1.2常用制冷剂的性质
二氟氯乙烷分子直径
二氟氯乙烷分子直径介绍二氟氯乙烷(1,1-dichloro-2,2-difluoroethane)是一种有机化合物,化学式为C2H2Cl2F2。
它是一种无色的液体,常用作制冷剂和溶剂。
本文将探讨二氟氯乙烷分子的直径及其相关性质。
二氟氯乙烷的分子结构二氟氯乙烷的分子结构如下所示:F|C/ \Cl F\ /C|Cl从结构上可以看出,二氟氯乙烷分子由两个氯原子、两个氟原子和两个碳原子组成,呈现出一个分子中心对称的形状。
分子直径的定义分子直径是指分子中两个最远点之间的距离。
对于二氟氯乙烷这样的有机分子,分子直径可以通过测量分子中心到最远原子之间的距离来确定。
测量分子直径的方法测量分子直径的方法有多种,常用的方法包括: 1. X射线晶体学:通过测量晶体中分子之间的距离,间接得到分子的直径。
2. 电子显微镜:利用电子束与样品的相互作用,得到样品的形貌信息,从而测量分子直径。
3. 气相扩散:将分子溶解在气体中,通过气相扩散的方法得到分子的直径。
二氟氯乙烷分子直径的测量结果经过多种测量方法的比较和分析,得出二氟氯乙烷分子的直径约为0.5纳米。
这个结果是通过测量分子中心到最远氟原子之间的距离得到的。
分子直径与性质的关系分子直径是分子大小的一个重要参数,它与分子的性质有着密切的关系。
对于二氟氯乙烷来说,它的分子直径较小,具有以下几个特点: 1. 溶解性:由于分子直径小,二氟氯乙烷可以较好地溶解于其他溶剂中,具有良好的溶解性。
2. 动力学性质:分子直径小意味着分子间的相互作用较弱,因此二氟氯乙烷的动力学性质较好,易于扩散和反应。
3. 热力学性质:分子直径小使得分子间的相互作用能较小,导致二氟氯乙烷的热力学性质相对较稳定。
二氟氯乙烷分子直径的应用二氟氯乙烷作为一种常用的制冷剂和溶剂,其分子直径对其应用具有一定的影响:1. 制冷剂:二氟氯乙烷的小分子直径使得其能够快速扩散于制冷系统中,提高制冷效果。
2. 溶剂:二氟氯乙烷的良好溶解性使其成为一种常用的有机溶剂,广泛应用于化学合成和分析领域。
制冷证考试题库
制冷证考试题库引言概述:制冷证考试是制冷行业从业人员的重要资格认证,通过考试可以评估从业人员的专业知识和技能水平。
而题库作为备考的重要工具,对于考生来说是不可或缺的。
本文将从题库的内容、构成、难度、使用方法和优势等五个大点来详细阐述制冷证考试题库的相关内容。
正文内容:1. 题库的内容1.1 理论知识题1.1.1 制冷循环原理1.1.2 制冷剂的性质和选择1.1.3 制冷系统的组成和工作原理1.2 实际应用题1.2.1 制冷设备的安装和调试1.2.2 制冷系统的故障诊断和维修1.2.3 制冷系统的能效评估和改进2. 题库的构成2.1 单选题2.1.1 从多个选项中选择一个正确答案2.1.2 考察对基础知识的掌握和理解2.2 多选题2.2.1 从多个选项中选择多个正确答案2.2.2 考察对综合知识的理解和应用能力2.3 判断题2.3.1 判断给定的陈述是否正确2.3.2 考察对知识点的准确理解和判断能力3. 题库的难度3.1 初级题3.1.1 考察基础知识和常见问题的解决能力3.1.2 难度适中,适合初学者备考3.2 中级题3.2.1 考察综合知识和实际应用问题的解决能力3.2.2 难度适中,适合已有一定从业经验的人员备考3.3 高级题3.3.1 考察高级理论知识和复杂问题的解决能力3.3.2 难度较高,适合有一定从业经验和理论基础的人员备考4. 题库的使用方法4.1 预习阶段4.1.1 阅读教材和参考书,掌握相关知识点4.1.2 针对知识点进行题库练习,加深理解和记忆4.2 复习阶段4.2.1 对已学知识点进行系统回顾和总结4.2.2 针对不熟悉的知识点进行题库练习,加强记忆和理解4.3 模拟考试4.3.1 模拟真实考试环境,检验备考效果4.3.2 针对错题进行重点复习和强化训练5. 题库的优势5.1 全面覆盖考试内容5.1.1 题库中包含了制冷证考试的各个知识点和技能要求5.1.2 能够全面评估考生的专业水平和能力5.2 灵活的学习方式5.2.1 题库可以根据个人需求进行随时随地的学习5.2.2 能够根据自身情况选择不同难度的题目进行练习5.3 提高备考效率5.3.1 题库提供了大量的练习题目,能够帮助考生快速提高备考效率5.3.2 能够针对性地进行重点复习和训练,提高备考效果总结:制冷证考试题库是制冷行业从业人员备考的重要工具,通过题库的使用,考生可以全面掌握考试内容,提高备考效率。
常用制冷剂特性汇总
常用制冷剂特性汇总制冷剂的性质直接关系到制冷装置的制冷效果,甚至人身安全,作为制冷人,应当了解常用的制冷剂属于及运行管理。
1、R22制冷剂别名二氟一氯甲烷、氟利昂22、F-22、冷媒HCFC-22,氟利昂R22是国内使用最广泛的R22制冷剂品牌之一。
R22制冷剂用于往复式压缩机,使用于家用空调、中央空调、移动空调、热泵热水器、除湿机、冷冻式干燥器、冷库、食品冷冻设备、船用制冷设备、工业制冷、商业制冷,冷冻冷凝机组、超市陈列展示柜等制冷设备等;R22也大量用作聚四氟乙烯树脂的原料和气体灭火剂R1211的中间体,以及用于聚合物(塑料)物理发泡剂。
还可用来作杀虫剂和喷漆的气雾喷射剂,是生产各种含氟高分子化合物的基本原料。
R22制冷剂物性参数名称:一氯二氟甲烷;氟利昂R22简称:R22、HCFC-22; 分类:纯净物英文名称:Freon 22;Freon R-22 化学分子式:CHClF2分子量:86.5 摩尔质量:86.5g/mol三相点温度:-157℃标准沸点:-40.82℃临界温度:96 ℃临界压力:5MPa(绝压)临界密度:0.524g/cm3 偏心因子:0.22kJ(kg*℃)液体相对密度:1.177(20/4℃)蒸气相对密度(空气=1):4.822、R23制冷剂R23制冷剂,超低温冷媒三氟甲烷,别名:HFC23,HFC-23,F23,F-23。
R23作为广泛使用的超低温制冷剂,主要应用于环境试验箱/设备(冷热冲击试验机)、冻干机/冷冻干燥机、超低温冰箱或冷柜、血库冰箱、生化试验箱等深冷设备中(包括科研制冷、医用制冷等),多见用于这些复叠式制冷系统的低温级。
三氟甲烷同时还可用作气体灭火剂,具有清洁、低毒、灭火效果好等特点。
R23制冷剂参数中文名称:三氟甲烷英文全称:fluoroform 化学分子式:CHF3分子量:70 标准沸点:-82.1℃临界温度:25.9℃临界压力:4.84MPa(绝压)临界体积:133ml/mole CAS编号:75-46-7沸点下蒸发潜能:240kJ/kg 比热(液体,25℃):1.55kJ/kg·℃破坏臭氧潜能ODP:0 全球变暖系数GWP:12003、R32制冷剂R32,HFC-32,二氟甲烷,分子式:CH2F2,是新型环保制冷剂,不含氯元素因而对臭氧无破坏作用,但是可燃可爆,是R22与R410a制冷剂的代品之一。
制冷剂性质、制冷剂的替代[文字可编辑]
制冷剂的特性及应用
? 氨制冷剂的特性及应用 ? 氟利昂类制冷剂的特性及应用 ? 混合制冷剂的特性及应用 ? 制冷剂的环保特性及应用
制冷剂的作用
制冷剂又称制冷工质, 是制冷循环的工作介 质, 利用制冷剂的相变来传递热量, 即制 冷剂在蒸发器中汽化时吸热, 在冷凝器中 凝结时放热。当前能用作制冷剂的物质有 80 多种, 最常用的是氨、氟里昂类、水和 少数碳氢化合物等。 只有在工作温度范围内能够汽化和凝结的物 质才有可能作为制冷剂使用.
3 不溶解 4 制冷剂与油的混合物出现明显分层。润滑油会
在换热器中形成油膜, 增大换热热阻。
? 氨与油是典型的不溶解。氨比油轻, 混合物分层时 , 油在下部。所以可以很方便地从下部将油引出( 回油或放油)。
? 氟利昂制冷剂溶油性差, 由于为氟利昂一般都比油 重, 发生分层时, 下部为贫油层。
? 满液式蒸发器, 油浮在上面, 造成机器回油困难; 另外, 上面的油层影响蒸发器下部制冷剂的蒸发。
制冷剂的命名方法一
4 、非共沸(液体)制冷剂
组成
两种或两种以上制冷剂按一定比例混合而成 在气化或液化过程中, 成分不断变化 定压下, 对应的温度也不断变化。
编号 R 4XX
举例
R407c
R32/R125/R134a(23:25:52(%))
R404aR125/R143a/R134a(44:52:4(%))
氨(R717 )的特性
? 氨制冷剂的优点: 易于获得、价格低廉、压力适中、 单位制冷量大、放热系数高、几乎不溶解于油、流动阻 力小,泄漏时易发现。 ? 其缺点是: 有刺激性臭味、有毒、可以燃烧和爆炸 . 若以容积计,当空气中氨的含量达到 0.5%~0.6%时 ,人在其中停留半个小时即可中毒,达到 11 %~13 %时即可点燃,达到16 %时遇明火就会爆炸。氨对铜 及铜合金有腐蚀作用。
制冷剂与载冷剂
A对
B错
空调用制冷技术
空调用制冷技术
C 10PPM
D 5PPM
空调用制冷技术
(单选)
5、氨制冷剂的代号是( D ) 。
制冷剂载冷剂
A R718
B R12
C R22
D R717
空调用制冷技术
制冷剂载冷剂 (单选)
6、R407C的热力性质与( C )相近。
A R718
B R12
C R22
D R717
空调用制冷技术
制冷剂载冷剂 (单选)
A 易燃易爆有毒 B 溶于水 C 不溶于润滑油 D 与铜及铜合金有强烈的腐蚀作用
空调用制冷技术
制冷剂载冷剂
(判断)
12、R134a制冷剂的热力性质与R12制冷剂相同,所以不用做任何
改变,就可以替代R12用于制冷设备(B
)。
A对
B错
空调用制冷技术
制冷剂载冷剂 (判断)
A
13、混合制冷剂有共沸溶液和非共沸溶液之分。 ( )
较高温度下遇明火可引起爆炸
备注
0.5% 爆炸极限
空调用制冷技术
制冷剂
2 常用制冷剂的性质
(2)氟利昂 氟利昂的共性:
(1)存在“冰堵”现象 (2)存在“镀铜”现象 (3)对某些高分子材料存在“膨润”作用 (4)不燃或燃烧性较低,不爆,无毒或毒性小
空调用制冷技术
制冷剂
2 常用制冷剂的性质
(2)氟利昂 氟利昂的分类:
制冷剂与载冷剂
空调用制冷技术
主要内容
制冷的基本理论知识
1、制冷剂的性质 2、载冷剂的性质
空调用制冷技术
1 制冷剂的分类与命名
制冷剂
1234ze制冷剂级别和发泡剂级别
制冷剂和发泡剂是两种在工业生产和日常生活中广泛使用的化学物质,它们在不同的领域发挥着重要作用。
然而,由于其化学性质以及对环境和人体健康的影响,制冷剂和发泡剂被划分为不同的级别。
本文将分别介绍制冷剂和发泡剂的级别,探讨它们的影响以及相关的环保和健康问题。
1. 制冷剂的级别制冷剂是一种用于降低物体温度的化学物质,广泛应用于制冷设备、空调、冷冻系统等。
根据其化学性质和对臭氧层破坏的潜在影响,制冷剂被分为不同的级别。
1.1 第一代制冷剂第一代制冷剂主要是氯氟烃类物质,如氯氟烃(CFCs)和卤代烃(HCFCs)。
这些化合物具有较高的臭氧层耗尽潜能,对臭氧层的破坏作用明显。
根据《蒙特利尔议定书》,国际社会对这些物质的使用进行了限制,并逐步淘汰。
1.2 第二代制冷剂第二代制冷剂是以氢氟烃(HFCs)为主要成分的化合物。
相比于第一代制冷剂,第二代制冷剂对臭氧层的破坏作用较小,但它们仍然具有较高的全球变暖潜能。
目前,国际社会正在逐步淘汰部分HFCs,并寻求更环保的替代品种。
1.3 第三代制冷剂第三代制冷剂是指对臭氧层和全球变暖潜能影响较小的化合物,如氢氟烃/氢氯烃混合物(HFC/HC)。
这些化合物在制冷领域逐渐得到应用,以减少对环境的不良影响。
2. 发泡剂的级别发泡剂是一种在聚合物材料生产过程中添加的化学物质,通过产生气体使材料膨胀成泡沫状。
根据其化学性质和对环境的影响,发泡剂被划分为不同的级别。
2.1 第一代发泡剂第一代发泡剂主要是氯氟烃类化合物,如氯氟烃(CFCs)和氢氟烃(HCFCs)。
这些化合物在发泡过程中释放出臭氧层破坏物质,对环境产生严重影响。
由于其环境危害,国际社会已经禁止或限制了这些物质的使用。
2.2 第二代发泡剂第二代发泡剂主要是泡沫板生产中使用的氟碳化合物。
这些化合物在使用过程中对臭氧层和全球变暖潜能的影响较大,因此被视为环境污染物质。
国际社会对这些物质的使用进行了限制。
2.3 第三代发泡剂第三代发泡剂是指对环境影响较小的化合物,如氢氟烃/氢氯烃混合物。
制冷剂与载冷剂
制冷剂与载冷剂制冷剂是制冷机中的工作介质,故又称制冷工质。
制冷剂在制冷机中循环流动,在蒸发器内吸取被冷却物体或空间的热量而蒸发,在冷凝器内将热量传递给周围介质而被冷凝成液体,制冷系统借助于制冷剂状态的变化,从而实现制冷的目的。
载冷剂又称冷媒,是在间接供冷系统中用以传递制冷量的中间介质。
载冷剂在蒸发器中被制冷剂冷却后,送到冷却设备中,吸收被冷却物体或空间的热量,再返回蒸发器重新被冷却,如此循环不止,以达到传递制冷量的目的。
本章主要介绍制冷剂必备的特性以及常用制冷剂和载冷剂的主要性质。
2.1 制冷剂蒸气压缩式制冷系统中的制冷剂是一种在系统中循环工作的,汽化和凝结交替变化进行传递热量的工作流体。
系统中的制冷剂在低压低温下汽化吸热(实现制冷),而在高压高温下凝结放热(蒸汽还原为液体)。
有适宜的压力和温度,并满足一定条件的可作为制冷剂的物质大约有几十种,常用的不过十几种。
在空调、冷藏中广泛使用的制冷剂不过几种。
2.1.1制冷剂的种类与编号2.1.1.1制冷剂的种类与分类可作为制冷剂的物质较多,其种类如下:1)无机化合物,如水、氨、二氧化碳等。
2)饱和碳氢化合物的氟、氯、溴衍生物,俗称氟利昂,主要是甲烷和乙烷的衍生物,如R12、R22、R134a等。
3)饱和碳氢化合物,如丙烷、异丁烷等。
4)不饱和碳氢化合物,如乙烯、丙烯等。
5)共沸混合制冷剂,如R502等。
6)非共沸混合制冷剂,如R407C等。
通常按照制冷剂的标准蒸发温度,将其分为三类,即高温、中温和低温制冷剂。
所谓标准蒸发温度,是指在标准大气压力下的蒸发温度,也就是通常所说的沸点。
1)高温(低压)制冷剂:标准蒸发温度t s>0℃,冷凝压力Pc≤0.2~0.3MPa。
常用的高温制冷剂有R123等。
2)中温(中压)制冷剂:0℃>t s>-60℃, 0.3MPa<Pc<2.0MPa。
常用的中温制冷剂有氨、R12、R22、R134a、丙烷等。
3)低温(高压)制冷剂:t s≤-60℃。
10多种制冷剂特性与温度压力
10多种制冷剂特性与温度压力制冷剂的标准蒸发温度,又分为高、中、低温三类。
标准蒸发温度是指标准大气压力下的蒸发温度,也就是沸点。
低压高温制冷剂:蒸发温度高于0℃,冷凝压力低于29.41995×104Pa。
这类制冷剂适用于空调系统的离心式制冷压缩机中。
中压中温制冷剂:蒸发温度-50 ~ 0℃,冷凝压力(196.113 ~ 29.41995)×104Pa。
这类制冷剂一般用于普通单级压缩和双级压缩的活塞式制冷系统中。
高压低温制冷剂:蒸发温度低于-50℃,冷凝压力高于196.133×104Pa。
这类制冷剂适用于复迭式制冷装置的低温部分或-70℃以下的低温装置中。
市面上的制冷剂很多,现制冷百科小编汇总常用的制冷剂特性和温度压力表,希望对大家有帮助。
1R22制冷剂:R22制冷剂也属于氟里昂制冷剂,化学名称是二氟一氯甲烷,化学分子式为CHF2Cl 。
是中压中温制冷剂,沸点温度为-40.8℃,凝固点为-160℃,临界温度为96℃,临界压力为4.974MPa 。
R22不燃烧不爆炸,毒性小,但参透能力很强,并且泄漏难以发现。
,时长03:16R22的单位容积和氨制冷剂差不多。
R22可以通过双级压缩或空调制冷系统中,制取的最低温度可达-80℃,但不经济。
R22制冷剂的温度压力对照表2R410a制冷剂:R410a是由R32和R125两种工质按50%和50%的质量分数混合而成的HFCs类制冷剂。
R410a制冷剂不可燃,ODP为 0,全球变暖系数值GWP为2340,所以R410a并不是真正的环保制冷剂。
R410a的标准压力的泡点温度为-51.6°C,相变温度滑移小于0.2°C,属近共沸混合物,其热力学性能十分接近单工质。
R410a制冷剂的容量和压力高于R22,运行压力高出50%-60%。
R410a的运行噪声比R22压缩机明显地低2-4个分贝。
由于R401A的高压、高密度允许制冷剂管径减小许多,压缩机尺寸及排量也可大大降低;同时R410A液相的热导率高,粘度低使其具有明显优于R22的传输特性。
28种制冷剂汇总(附如何选用制冷剂)
1、R134a(四氟乙烷)冷媒R134a是目前国际公认的替代R12的主要制冷工质之一,常用于车用空调,商业和工业用制冷系统,以及作为发泡剂用于硬塑料保温材料生产,也可以用来配置其他混合制冷剂,如R404A和R407C等。
主要用途:主要替代R12用作制冷剂,大量用于汽车空调、冰箱制冷。
2、R410A物化特性:常温常压下,R410A是一种不含氯的氟代烷非共沸混合制冷剂,无色气体,贮存在钢瓶内是被压缩的液化气体。
其ODP为0,因此R410A是不破坏大气臭氧层的环保制冷剂。
主要用途:R410A主要用于替代R22和R502,具有清洁、低毒、不燃、制冷效果好等特点,大量用于家用空调、小型商用空调、户式中央空调等。
钢瓶包装,净重11.3kg、500kg>IOOOkg o3、R407C常温常压下,R407C是一种不含氯的氟代烷非共沸混合制冷剂,无色气体,贮存在钢瓶内是被压缩的液化气体。
其ODP为0,因此R407C是不破坏大气臭氧层的环保制冷剂。
主要用途:R407C主要用于替代R22,具有清洁、低毒、不燃、制冷效果好等特点,大量用于家用空调、中小型中央空调。
钢瓶包装,净重11.3kg、500kg>IOOOkg o4、R417A常温常压下,R417A是一种不含氯的氟代烷非共沸混合制冷剂,无色气体,贮存在钢瓶内是被压缩的液化气体。
其ODP为0,因此R417A是不破坏大气臭氧层的环保制冷剂。
主要用途:R417A主要用于替代R22,具有清洁、低毒、不燃、制冷效果好等特点,用于热泵(OEM初装替换R22)和空调(售后替换R22)等。
钢瓶包装,净重11.3kg、400kg›IOOOkg o5、R404AR404A不得是一种不含氯的非共沸混合制冷剂,常温常压下为无色气体,贮存在钢瓶内是被压缩的液化气体。
其ODP为0,因此R404A是不破坏大气臭氧层的环保制冷剂。
主要用途:R404A主要用于替代R22和R502,具有清洁、低毒、不燃、制冷效果好等特点,大量用于中低温冷冻系统。
制冷剂
2、饱和烃卤化物是饱和碳氢化合物的氟、氯、溴 衍生物的总称,即根据所要求的沸点,将饱和碳氢化 合物中的氢元素全部或部分地用卤素取代,就形成了 通常所称的氟里昂类制冷剂。目前用作制冷剂的都是 从甲烷、乙烷、丙烷和环丁烷的氟、氯、溴衍生物而 得来。 分子通式为:CmHnFxClyBrz 其中的m、n、x、y、z分别表示卤代烃分子中C、H、 F、Cl、Br原子的数目。
退出 返回
4、生理学和其他方面的要求
A、对人的生命和健康应无危害,不应有毒性、窒息性和刺激 性。制冷剂的毒性分为六级,一级毒性最大,六级毒性最小。 毒性分析标准见表3
表 3:制冷剂的毒性分级标准
级别 制冷剂 制冷剂蒸汽在空气中 所占百分比/% 1 2 3 4 5 6 SO2 NH3 CCl4,CHCl R113,R21 R12,R22 0.5~1.0 0.5~1.0 2.0~2.5 2.0~2.5 20.0 20.0 5 60 60 120 120 120 以上 致死 致死 开始死亡、重残 产生危害作用 不产生危害作用 不产生危害作用 作用时间/min 产生的结果
退出
返回
2、物理化学方面的要求
A、制冷剂的黏度和体积质量应尽可能小。 (可以减小制冷剂在制冷系统中流动的阻力, 降低压缩机的能耗和缩小管径) B、制冷剂在冷冻油中要有适度的溶解性。 C、制冷剂对金属和其他材料(如橡胶等)应 无腐蚀和侵蚀作用。 D、在全封闭的压缩机中,制冷剂与电机接触, 制冷剂必须有较高的绝缘强度。 F、要有溶解水的性能,这样可避免冰堵。
A、在标准大气压下,制冷剂的蒸发温度要尽量低。 B、在制冷循环时,在获得满足要求的低温条件下, 蒸发器中的制冷剂的压力最好能与大气压力相近, 或稍高于大气压力。(如果蒸发压力低于大气压力, 外界空气有可能从不密封处渗入系统,不仅会影响 蒸发器、冷凝器的传热效果,而且增加压缩机的耗 功量) C、采用自然界的水或空气作为冷却介质时,制冷剂 气体在冷凝器中的冷凝压力要尽量低,一般不超过 1.2~1.5MPa。(可以减少制冷装置承受的压力,降 低工艺过程、材料性能等方面的要求,减少制冷剂 向外渗漏的可能性) D、制冷剂的单位容积制冷能力要大。(~能力越大, 要求产生一定制冷量时,制冷剂的体积循环量就越 小,这就可以减小压缩长的制冷剂。 具有良好的热力性能,在循环过程中高低压适中,
氨制冷的工作原理
氨制冷的工作原理标题:氨制冷的工作原理引言概述:氨制冷是一种常见的制冷方式,其工作原理基于氨气的特性和物理原理。
本文将详细介绍氨制冷的工作原理,包括氨气的特性、制冷循环的基本原理、制冷剂的循环流程、蒸发和冷凝过程、以及氨制冷系统的应用领域。
一、氨气的特性1.1 氨气的化学性质:氨气是一种无色、有刺激性气味的气体,具有较强的碱性。
1.2 氨气的物理性质:氨气在常温下为气态,沸点为-33.35°C,密度为0.589g/cm³。
1.3 氨气的制冷性能:氨气具有较高的制冷效率和潜热,是一种理想的制冷剂。
二、制冷循环的基本原理2.1 压缩机:氨气通过压缩机被压缩成高温高压气体。
2.2 冷凝器:高温高压氨气在冷凝器中释放热量,冷却并凝结成液态氨。
2.3 膨胀阀:液态氨通过膨胀阀减压,变成低温低压氨气。
三、制冷剂的循环流程3.1 蒸发器:低温低压氨气通过蒸发器吸收热量,蒸发成气态氨。
3.2 蒸发过程:蒸发器中的氨气吸收外界热量,制冷效果显著。
3.3 回路循环:氨气在制冷循环中不断循环流动,实现制冷效果。
四、蒸发和冷凝过程4.1 蒸发过程:氨气在蒸发器中吸收热量,蒸发成气态,降低周围环境温度。
4.2 冷凝过程:氨气在冷凝器中释放热量,凝结成液态,释放制冷效果。
4.3 制冷效果:蒸发和冷凝过程交替进行,实现制冷效果。
五、氨制冷系统的应用领域5.1 工业制冷:氨制冷系统广泛应用于工业生产中,如食品加工、化工生产等。
5.2 商业制冷:超市、冷库等商业场所也常采用氨制冷系统进行制冷。
5.3 医疗制冷:医疗设备、实验室等需要精密控温的场所也会采用氨制冷系统。
结论:氨制冷是一种高效、环保的制冷方式,其工作原理基于氨气的特性和物理原理。
通过压缩、冷凝、膨胀、蒸发等过程,实现制冷效果,并广泛应用于工业、商业、医疗等领域。
深入了解氨制冷的工作原理,有助于更好地理解和应用这种制冷技术。
制冷剂种类及用途
制冷剂种类及用途
制冷剂是一种用于制冷和空调系统中的介质,通过吸收、传导和释放热量来实现温度调节。
不同类型的制冷剂有不同的化学组成和特性,适用于不同的应用场景。
1. 氨(NH3):氨是一种常见的制冷剂,具有良好的制冷性能和热导率。
它主要用于工业制冷和冷冻行业,如冷库、冷藏船和冷冻食品加工等。
2. 氟利昂(Freon):氟利昂是一种常用的制冷剂,具有较低的毒性和易于操作的特点。
它广泛应用于商业和家用空调系统中,如办公楼、商场和家庭。
3. 羟基乙基烷(R-134a):羟基乙基烷是一种环保制冷剂,被广泛用于汽车空调系统中。
它具有较低的温室效应和臭氧消耗潜力,逐渐取代了过去使用的氟利昂。
4. 二氟二氯甲烷(R-12):二氟二氯甲烷是一种过去广泛使用的制冷剂,但由于其对臭氧层的破坏性,现已被禁止使用。
5. 环丙烷(R-290):环丙烷是一种天然制冷剂,具有良好的环保性能。
它被广泛用于商用冷藏设备和家用冰箱等小型制冷设备中。
6. 一氧化碳(CO):一氧化碳是一种特殊的制冷剂,被用于低温制冷和超导材料的制备。
它具有极低的温度和高效的制冷能力。
制冷剂的种类多样,每种制冷剂都有其特定的应用领域和优势。
随着环保意识的增强,越来越多的新型制冷剂被研发和应用,以减少对环境的影响。
在选择制冷剂时,需要根据具体的需求和环境因素来进行合理选择,以实现高效、安全和环保的制冷效果。
制冷与空调设备运行作业指导书
制冷与空调设备运行作业指导书第1章设备运行基础 (4)1.1 设备运行原理概述 (4)1.1.1 制冷原理 (4)1.1.2 空调原理 (4)1.2 设备运行操作规范 (4)1.2.1 开机操作 (4)1.2.2 运行监控 (5)1.2.3 关机操作 (5)1.3 设备运行安全管理 (5)1.3.1 安全培训 (5)1.3.2 安全防护 (5)1.3.3 应急处理 (5)第2章制冷系统组成与原理 (5)2.1 制冷剂与润滑油 (5)2.1.1 制冷剂特性 (5)2.1.2 常用制冷剂 (5)2.1.3 润滑油 (6)2.2 压缩机与制冷循环 (6)2.2.1 压缩机类型 (6)2.2.2 制冷循环 (6)2.3 蒸发器与冷凝器 (6)2.3.1 蒸发器 (6)2.3.2 冷凝器 (6)2.3.3 蒸发器与冷凝器的选型与设计 (6)第3章空调系统组成与原理 (6)3.1 空调系统分类 (6)3.2 空调系统主要部件 (7)3.3 空调系统工作原理 (7)第4章设备运行操作流程 (7)4.1 开机操作流程 (7)4.1.1 检查设备状态 (7)4.1.2 启动电源 (8)4.1.3 启动压缩机 (8)4.1.4 启动冷凝器风扇 (8)4.1.5 启动蒸发器风扇 (8)4.1.6 启动自动控制系统 (8)4.2 运行监控与调整 (8)4.2.1 监控设备运行参数 (8)4.2.2 检查设备运行状态 (8)4.2.3 调整制冷剂流量 (8)4.2.4 调整冷却水和冷冻水流量 (8)4.3 停机操作流程 (8)4.3.1 关闭自动控制系统 (8)4.3.2 停止压缩机运行 (9)4.3.3 停止冷凝器风扇 (9)4.3.4 停止蒸发器风扇 (9)4.3.5 关闭设备电源 (9)4.3.6 记录设备运行数据 (9)第5章设备运行维护与保养 (9)5.1 维护保养基本要求 (9)5.1.1 定期维护 (9)5.1.2 预防性维护 (9)5.1.3 专业维护 (9)5.1.4 完善维护记录 (9)5.2 常用维护保养工具与设备 (9)5.2.1 工具类 (9)5.2.2 消耗材料 (10)5.3 制冷与空调设备维护保养实例 (10)5.3.1 空调器维护保养实例 (10)5.3.2 冷库维护保养实例 (10)第6章故障诊断与排除 (10)6.1 故障诊断方法 (10)6.1.1 观察法 (10)6.1.2 逻辑分析法 (10)6.1.3 仪器检测法 (10)6.1.4 对比法 (11)6.1.5 逐步排除法 (11)6.2 常见故障分析与排除 (11)6.2.1 压缩机故障 (11)6.2.2 冷凝器故障 (11)6.2.3 蒸发器故障 (11)6.2.4 控制系统故障 (11)6.3 应急处理措施 (11)6.3.1 压缩机故障 (11)6.3.2 冷凝器故障 (11)6.3.3 蒸发器故障 (11)6.3.4 控制系统故障 (12)第7章能源管理与节能 (12)7.1 能源管理基本知识 (12)7.1.1 能源管理概述 (12)7.1.2 能源管理原则 (12)7.1.3 能源管理体系 (12)7.2 节能措施与技巧 (12)7.2.1 设计优化 (12)7.2.3 运行调节 (12)7.3 能源监测与数据分析 (13)7.3.1 能源监测 (13)7.3.2 数据分析 (13)第8章设备运行环境与卫生 (13)8.1 运行环境要求 (13)8.1.1 环境温度:制冷与空调设备应安装在环境温度适宜的场所,以保证设备正常运行。
169种制冷剂的性质参数
169种制冷剂的性质参数制冷剂是用于制冷设备中的介质,常见的有氨、二氟二氯甲烷(R12)、氟利昂(R22)、氟利昂(R134a)等。
下面将对这些制冷剂的性质参数进行详细的介绍。
1.氨(NH3):-沸点:-33.35℃- 密度:0.7714 g/cm³- 分子量:17.03 g/mol-比热容:4.7J/g·K2.二氟二氯甲烷(R12):-沸点:-29.8℃- 密度:1.488 g/cm³- 分子量:120.9 g/mol-比热容:0.826J/g·K3.氟利昂(R22):-沸点:-40.8℃- 密度:1.193 g/cm³- 分子量:86.5 g/mol-比热容:0.93J/g·K4.氟利昂(R134a):-沸点:-26.15℃- 密度:1.207 g/cm³- 分子量:102.03 g/mol-比热容:1.19J/g·K-线膨胀系数:0.0008/℃除了上述常见的制冷剂,以下为其他常用制冷剂的性质参数:5.氯化甲烷(R40):-沸点:-24.2℃- 密度:1.59 g/cm³- 分子量:50.49 g/mol-比热容:0.98J/g·K-线膨胀系数:0.0009/℃6.二氟一氯甲烷(R21):-沸点:–40.8℃- 密度:1.551 g/cm³- 分子量:86.47 g/mol-比热容:1.03J/g·K7.氟二氯甲烷(R21): -沸点:-15.3℃- 密度:1.379 g/cm³- 分子量:102.91 g/mol -比热容:0.94J/g·K-线膨胀系数:0.0009/℃8.二氯二氟甲烷(R21): -沸点:–29.8℃- 密度:1.325 g/cm³- 分子量:121.02 g/mol -比热容:0.63J/g·K 9.二氯氟甲烷(R21): -沸点:-23.8℃- 密度:1.396 g/cm³- 分子量:102.92 g/mol -比热容:1.09J/g·K-线膨胀系数:0.0009/℃10.三氟甲基氮(R21):-沸点:-27.1℃- 密度:1.687 g/cm³- 分子量:121.89 g/mol-比热容:1.1J/g·K-线膨胀系数:0.001/℃以上仅列举了10种制冷剂的性质参数,实际上还有数百种制冷剂可供选择,每种制冷剂都有其特定的物理和化学性质。
常用制冷剂与载冷体及其具备的安全条件
常用制冷剂与载冷体及其具备的安全条件制冷剂是用于制冷和空调设备中的工质,具备较低的沸点和较高的蒸气压,能够吸收或释放大量热量。
而载冷体则是一种具备一定热容量和导热性能的物质,在制冷过程中能够有效地传递和吸收热量。
本文将介绍常用的制冷剂和载冷体,并介绍它们具备的安全条件。
1. 常用制冷剂常用的制冷剂包括氟利昂(Freon)、氨气、二氧化碳、氟一氯一碳(FCCC)等。
1.1 氟利昂(Freon)氟利昂是一系列制冷剂,如R22、R134a、R410a等。
它们具有较低的热载体温度(-40°C至-30°C)和较高的蒸汽压力。
氟利昂制冷剂具备的安全条件包括:避免与明火或高温物质接触,避免长时间暴露在高温环境中,避免剧烈晃动或剧烈振动。
1.2 氨气氨气是一种常用的制冷剂,具有较低的沸点和高的蒸气压。
氨气制冷剂具备的安全条件包括:避免与火源接触,避免长时间暴露在高温环境中,避免与酸类物质接触。
1.3 二氧化碳二氧化碳也是一种常用的制冷剂,具有较低的沸点和中等的蒸气压。
二氧化碳制冷剂具备的安全条件包括:避免与明火或高温物质接触,避免长时间暴露在高温环境中,避免与碱类物质接触。
1.4 氟一氯一碳(FCCC)氟一氯一碳制冷剂是一种代替氟利昂的环保制冷剂。
它们具备较低的沸点和较高的蒸气压。
FCCC制冷剂具备的安全条件与氟利昂类似。
2. 常用载冷体常用的载冷体包括水、空气、热油等。
2.1 水水是最常用的载冷体之一,具备较大的热容量和传热能力。
水作为载冷体的安全条件包括:避免与明火或高温物质接触,避免过高的水温或压力,避免水质污染。
2.2 空气空气是一种常用的载冷体,具备较大的热容量和传热能力。
作为载冷体的安全条件包括:避免与明火或高温物质接触,避免长时间暴露在高温环境中。
2.3 热油热油是一种常用的载冷体,具备较大的热容量和传热能力。
作为载冷体的安全条件包括:避免与明火或高温物质接触,避免长时间暴露在高温环境中,避免与酸类或碱类物质接触。
液氮使用冷量数据
液氮使用冷量数据引言概述:液氮是一种常用的制冷剂,其使用冷量数据对于各种工业和科研领域的制冷设备和实验室至关重要。
本文将详细介绍液氮使用冷量数据的相关内容。
一、液氮的基本性质1.1 液氮的沸点:液氮的沸点为-196°C,是一种极低温制冷剂。
1.2 液氮的气化热:液氮的气化热为199.1 kJ/kg,是制冷过程中吸收热量的重要参数。
1.3 液氮的密度:液氮的密度约为808 kg/m³,密度较大使其在制冷过程中更有效地传递冷量。
二、液氮的冷量计算方法2.1 液氮的冷量计算公式:液氮的冷量Q可通过以下公式计算:Q = m * ∆H,其中m为液氮的质量,∆H为液氮的气化热。
2.2 冷量计算中的注意事项:在计算液氮的冷量时,需要考虑到液氮的温度、压力等因素,确保计算准确。
2.3 冷量计算的应用:液氮的冷量数据可用于设计制冷设备、计算制冷系统的效率以及进行实验室制冷实验等。
三、液氮在不同领域的应用3.1 工业制冷:液氮广泛用于工业领域的制冷设备中,如冷冻食品、半导体制造等。
3.2 科研实验:液氮在科研实验室中常用于实验样品的冷冻保存、超导材料的制备等。
3.3 医疗领域:液氮在医疗领域中常用于冷冻保存生物样本、进行冷冻手术等。
四、液氮的安全使用4.1 液氮的危险性:液氮在使用过程中可能会造成皮肤冻伤、气体泄漏等安全问题。
4.2 安全操作规范:使用液氮时应佩戴防护装备、避免接触皮肤以及保持通风等安全操作规范。
4.3 应急措施:在液氮泄漏或意外事故发生时,应立即采取应急措施,如向安全人员报告、迅速撤离等。
五、液氮的环保意义5.1 液氮的环保性:液氮是一种无毒、无味、无色的环保制冷剂,不会对环境造成污染。
5.2 节能减排:使用液氮作为制冷剂可以减少能源消耗,降低二氧化碳排放。
5.3 环保政策支持:液氮的环保特性得到了政府和环保组织的支持和推广,促进了其在各个领域的应用。
结论:液氮使用冷量数据对于各种领域的制冷设备和实验室至关重要,正确理解和应用液氮的冷量数据不仅可以提高工作效率,还可以保证安全和环保。
制冷剂成分
制冷剂成分制冷剂是一种用于制冷的物质,广泛应用于空调、冰箱、汽车空调等领域。
制冷剂的成分对于其性能和环保性有着重要的影响。
本文将介绍制冷剂的成分以及其对环境的影响。
1. 制冷剂的分类制冷剂按照其化学成分可以分为以下几类:1.1 氟利昂类制冷剂氟利昂类制冷剂是一种氟碳化合物,具有稳定性、不易燃、不易爆炸等特点。
常用的氟利昂制冷剂有R22、R410A、R134a等。
由于氟利昂类制冷剂的制造和使用会对臭氧层产生破坏,因此被列为温室气体,对环境有着负面影响。
1.2 氨类制冷剂氨类制冷剂是一种无机气体,具有高效、节能、环保等特点。
常用的氨类制冷剂有R717、R723等。
由于氨类制冷剂对人体有一定的刺激性和危险性,因此在使用时需要特别注意安全。
1.3 烃类制冷剂烃类制冷剂是一种碳氢化合物,具有低毒性、低温下压缩比较小等特点。
常用的烃类制冷剂有R290、R600a等。
由于烃类制冷剂易燃,需要采取特殊的防爆措施,因此在使用时需要特别注意安全。
2. 制冷剂的环保性制冷剂的环保性是指其对环境的影响程度。
常见的两种环保性指标为Ozone Depletion Potential(ODP)和Global Warming Potential(GWP)。
2.1 ODPODP是制冷剂对臭氧层破坏程度的指标,其数值越高,对臭氧层的破坏越严重。
氟利昂类制冷剂的ODP值较高,因此对环境的影响也较大。
2.2 GWPGWP是制冷剂对全球气候变化的影响程度的指标,其数值越高,对全球气候变化的影响越大。
氟利昂类制冷剂的GWP值也较高,因此对环境的影响也较大。
3. 制冷剂的替代品为了减少制冷剂对环境的影响,各国都在积极寻找制冷剂的替代品。
常见的替代品有以下几种:3.1 HFOHFO是一种低GWP值的制冷剂,具有环保性好、性能稳定等特点。
目前已有多种HFO制冷剂在市场上应用,如R1234yf、R1234ze等。
3.2 CO2CO2是一种天然的制冷剂,具有环保性好、安全性高等特点。
几种常用制冷剂的性质
几种常用制冷剂的性质氨(R717)氨属于无机化合物制冷剂,工作压力适中,单位容积制冷量较大,放热系数高,管道流动阻力损失小,价格低,易获得。
在1atm下,氨的沸点是-33.3℃,汽化潜热为1368.15kJ/kg。
为保护臭氧层,逐步禁止使用氟里昂;氨对臭氧层无破坏作用,是对温室效应毫无作用的极少数工质之一。
氨的蒸气无色,但有强烈的刺激性气味(检漏容易),对人体有较大的毒性;氨蒸气容积浓度达11%~14%即可点燃,若达到16%~25%时可引起爆炸。
氟里昂氟里昂是饱和碳氢化合物的氟、氯、溴衍生物的总称,即用氟、氯、溴原子取代饱和的碳氢化合物中的全部或一部分氢原子而形成的化合物。
氟里昂无色、无味,渗透性强(易泄漏,需用专用仪器,如卤素灯或电子卤素检漏仪检漏),大多无毒,没有燃烧和爆炸的危险;对金属没有腐蚀作用;绝热指数小,压缩机的排气温度低;化学稳定性高,凝固点低。
氟里昂的单位容积制冷量较小,同氨相比,在相同制冷量下其制冷剂的循环量较大。
R12 (氟里昂12)二氟二氯甲烷;无色、带轻微气味。
不燃烧、不爆炸,是一种安全的制冷剂。
标准蒸发温度为-29.8℃,有较广的制冷温度范围,而且压力适中;在同一温度下,其饱和压力要比氨和氟里昂22稍低,风冷时常温下冷凝压力不超过1.18 MPa ;对金属没有腐蚀作用。
单位容积制冷量较小;对大气臭氧层破坏严重,是最早被提出禁用的制冷剂之一。
R22 (氟里昂22)二氟一氯甲烷;与R12一样是一种使用安全的制冷剂,不燃烧、不爆炸,无色、无味。
标准蒸发温度为-40.8℃,属中温制冷剂。
比R12更适于低温。
单位容积制冷量比R12大40%~60%,沸腾和凝结时放热系数比R12大25%~30%,所以采用R22作制冷剂比采用R12作制冷剂的制冷装置,在制冷量相同的情况下尺寸要小很多。
对臭氧层的破坏作用比R12小得多,大约是R12的5%;正作为某些禁用制冷剂的过渡性替代物质被使用,但最终将被停止使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案
授课教师:审阅签名:提交日期:审阅日期:
教学引入(3分钟)
新课讲授(30分钟)
讲授
提问
常见制冷剂性质
(一)对于常见制冷剂性质请同学们自行对照教材了解,主要注意以下几个方面:
1.气味
2.毒性
3.燃烧、爆炸性、腐蚀性
4.跟润滑油、水的溶解性
5.热力性能
6.来源、成本
(二)氨(R717)的特性
(三)氨(R717)的特性
(四)氟里昂的特性
(五)制冷剂对环境的影响
一、臭氧层破坏:
制冷剂总是会泄露,当氟利昂分子在高空受到紫外线照射后产生下列反应:
CF2Cl2——CF2Cl+Cl
Cl+O3——ClO+O2
ClO+O3——Cl+2O2
一个Cl原子可以破坏数百万个臭氧分子,最终导致臭氧层破坏。
二、温室效应
载冷剂选择要求
)载冷剂在工作温度下应处于液体状态;其凝固温度应低于工作温度,沸点应高于工作温度。
2)比热要大,在传递一定冷量时,可使载冷剂的循环量小。
使输送载冷剂的泵耗功减少,管道的耗材量也将减少,从而提高循环的经济性
3)导热系数要大,可增加传热效果,减少换热设备的传热面积。
4)粘度小,密度也要小,以减少流动阻力和输送泵的功率。
5)化学稳定性好,载冷剂应在工作温度下不分解,不与空气中的氧气起化学反应,不发生物理化学性质的变化。
不燃烧、不爆炸,挥发性要小。
6)要求对人体和食品、环境无毒、无害,不会引起其他物质的变色、变味、变质。
7)不腐蚀设备和管道。
8)价格低廉,便于获得。
在实际工程中使用的载冷剂有:水、氯化钠水溶液、氯化钙水溶液、乙二醇水溶液、甲醇、乙醇、三氯乙烯、二氯甲烷和三氯氟甲烷等。
对于5℃以上的系统一般直接采用水作为载冷剂,对于0℃~-50℃的系统一般采用盐水作为载冷剂。
在食品加工和药品加工中一般采用酒精水作为载冷剂。
一些特殊场合会用到三氯乙烯、二氯甲烷和三氯氟甲烷等。
常用载冷剂的特性
用的载冷剂有空气、水、盐水和有机物。
1、空气:
空气作为载冷剂在冷库及空调中多有采用。
空气比热容较小,所需传热面积大。
2、水:
水是一种比较理想的载冷剂,它比热容大,密度小、对设备和管
路腐蚀性小、不燃烧、不爆炸、无毒、化学稳定性好、来源充沛,易于获得,但其凝固点高,只适用于载冷温度在0℃以上的场合。
空调系统中多有采用。
水在蒸发器中得到冷却,然后再送入风机盘管内或直接喷入空气,对空气进行温湿度调节。
3、盐水溶液
盐水溶液有较低的凝固温度,适用于中、低温制冷装置运载冷量。
通常采用氯化钠(NaCl)、氯化钙(CaCl2)、氯化镁(MgCl2)。
盐水的凝固温度取决于盐的种类和配置的浓度。
水作载冷剂时应注意三个问题:
1、盐水浓度的确定,取决于盐水的工作温度,一般应使盐水溶液的凝固温度比制冷剂的蒸发温度低5~8℃(采用水箱式蒸发器时取5~6℃,采用壳管式蒸发器时取6~8℃)。
2、盐水在使用过程中,由于吸收空气中的水分等因素,使浓度逐渐降低,因此应定期测量盐水浓度,必要时补充加盐,以防盐水冻结。
3、氯化钠和氯化钙盐水溶液对金属都有一定的腐蚀性,尤其是开式系统,腐蚀更加严重。
为了延缓腐蚀,通常在盐水中加入一定量的缓蚀剂。