经覆盖到了欧美、亚太以及澳洲。
在世界网络展示广告领域,DSP方兴未艾。
DSP传入中国,并迅速成为热潮,成为推动中国网络展示广告RTB市场快速发展的动力之一。
1.1信号处理/DSP[数字信号处理]现代社会对数据通信需求正向多样化、个人化方向发展。
而无线数据通信作为向社会公众迅速、准确、安全、灵活、高效地提供数据交流的有力手段,其市场需求也日益迫切。
正是在这种情况下,3G、4G通信才会不断地被推出,但是无论是3G还是4G,未来通信都将离不开DSP技术(数字信号处理器),DSP作为一种功能强大的特种微处理器,主要应用在数据、语音、视像信号的高速数学运算和实时处理方面,可以说DSP将在未来通信领域中起着举足轻重的作用。
为了确保未来的通信能在各种环境下自由高效地工作,这就要求组成未来通信的DSP要具有非常高的处理信号的运算速度,才能实现各种繁杂的计算、解压缩和编译码。
而目前DSP 按照功能的侧重点不一样,可以分为定点DSP和浮点DSP,定点DSP以成本低见长,浮点DSP 以速度快见长。
如果单一地使用一种类型的DSP,未来通信的潜能就不能得到最大程度的发挥。
DSP原理及应用实验教学的研究与探讨论文
DSP原理及应用实验教学的研究与探讨论文DSP原理及应用实验教学的研究与探讨论文DSP原理及应用实验教学的研究与探讨摘要:本文阐述了DSP原理及应用实验教学的主导思想和原则,,给出了DSP原理及应用实验教学的具体做法,提出了改革DSP原理及应用实验教学的基本思路。
通过实验箱中课程实验的开展及扩展部分实验教学的开展,理论学习和实践教学深度结合,既能充分激发学生的创造能力,提高学生的分析和解决问题的能力,又能进一步加强对DSP原理及应用课程的理解,为其课程的学习和应用奠定了良好的基础,更有助于学生提高基本技能,巩固专业知识。
关键词:DSP原理及应用;深度结合;改革一、引言近年来,DSP技术在国内迅速发展,在数字通信、数字图像处理、语音信号处理、家电医疗等领域得到了广泛的应用。
多年来,我校电子信息工程学院开设了“DSP原理及应用”课程以及相应的实验课程。
学生通过该课程的学习和实践,掌握了基本的编程技巧和实现过程以及处理算法的能力,具备了系统开发的能力,为以后的工作和学习打下基础。
[1]“DSP原理及应用”课程实践性很强,实验部分尤为重要。
本文主要分析目前的“DSP原理及应用”实验教学存在的一些问题,并提出了一些改善教学方法的建议。
二、实验教学环节的总体结构DSP原理及应用实验课程的实践性很强,主要包括设计性和验证性实验。
[2]学生能够自己动手设计电路,编写程序,下载运行,自己独立完成各种竞赛,为学生就业提供有力的保障。
总体框图如图1所示。
以5000系列DSP芯片为CPU,可完成键盘、LCD显示、电机控制部分、温度检测、交通灯实验、语音测试、温度检测、无线通信等实验,通过实验箱的操作,学生很直观地观察、优化程序,下载运行,得到结果。
主控制板的'硬件提供实验箱的CPU模块,程序通过仿真机下载运行,直接查看结果。
硬件扩展方面的实验简单直观,可以激发学生的学习兴趣。
例如,学生可以进行I/O口的实验操作,交通灯实验的控制,学生很直观地通过改变代码得到四个方向的不同颜色的灯交替闪亮,也可以改变延时来得到不同的结果。
DSP结课论文 (2)
《DSP原理及应用》结课论文DSP技术应用及发展前景浅析专业:农业电气化班级:姓名:学号:目录一引言 (2)二 DSP 的发展历程 (3)三 DSP目前的主要应用领域 (4)(1)数字化移动电话 (4)(2)数据调制解调器 (4)(3)磁盘/光盘控制器需求 (4)(4)图形图像处理需求 (4)(5)汽车电子系统及其它应用领域 (5)(6)声音处理。
(5)【参考文献】 (6)一引言自从数字信号处理器(DigitalSignalProcessor)问世以来,由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理、语音、语言处理,通用西信号处理,测量分析,通信等领域发挥越来越重要的作用。
随着技术成本的降低,控制界已对此产生浓厚兴趣,已在不少场合等到成功应用二DSP 的发展历程第一种商品化的 IC 数字信号处理器是英特尔的 2920,早在 1979 年就在取代全双工、1200bps 数字硬调制解调器中的模拟滤波器组了。
同时,迅速增多的微处理器和外设提高了处理以数字表示信号的可行性。
那时几乎任何商业化信号处理任务都需要模拟计算,伴有复杂的反馈回路和补偿电路来维持稳定性。
各种依赖位片处理器小型电脑和数据采集硬件的技术都极其昂贵,并且通常只适合于研究人员。
能够经济地把信号数字化,并在数字领域进行数学计算,从而减少漂移和其它用模拟技术处理也很昂贵的不精确条件,这种逻辑很有吸引力,它直接导致今天市场上出现多种系列的 DSP。
八十年代前后,陆续有公司设计出适合于DSP处理技术的处理器,于是DSP开始成为一种高性能处理器的名称。
TI 在1982年发表一款DSP处理器名为TMS32010,其出色的性能和特性倍受业界的关注,当然新兴的DSP业务的确承担着巨大的风险,究竟向哪里拓展是生死攸关的问题。
当努力使DSP处理器每MIPS成本也降到了适合于商用的低于$10美元范围时,DSP不仅在在军事,而且在工业和商业应用中不断获得成功。
DSP原理与应用论文
DSP原理与应用论文信息科学与工程学院电子信息工程姓名:学号:DSP 的发展及应用一、DSP 数字信号处理器的发展步入21世纪之后,社会进入数字化的时代,而数字信号处理器( digital signal processor)正是这场数字化革命的核心。
从20世纪60年代数字信号处理理论的崛起, 到20世纪80年代世界上第一个单片可编程DSP芯片产生以来, 数字信号处理器的发展迅猛异常。
数字信号处理是利用专用或通用数字信号处理芯片,通过数字计算的方法对信号进行处理。
与模拟信号处理相比, 数字信号处理具有精确,灵活,抗干扰能力强,可靠性好和易于大规模集成等特点。
DSP 系统以数字信号处理为基础,与模拟信号处理系统相比,其优点:a. 接口简单、方便。
由于数字信号的电气特性简单,不同的DSP系统相互连接时,在硬件接口上容易实现;b. 精度高,稳定性好。
数字信号处理仅受量化误差和有限字长的影响,处理过程不引入其他噪声,因此有较高的信噪比。
另外模拟系统的性能受元器件参数性能影响较大,而数字系统基本不变,因此数字系统更便于测试、调试及批量生产;c. 编程方便,容易实现复杂的算法。
在DSP系统中,DSP芯片提供了一个高速计算平台,系统功能依赖于软件编程实现。
当其与现代信号处理理论和计算数学相结合时,可以实现复杂的信号处理功能;d. 集成方便。
现代DSP芯片都是将DSP芯核及其外围电路综合集成在单一芯片上。
这种结构便于设计便携式高集成度的数字产品。
现代DSP芯片作为可编程超大规模集成(VLSI) 器件,通过可下载的软件或固件来实现数字信号处理功能。
DSP芯片除具有普通微处理器的高速运算和控制功能外,还针对高数据传输速率,数值运算密集的实时数字信号处理,在处理器结构,指令系统,和指令流程设计上做了较大改动。
其结构特点有: 1. DSP 芯片普遍采用改进的哈佛结构,即数据总线和程序总线相互分离,这使得处理指令和数据可以同时进行,提高了处理效率;2 DSP 芯片大多采用流水线技术,即每条指令的执行划分为取指,译码,取数等若干步骤,由片内多个功能单元分别完成。
dsp原理及应用(概论)
4 压缩算法
通过减少信号数据的冗余来降低存储和传输 的需求。
DSP在音频处理中的应用
1
音频合成
使用DSP算法生成人声、音乐等音频信号。
2
降噪
通过滤波等技术减少噪音对音频信号的影响。
3
均衡
调整音频信号的频谱特性,改善音质。
DSP在图像处理中的应用
DSP技术的发展趋势
随着技术的不断发展,DSP算法和硬件的性能将不断提高,应用领域将进一步 扩大,如机器学习、人工智能等。
图像处理
数字信号处理在图像处理中 广泛应用,如图像增强、压 缩、识别等。
通信领域
数字信号处理在通信系统中 扮演重要角色,如数字调制 解调、信号解码等。
常见的DSP算法
1 傅立叶变换
通过将信号从时域转换到频域,可以分析信 号的频谱特性。
2 滤波算法
用于去除噪音、增强信号或提取特定频率的 信号。
3 自适应滤波
dsp原理及应用(概论)
DSP是数字信号处理的缩写,它是一种通过对数字信号进行采样、量化和处理 来实现信号分析和处理的技术。
DSP的定义和原理
数字信号处理是一种处理数字信号的技术,它包括信号的采集、变换、滤波、 编码、解码等处理过程。
DSP的应用领域
音频处理
数字信号处理可以应用于音 频设备,如音频合成、降噪、 均衡等。
1Hale Waihona Puke 图像增强利用滤波、增强算法等技术改善图像的质量和细节。
2
压缩
通过减少图像数据的冗余来降低存储和传输的需求。
3
识别
利用图像处理算法实现图像识别和目标检测。
DSP在通信领域中的应用
DSP原理及应用
DSP原理及应用DSP(数字信号处理)是一种对数字信号进行处理的技术和原理。
它在现代科学和工程领域中有着广泛的应用,包括通信、音频处理、影像处理、雷达和医学成像等。
本文将介绍DSP的原理和应用。
DSP的原理基于数字信号与模拟信号的转换。
数字信号是一系列离散的数值,而模拟信号是连续的波形。
DSP首先将模拟信号转换为数字信号,然后对数字信号进行处理,最后再将处理后的数字信号转换为模拟信号输出。
这种处理方式可以在数字域内对信号进行精确的计算和处理,例如滤波、提取特征、压缩等。
DSP的主要应用领域之一是通信。
在通信中,数字信号处理可以用于调制解调、信道码等。
调制是将数字信号转换为模拟信号以进行传输,解调则是将模拟信号转换为数字信号以进行处理。
DSP可以实现精确的调制解调算法,提高通信系统的性能和可靠性。
信道编码可以通过使用纠错码来提高信号的可靠性,在传输过程中修复错误。
另一个重要的应用领域是音频处理。
DSP可以用于音频信号的滤波、降噪和增强等。
滤波可以去除音频信号中的噪声和杂音,提高音质。
降噪可以去除背景噪音,使得音频信号更加清晰。
增强可以改善音频信号的音质和音量,增加乐曲的动态范围。
影像处理是另一个重要的DSP应用领域。
DSP可以用于数字图像的滤波、增强和压缩等。
滤波可以去除图像中的噪声和干扰,提高图像的质量。
增强可以改善图像的细节和清晰度,使得图像更加鲜明。
压缩可以减小图像文件的大小,提高图像的传输和存储效率。
雷达是一种广泛应用DSP的技术。
雷达用于探测目标的位置和速度等信息。
DSP可以用于雷达信号的处理和分析,提取目标的特征和轨迹。
通过对雷达信号进行处理,可以提高雷达系统的探测和跟踪性能,实现目标识别和跟踪。
医学成像是另一个重要的DSP应用领域。
通过对医学图像进行处理和分析,可以提取图像中的特征和结构,实现疾病的诊断和治疗。
医学图像处理包括图像滤波、分割、配准和重建等。
通过DSP技术,可以实现精确的医学图像处理和分析,提高医学诊断的准确性和可靠性。
dsp原理与应用的摘要
DSP原理与应用的摘要概述数字信号处理(Digital Signal Processing,简称DSP)是一种利用数字技术对模拟信号进行采样、处理和重构的技术。
DSP技术经过半个多世纪的发展,已广泛应用于通信、音频、图像、视频和雷达等领域。
本文将介绍DSP的基本原理和主要应用。
原理1.采样和量化:–采样是将连续时间的模拟信号转换为离散时间的数字信号,采样频率应满足奈奎斯特采样定理。
–量化是将连续的幅度值转换为有限数量的离散幅度值。
2.离散时间信号和系统:–离散时间信号是在离散时间点上取值的信号。
–离散时间系统是对离散时间信号进行处理的系统,包括线性时不变系统和非线性时不变系统。
3.频域分析:–快速傅里叶变换(FFT)是常用的频域分析方法,可以将信号从时域转换到频域。
–频率响应是描述系统对不同频率信号的响应情况。
4.滤波器设计:–无限脉冲响应(IIR)滤波器基于差分方程实现,具有较高的频率选择性和阶数较低的特点。
–有限脉冲响应(FIR)滤波器基于线性相位的冲击响应实现,具有较高的稳定性和可控性。
应用1.通信领域:–调制和解调:利用DSP技术实现信号的调制和解调,如频率调制、振幅调制等。
–信号编码和解码:DSP可以对音频、视频等信号进行压缩编码和解码,如MP3、H.264等。
2.音频处理:–降噪:利用DSP技术对音频信号进行滤波处理,降低噪音干扰。
–声音增强:通过DSP算法对音频信号进行增强,提高听音效果。
3.图像处理:–图像滤波:DSP可以对图像进行平滑滤波、锐化滤波等,改善图像质量。
–特征提取:利用DSP算法对图像进行特征提取,如边缘检测、目标检测等。
4.视频处理:–视频编解码:DSP可以对视频信号进行压缩编码和解码,如MPEG、H.264等。
–运动估计:通过DSP算法对视频序列进行运动估计,实现视频压缩和增强。
总结DSP技术在各个领域都有着广泛的应用。
通过采样和量化、频域分析、滤波器设计等原理,可以对信号进行数字化处理。
dsp原理及应用的发展历史论文
DSP原理及应用的发展历史1. 引言数字信号处理(DSP)是一门涉及数字信号的处理、分析和合成的学科。
自20世纪70年代以来,随着计算机技术的快速发展,DSP的应用范围逐渐扩大,并在各个领域发挥着重要作用。
本文将介绍DSP原理及应用的发展历史,并探讨其在通信、音频处理、图像处理等领域的重要性。
2. DSP原理的发展历史2.1 早期模拟信号处理在数字信号处理出现之前,人们主要使用模拟信号处理技术。
这种技术通过使用电子电路将连续时间和连续幅度的信号转换为电压或电流,然后进行信号处理。
然而,随着计算机技术的迅猛发展,人们开始寻求一种更灵活、更高效的信号处理方法。
2.2 DSP的诞生1965年,数字信号处理领域的先驱Thomas Stockham首次提出了数字信号处理这个概念。
他利用计算机进行声音信号处理的实验,为数字信号处理技术的诞生奠定了基础。
之后,计算机技术的发展推动了DSP领域的迅速发展。
2.3 DSP技术的突破在20世纪70年代末和80年代初,DSP技术取得了重大突破。
研究人员发展出了一系列能够高效处理数字信号的算法和芯片技术,为DSP应用的广泛推广打下了基础。
此时期的突破为现代DSP技术的发展奠定了坚实的基础。
3. DSP应用的发展历史3.1 DSP在通信领域的应用DSP在通信领域的应用是其最重要的应用之一。
通过数字信号处理,人们能够对信号进行高效处理和传输,提高通信系统的可靠性和性能。
从20世纪80年代开始,DSP在调制解调、错误控制编码、多路复用等通信系统关键技术中得到了广泛应用。
3.2 DSP在音频处理领域的应用音频处理是DSP的另一个重要应用领域。
通过利用数字信号处理的技术,人们能够对音频信号进行降噪、均衡和编码等处理,以提高音频质量。
从MP3格式的诞生开始,DSP在音频编解码、音频增强等方面的应用取得了重大突破。
3.3 DSP在图像处理领域的应用随着图像处理技术的不断发展,DSP在图像处理领域的应用也变得越来越重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DSP原理与应用论文信息科学与工程学院电子信息工程姓名:学号:DSP 的发展及应用一、DSP 数字信号处理器的发展步入21世纪之后,社会进入数字化的时代,而数字信号处理器( digital signal processor)正是这场数字化革命的核心。
从20世纪60年代数字信号处理理论的崛起, 到20世纪80年代世界上第一个单片可编程DSP芯片产生以来, 数字信号处理器的发展迅猛异常。
数字信号处理是利用专用或通用数字信号处理芯片,通过数字计算的方法对信号进行处理。
与模拟信号处理相比, 数字信号处理具有精确,灵活,抗干扰能力强,可靠性好和易于大规模集成等特点。
DSP 系统以数字信号处理为基础,与模拟信号处理系统相比,其优点:a. 接口简单、方便。
由于数字信号的电气特性简单,不同的DSP系统相互连接时,在硬件接口上容易实现;b. 精度高,稳定性好。
数字信号处理仅受量化误差和有限字长的影响,处理过程不引入其他噪声,因此有较高的信噪比。
另外模拟系统的性能受元器件参数性能影响较大,而数字系统基本不变,因此数字系统更便于测试、调试及批量生产;c. 编程方便,容易实现复杂的算法。
在DSP系统中,DSP芯片提供了一个高速计算平台,系统功能依赖于软件编程实现。
当其与现代信号处理理论和计算数学相结合时,可以实现复杂的信号处理功能;d. 集成方便。
现代DSP芯片都是将DSP芯核及其外围电路综合集成在单一芯片上。
这种结构便于设计便携式高集成度的数字产品。
现代DSP芯片作为可编程超大规模集成(VLSI) 器件,通过可下载的软件或固件来实现数字信号处理功能。
DSP芯片除具有普通微处理器的高速运算和控制功能外,还针对高数据传输速率,数值运算密集的实时数字信号处理,在处理器结构,指令系统,和指令流程设计上做了较大改动。
其结构特点有: 1. DSP 芯片普遍采用改进的哈佛结构,即数据总线和程序总线相互分离,这使得处理指令和数据可以同时进行,提高了处理效率;2 DSP 芯片大多采用流水线技术,即每条指令的执行划分为取指,译码,取数等若干步骤,由片内多个功能单元分别完成。
这相当于多条指令并行执行,从而大大提高了运行速度。
3. 片内有多条总线可以同时进行取指和取操作数动作,并且有辅助寄存器自动增减地址协助寻址。
4. 配有独立的乘法器、加法器和特殊指令,适用于需要大量乘累加器操作的矩阵运算,FFT ,Viterbi译码和相关的专用信号处理运算。
e. 大多数DSP 芯片一般都带有DMA控制器, 外部存储器,外部存储器扩展接口,串行通信,配合片内多总线结构,可以实现大吞吐量数据传送。
5. DSP芯片一般配有中断处理器、定时器,片内存储器和锁相环( PLL)等片内集成外设,可以方便的实现一个嵌入式自封闭控制的处理系统。
6. 省电管理和低功耗。
适于便携式数字终端设备。
二、DSP器件的分类DSP[器件按设计要求可以分为两类。
第一类,应用领域为廉价的、大规模嵌入式应用系统,如手机、磁盘驱动(DSP用作伺服电机控制)以及便携式数字音频播放器等。
在这些应用中价格和集成度是最重要的考虑因素。
对于便携式电池供电的设备,功耗也是一个关键的因素。
尽管这些应用常常需要开发运行于DSP的客户应用软件和外围支持硬件,但易于开发的要求仍然是次要的因素,因为批量生产可以分摊开发成本,从而降低单位产品的开发成本。
另外一类是需要用复杂算法对大量数据进行处理的应用,例如声纳探测和地震探测等,也需要用DSP器件。
该类设备的批量一般较小、算法要求苛刻、产品很大而且很复杂。
所以设计工程师在选择处理器时会尽量选择性能最佳、易于开发并支持多处理器的DSP器件。
有时,设计工程师更喜欢选用现成的开发板来开发系统而不是从零开始硬件和软件设计,同时可以采用现成的功能库文件开发应用软件。
三、DSP 数字信号处理器的应用DSP芯片性价比的不断提高以及数字化产品、Internet和计算机的不断普及,使DSP的应用范围不断扩大。
DSP的应用几乎遍及整个电子领域,其中3G( communication ,comput2er ,consumer) 领域占整个市场需求的90 %。
常见的应用有:a. 通用数字信号处理,包括数字滤波、FFT、自适应滤波、模式匹配等;b. 通信,包括高速MODEM、自适应均衡器、传真、数字留言机、程控交换、数字基站、可视电话、FDMAΠ TDMAΠ CDMA 制式移动电话、卫星通信设备、保密通信设备、IP 电话数字广播和软件无线电等;c. 家用计算机。
包括高速大容量硬盘、语音识别与合成、计算机加速卡、扫描仪、阵列处理机和多媒体处理等;d. 语音处理。
包括语音编码,语音识别与合成,人声识别,矢量编码和语音信箱等;e. 图像、视频处理。
包括图像变换、图像处理、图像压缩等;f. 军事用途。
雷达探测、雷达成像、声纳信号处理、加密通信和电子对抗等;g. 航空航天。
包括虚拟训练设备、自动驾驶、GPS、故障记录和分析设备等;可以预见,随着DSP芯片性价比的提高和数字信号处理技术的不断发展,DSP芯片将会在更广阔的领域得到应用。
DSP芯片可分为定点DSP芯片、浮点DSP芯片两大类。
这是根据DSP 芯片工作的数据格式来分类的。
数据以定点格式工作的DSP芯片称为定点DSP 芯片, 如TI 公司的TMS320C2000系列,TMS320C5000系列,TMS320C6000系列等,数据以浮点格式工作的称为浮点DSP芯片,如TI公司的TMS320C3X4X,TMX320C6000系列Π中的TMS320C67XX等。
此外,按DSP 芯片的用途来分,可分为通用型DSP 芯片和专用型DSP 芯片。
专用型DSP芯片已将算法固化在芯片中,完成特定功能。
我们现在使用的芯片主要是TI 公司的TMS320C5000 系列和TMS320C6000 系列, 其中TMS320C5000系列目前包括TMS320C54x系列和TMS320C55x系列两大类。
这两类芯片软件完全兼容,所不同的是TMS320C55x 具有更低的功耗和更高的性能。
TMS320C54x系列是为实现低功耗, 高性能而专门设计的定点DSP芯片,主要应用在无线通信等领域。
四、Code Composer Studio ( CCS) 的简介Code Composer Studio 简称CCS,是TI公司推出的为开发TMS320系列DSP软件的集成开发环境( IDE)。
CCS工作在Windows操作系统下,类似于VC + +的集成开发环境,采用图形接口界面,提供有编辑工具和工程管理工具。
它将诸如汇编器、链接器、Π + + 编译器、CC 建库工具等集成在了一个统一的开发平台中。
CCS 所集成的代码调试工具具有各种调试功能,包括了原TI公司提供的C源代码调试器和模拟器所具有的所有功能。
能对TMS320 系列DSP 进行指令级的仿真和进行可视化的实时数据分析。
此外,还提供了丰富的输入Π出库函数和信号处理的库函数,极大的方便了TMS320系列DSP软件的开发过程。
1、CCS 集成开发环境,包括编辑器、工程管理工具、调试工具等;2、用CCS 的软件开发流程CCS IDE 支持的DSP 软件开发的各个阶段如下:a. 设计—总体设计;b. 代码生成—创建工程、编写源代码、配置文件;c. 调试—语法检查、程序调试;d. 分析—实时调试、统计分析、跟踪分析;3、CCS 系统配置为了使用CCS,必须首先完成以下工作:a. 按照具体使用的模拟器或仿真目标板的产品说明,安装目标板和驱动软件;b. 按CCS 的产品说明安装CCS ;c. 创建CCS系统配置,为CCS 配置结构文件;4、利用CCS 入门指南在完成CCS安装和系统配置后,可运行CCS入门指南(CCS Tutorial) 。
该指南可用来了解CCS 的各种特色,包括新版本更新的内容。
它还提供了许多基本过程的信息。
因此,好好利用、认真学习其入门指南,是您快速深入掌握利用CCS开发DSP的最佳路径;5、CCS 中的文件和变量在使用CCS 之前,先对CCS使用的文件夹、文件的CCS类型和CCS使用的环境变量作一些说明;五、DSP处理器存在四种发展趋势:1、系统级集成DSP是潮流缩小DSP芯片尺寸始终是DSP的技术发展方向。
当前的DSP多数基于RISC(精简指令集计算)结构,这种结构的优点是尺寸小、功耗低、性能高。
各DSP厂商纷纷采用新工艺,改进DSP芯核,并将几个DSP芯核、MPU芯核、专用处理单元、外围电路单元、存储单元统统集成在一个芯片上,成为DSP系统级集成电路。
TI公司的TMS320C80代表当今DSP领域中的最高水平,它在一块芯片上集成了4个DSP、1个RISC处理器、1个传输控制器、2个视频控制器。
这样的芯片通常称之为MVP(多媒体视频处理器)。
它可支持各种图像规格和各种算法,功能相当强。
2、可编程DSP是主导产品可编程DSP给生产厂商提供了很大的灵活性。
生产厂商可在同一个DSP平台上开发出各种不同型号的系列产品,以满足不同用户的需求。
同时,可编程DSP也为广大用户提供了易于升级的良好途径。
人们已经发现,许多微控制器能做的事情,使用可编程DSP将做得更好更便宜。
例如冰箱、洗衣机,这些原来装有微控制器的家电如今已换成可编程DSP来进行大功率电机控制。
据统计,去年的可编程DSP销售额占了整个DSP市场的40%份额,预计今后的比重将逐年增大,到2001年可望占据整个DSP销售额的半边江山。
3、追求更高的运算速度目前一般的DSP运算速度为100MIPS,即每秒钟可运算1亿条指令。
但仍嫌不够快。
由于电子设备的个人化和客户化趋势,DSP必须追求更高更快的运算速度,才能跟上电子设备的更新步伐。
DSP运算速度的提高,主要依靠新工艺改进芯片结构。
目前,TI的TM320C6X芯片由于采用VLIW(Very Long Instruction Word超长指令字)结构设计,其处理速度已高达2000MIPS,计划今年年中批量生产,这是迄今为止的最高速度。
当前DSP器件大都采用0.5μm--0.35μmCMOS工艺,按照CMOS的发展趋势,DSP的运算速度再提高100倍(达到1600GIPS)是完全有可能的。
4、定点DSP是主流从理论上讲,虽然浮点DSP的动态范围比定点DSP大,且更适合于DSP的应用场合,但定点运算的DSP器件的成本较低,对存储器的要求也较低,而且耗电较省。
因此,定点运算的可编程DSP器件仍是市场上的主流产品。
据统计,目前销售的DSP器件中的80%以上属于16位定点可编程DSP器件,预计今后的比重将逐渐增大。