(完整版)公务员考试数量关系公式整理
公务员考试数量关系公式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形:C周长S面积a边长周长=边长×4C=4a 面积=边长×边长S=a×a2、正方体:V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形:C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形:s面积a底h高面积=底×高s=ah7、梯形:s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 、圆形:S面C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9、圆柱体:v体积h:高s:底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体:v体积h高s底面积r底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有: 1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1小时=60分1分=60秒1小时=3600秒小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2C=(a+b)×22、正方形的周长=边长×4C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷28、直径=半径×2d=2r半径=直径÷2r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2c=πd =2πr10、圆的面积=圆周率×半径×半径常见的初中数学公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1直角三角形的两个锐角互余19 推论2三角形的一个外角等于和它不相邻的两个内角的和20 推论3三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1在角的平分线上的点到这个角的两边的距离相等28 定理2到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1关于某条直线对称的两个图形是全等形43 定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理 1 平行四边形的对角相等53 平行四边形性质定理 2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3平行四边形的对角线互相平分56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3对角线互相平分的四边形是平行四边形59 平行四边形判定定理4一组对边平行相等的四边形是平行四边形60 矩形性质定理 1 矩形的四个角都是直角61 矩形性质定理2矩形的对角线相等62 矩形判定定理1有三个角是直角的四边形是矩形63 矩形判定定理2对角线相等的平行四边形是矩形64 菱形性质定理 1 菱形的四条边都相等65 菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a ×b)÷267 菱形判定定理1四边都相等的四边形是菱形68 菱形判定定理2对角线互相垂直的平行四边形是菱形69 正方形性质定理1正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1关于中心对称的两个图形是全等的72 定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a ±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m /n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理 2 相似三角形周长的比等于相似比98 性质定理3相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
公务员行测数量关系十大知识要点
数量关系十大知识要点一、行程问题1.核心公式:S=V x T,路程二速度x时间2.平均速度二总路程!总时间3.若物体前一半时间以速度V1运动,后一半时间以速度V2, ... ............................. V1 + V 2运动,则全程平均速度为4.若物体前一半路程以V1运动,后一半路程以V2运动,则全程平均速度为个2V1 + V 25.相遇时间二相遇路程+速度和6.追及时间二追及路程+速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-1)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。
如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速=(顺水速度+逆水速度)+2;水速=(顺水速度-逆水速度)+210.火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)+火车速度二、几何问题1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2) 180°4. 几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的M倍,体积变为原来的n,倍三、十字交叉Aa + Bb=(A+B>cA c -b整理变用后可得B a~c (a>c>b).用图示可简单表示为::二c工二*B b - a-其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8 的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质♦溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。
公务员行测数量关系速算公式归纳
公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。
然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。
接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。
一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。
2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。
3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。
二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。
三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。
公考数量关系公式大全
公考数量关系公式大全
在求解数量关系问题时,常用的公式包括以下几种:
1. 比例关系公式:
a/b = c/d ,其中 a、b、c、d 表示不同量之间的比值关系。
2. 百分比关系公式:
数量关系 x = 百分数 y/100 ,其中 x 表示待求数量,y 表示
已知百分比。
3. 加减乘除关系公式:
加法:a + b = c ,其中 a、b 表示已知数量,c 表示待求数量。
减法:a - b = c ,其中 a、c 表示已知数量,b 表示待求数量。
乘法:a × b = c ,其中 a、b 表示已知数量,c 表示待求数量。
除法:a ÷ b = c ,其中 a、c 表示已知数量,b 表示待求数量。
4. 平均数关系公式:
平均数 = 总和 / 数量,其中平均数表示待求数量,总和表
示已知数量之和,数量表示已知数量个数。
5. 比较关系公式:
a =
b ,其中 a、b 表示已知数量。
这些公式可以应用于不同的数量关系问题,但具体使用哪个公式要根据具体的问题情况来确定。
公考事业编考试数量关系常用公式
.aπ∙an=ara+nan÷an=an^n(a3,)n=am (ab)n=an∙bn 六、等差数列 .Sn=n(aι+a11)/2=naι+n(n-l)d; .a..=aι÷(n—1)d; .项数n=(‰—aι)∕d÷l; .若a,b,c成等差数列,则:2b=a+c; .若m+n=k+i,贝∣J:am+an=tzjt+ai; .Sn=中间项X项数(奇数项时) Sn=中间两项和的一半X项数(偶数项时) 七、等比数列 1∙4=%尸; S=Al1二81 其中q≠l 若a,b,c成等比数列,则:b2=ac; 若m+n=k+i,则:a11∙a11=a余数V除数); 2、余同取余,和同加和,差同减差,公倍数作周期; 余同:一个数除以4余1,除以5余1,除以6余1,则取1,表示为60n+l; 和同:一个数除以4余3,除以5余2,除以6余1,则取7,表示为60n+7; 差同:一个数除以4余1,除以5余2,除以6余3,则取-3,表示为60n-3; 四、奇偶特征 1、二个奇数之和/差为偶数,二个偶数之和/差为偶数,-奇・・偶之和/差为奇数; 2、两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同; 3、两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数。 五、基础代数公式 .平方差公式:(a+b)∙(a-b)=a2-b2 .完全平方公式:(a+b)2=a2÷2ab+b2 .完全立方公式:(a÷b)3=(a+b)(a2ab+b2) .立方和差公式:a3+b3=(a+b)(a2+ab+b2)
2、相遇追及型:相遇问题:相遇距离=(大速度+小速度)X相遇时间
2024国考行测资料公式汇总
2024国考行测资料公式汇总一、概述随着国家发展和改革的不断推进,国家公务员考试作为选拔和录用优秀人才的重要途径,备受关注和热议。
而国家公务员考试中的行政职业能力测验(简称行测),作为其中的一项重要考试科目,涵盖了诸多知识点和应试技巧。
其中,数学实在是行测中的一大难点,而其中的公式更是让考生头疼的部分。
我们特整理了以下2024国考行测资料公式,以便考生备考时能够更好地复习和掌握相关知识点。
二、数量关系题目公式1. 平均值计算公式平均值 = 总值 / 个数2. 比例计算公式两者之比 = 较多者 / 较少者3. 反比例计算公式两者之比 = 较少者 / 较多者4. 增减百分比计算公式百分比增加 = (增加值 / 原值) * 100百分比减少 = (减少值 / 原值) * 1005. 资料图计算公式根据柱状图、折线图或饼状图进行计算6. 存在关系计算公式混合物的平均浓度 = (已知浓度1 * 体积1 + 已知浓度2 * 体积2) / (体积1 + 体积2)三、判断推理题目公式1. 判断题公式真命题的否定为假命题假命题的否定为真命题2. 排序题公式正序排列:A<B<C逆序排列:A>B>C3. 相同字母代表相同物品四、言语理解与表达题目公式1. 近义词、反义词近义词:意思相近的词反义词:意思相反的词2. 词类变化名词→形容词→动词→副词→数词→代词→连词→介词→感叹词3. 词语搭配正词相反:冷热、高低动名结合:吃饭、送信五、综合分析题目公式1. 逻辑判断公式A→B 非B→非AA→B 非A→非B2. 选择判断公式对A的肯定是否定了B的否定3. 数字推理公式数字之和、差、乘积、商之间的规律4. 资料分析公式根据给出的数据进行图表和数据的计算和分析六、总结以上整理的2024国考行测资料公式只是行测知识点的冰山一角,但通过对这些公式的学习和掌握,能让考生更快地应对行测考试中的数量关系、判断推理、言语理解与表达、综合分析等题目类型。
国家公务员考试数量关系相关公式数字特性
1.等差数列通项公式:ܽܽ= ܽͳ+ ܽ−ͳܽ = ܽܽ+ (ܽ− ܽ)ܽ求和公式:ܽܽ= = ܽܽͳ+ܽܽͳ ܽ= 中位数×项数2.等比数列通项公式:ܽܽ= ܽͳݍܽ−ͳ= ܽܽݍ݉q n )(q≠1)求和公式:ܽܽ=ܽͳ(ݍ3.平方差公式:ܽʹ− ܽʹ=ሺܽ + ܽሻሺܽ− ܽሻʹ4.完全平方公式:(a ±b)= ܽʹ±ʹܽܽ + ܽʹ1.基础公式:总量=效率×时间(1)给完工时间型:①将工作总量赋值为完工时间的最小公倍数总量计算各主体效率②根据效率=时间③据题意列式求解(2)给效率比例型:①求出效率比例,对效率赋值②根据总量=效率×时间求出总量③据题意列式求解(3)给具体单位型:①设未知数 ②据题意列式求解2.牛吃草问题:Y=(N-X ) ×T,Y 代表原有草量(消耗量),N 代表牛数量(消耗),X 代表草生长速度(生长),T 代表吃草时间(消耗时间)1.基础公式:路程=速度×时间,平均速度=总总时路间程2.火车过桥:火车从进桥至完全驶离桥,所走路程=车长+桥长3.等距离平均速度= - -(适用于“上下坡”、“往返”等行驶路程相同但速度不同的情况)v 1+v 24. 相遇追及公式:①相遇路程=速度和×相遇时间(S 和 = V 和 x T 遇)2v 1v 2②追及路程=速度差×追及时间(ܽ差= ܽ差ൈ ܽ追)③线性两端出发第 n 次相遇:所走路程和=(2n-1) ×单次路程=速度和×相遇时间;( ʹn −ͳS = ܽ和 ൈ ܽ遇)④线性一端出发第n 次相遇:所走路程和=2n×单次路程=速度和×相遇时间(ʹnS = ܽ和ൈܽ遇)⑤环形路程第 n 次相遇:所走路程和=n 圈=速度和×相遇时间(ܽ圈 = ܽ和ൈ ܽ遇)⑥环形路程第 n 次追及:所走路程差=n 圈=速度差×追及时间(ܽ 圈= ܽ差ൈ ܽ追)5.比例行程①路程一定,速度与时间成反比②时间一定,路程与速度成正比③速度一定,路程与时间成正比6.流水行船相关公式:①顺水速度=船速+水速;②逆水速度=船速-水速;顺水速度+逆水速度③船速= ;ʹ顺水速度-逆水速度④水速= ;ʹ⑤静水速度=船速;漂流速度=水速1.基础公式: ②利润率=成利本润= 售本= 成本售价−ͳ①利润=售价-成本3 售价=成本×(1+利润率)=成本+利润1.基本公式:4 折扣=折折前后价价⑤总价=单价×数量;总进价=单个进价×数量;总利润=单个利润×数量=总售价-总进价2.分段计费:题型特征: 问在不同收费标准下,一共需要的费用。
公务员事业编考试行测数量关系公式汇总
行测数量关系公式汇总工作量=工作效率×工作时间; 工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
公务员数量关系部分公式大全
常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b2 3. 完全立方公式:(a ±b)3=(a±b)(a 2ab+b 2) 4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2)5. a m ·a n =am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n二、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)三、等比数列 (1)a n =a 1qn -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)四、不等式(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3((3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。
公务员考试之数量关系中常考的公式
常考的数量关系公式汇总No.1 奇偶判定奇数±奇数=偶数;偶数±偶数=偶数偶数±奇数=奇数;奇数±偶数=奇数奇数x奇数=奇数;奇数x偶数=偶数偶数x奇数=偶数;偶数x偶数=偶数No.2 计算公式平方差公式:完全平方公式:立方和与立方差公式:No.3 数字变化对任意两数a、b,如果a-b>0,则a>b;如果a-b<0,则a<b;如果a-b=0,则a=b当a、b为任意两正数时,如果a/b>1,则a>b;如果a/b<1,则a<b;如果a/b=1,则a=b当a、b为任意两负数时,如果a/b>1,则a<b;如果a/b<1,则a>b;如果a/b=1,则a=b对任意两数a、b,当很难直接用作差法或者作商法比较大小时,我们通常选取中间值c,如果a>c,且c>b,则我们说a>bNo.4 整除判定2,4,8整除及其余数判定法则一个数字能被2(或5)整除,当且仅当末一位数字能被2(或5)整除一个数字能被4(或25)整除,当且仅当末两位数字能被4(或25)整除一个数字能被8(或125)整除,当且仅当末三位数字能被8(或125)整除3,9整除判定基本法则一个数字能被3整除,当且仅当其各位数字之和能被3整除一个数字能被9整除,当且仅当其各位数字之和能被9整除7整除判定基本法则一个数是7的倍数,当且仅当其末位数的2倍,与剩下的数的差为7的倍数11整除判定基本法则一个数是11的倍数,当且仅当其奇数位之和与偶数位之和做的差为11的倍数,则这个数就是11的倍数No.5 工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率总工作量=各分工作量之和注:在解决实际问题时,常设总工作量为1No.6 行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2) 左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程No.7 利润问题利润=销售价(卖出价)-成本利润率=利润÷成本=(销售价-成本)÷成本=销售价÷成本-1总利润=单利润×销量售价=进价+利润=原价×折扣销售价=成本×(1+利润率)成本=销售价÷(1+利润率)No.8 钟表问题钟面上按“时”分为12大格,按“分”分为60小格。
公务员及事业单位考试行测数量关系的常用公式
行测常用数学公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b23. 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2) mnm +nm n =a m -n (a m )n =a mn (ab)n =a n ·b n(1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 21为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)(1)a n =a 1q;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。
(完整版)公务员考试行测数量关系50个常见问题公式法巧解
公务员考试行测数量关系50个常见问题公式法巧解一、页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。
依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二、握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2 例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。
按照排列组合假设总数为X人则Cx取3=152 但是在计算X 时却是相当的麻烦。
我们仔细来分析该题目。
以某个人为研究对象。
则这个人需要握x-3次手。
每个人都是这样。
则总共握了x×(x-3)次手。
但是没2个人之间的握手都重复计算了1次。
则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为:x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。
公考行测必背公式
公务员考试必背公式大全第一章 数量关系一、计算问题1.等差数列:记第一项为a 1,第n 项为a n ,公差为d ,则有 通项公式:a n =a 1+(n-1)×d ,a n =a m +(n-m )×d ; 等差数列求和公式:S n =a 1n+⨯−d n n 2(1)=⨯+n a a n 21=n 中a 。
2.等比数列:记第一项为a 1,第n 项为a n ,公比为q ,则有 通项公式:a n =a 1−q n 1,a n =a m −q n m ;等比数列求和公式:S n =−qa q n 1-(1)1=−q a a qn 1-1(q ≠1)。
3.分式的裂项公式:+n n (1)1=n 1-+n 11+n n d (1)=(n 1-+n 11)×d+=−+n n d d n n d1()1(11)4.基础计算公式:平方差公式:−=+−a b a b a b 22()() 完全平方公式:±=±+a b a ab b ()2222立方和与立方差公式: ±=±+a b a b a ab b 3322()()5.正约数的个数公式:设将自然数n 进行质因数分解得n=n n p p p ααα1212,则n 的正约数个数为(1)(1)(1)n ααα+++12。
二、利润问题1.利润=售价-成本当售价大于成本时,赢利,反之,亏损,此时商品利润用负数表示。
2.利润率利润成本售价成本成本(售价成本)=⨯=⨯=⨯100%-100%-1100% 推出公式:①售价=成本×(1+利润率) ②成本=1+售价利润率3.折扣=打折后的售价原来的售价=11⨯+⨯+成本(后来的利润率)成本(原来的利润率)=11++后来的利润率原来的利润率三、行程问题设路程为S ,速度为v ,时间为t ,则S=vt 。
1.平均速度公式:=平均速度总路程总时间等距离平均速度公式:平均速度=+v v v v 212122.普通行程:S 一定,v 与t 成反比;v 一定,S 与t 成正比;t 一定,S 与v 成正比。
公务员行政职业能力测试之数量关系数学公式汇总
公务员行政职业能力测试之数量关系数学公式汇总代入与排除法一、倍数特性法(1)2、4、8整除及余数判定基本法则:1.一个数能被2(或5)整除,当且仅当其末一位数能被2(或5)整除;2.一个数能被4(或25)整除,当且仅当其末两位数能被4(或25)整除;3.一个数能被8(或125)整除,当且仅当其末三位数能被8(或125)整除;4.一个数被2(或5)除得的余数,就是其末一位数被2(或5)除得的余数;5.一个数被4(或25)除得的余数,就是其末两位数被4(或25)除得的余数;6.一个数被8(或125)除得的余数,就是其末三位数被8(或125)除得的余数。
(2)3、9整除及余数判定基本法则:1.一个数能被3整除,当且仅当其各位数字和能被3整除;2.一个数能被3整除,当且仅当其各位数字和能被3整除;3.一个数被3除得的余数,就是其各位数字和被3除得的余数;4.一个数被9除得的余数,就是其各位数字和被9除得的余数。
(3)7整除判定基本法则:1.一个数是7的倍数,当且仅当其末一位的两倍,与剩下的数之差为7的倍数;2.一个数是7的倍数,当且仅当其末三位数,与剩下的数之差为7的倍数。
(4)11整除判定基本法则:1.一个数是11的倍数,当且仅当其奇数位之和与偶数位之和做的差为11的倍数;2.一个数是11的倍数,当且仅当其末三位,与剩下的数之差为11的倍数。
(5)13整除判定基本法则:一个数是13的倍数,当且仅当其末三位,与剩下的数之差为13的倍数。
二、比例倍数若a:b=m:n,则说明a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。
三、十字交叉法“十字交叉法”实际上是一种简化方程的形式,凡是符合下图左边方程形式的,都可以用右边的“十字交叉”的形式来简化:Aa+Bb=(A+B)A/B=r-b/a-r→A:ar-br→A/B=r-b/a-rB:ba-r四、极端思维法当试题中出现了“至多”、“至少”、“最多”、“最少”、“最大”、“最小”、“最快”、“最慢”、“最高”、“最低”等字样时,我们通常需要考虑“极端思维法”,即分析题意,构造出满足题意要求的最极端的情形。
【最全】公务员考试行测数量关系常用公式大汇总
2)(1n a a n ⨯+21d a a n 1-q q a n -11 ·1)-(a ac b b 242-+-一、基础代数公式1. 平方差公式:(a +b )×(a -b )=a 2-b 22. 完全平方公式:(a ±b )2=a 2±2ab +b 2完全立方公式:(a ±b )3=(a ±b )(a 2 ab+b 2)3. 同底数幂相乘:a m ×a n =a m +n (m 、n 为正整数,a ≠0)同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a ≠0)a 0=1(a ≠0)a -p =(a ≠0,p 为正整数)4. 等差数列:(1)s n == na 1+n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)n =+1;(4)若a,A,b 成等差数列,则:2A =a+b ;(5)若m+n=k+i ,则:a m +a n =a k +a i ;(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)5. 等比数列:(1)a n =a 1q -1;(2)s n =(q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ;(4)若m+n=k+i ,则:a m ·a n =a k ·a i ;(5)a m -a n =(m-n)d(6)=q (m-n)(7)(其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)6. 一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)p a 1n m a aaac b b 242---a b a c 212高(上底+下底)⨯ 其中:x 1=;x 2=(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-,x 1·x 2=二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
公考数量关系资料分析必背公式30条
数量关系必背公式 一、增长量和增长率 1、已知现期量和基期量,求增长量和增长率 2、已知基期量和增长量,求增长率和现期量 3、已知基期量和增长率,求增长量和现期量 4、已知现期量和增长量,求基期量和增长率 5、已知现期量和增长率,求基期量和增长量 6、已知增长率和增长量,求基期量和现期量 二、间隔增长率 三、混合增长率 六、平均数 二、行程问题 1、流水行船 3、混合浓度=混合前溶质的和/混合前溶液的和=(溶质1+溶质2)/(溶液1+溶液2) 4、巧用“十字交叉法”解决混合溶液问题 六、经济利润问题 1、收入=成本+利润 2、利润率=利润/成本 *100%【备注:数学运算中,除非题干特意说明,否则利润率均等于利润/成本。
但经济学方面、资料分析中未必如此,注意注意!】 3、收入=成本(1+利润率) 七、钟表问题 1.一个指针走完一圈3600,一个表盘3600;总共分为12个大格和60个小格;1个大格等于300,1个小格等于60; 2.时针每分钟走0.50,分针每分钟走60,速度差为5.50/分,速度之比为12:1; 3.时针与分针每小时出现2次直角,1次重合,一次180度;时针与分针每昼夜出现44次直角,22次重合,22次180度。
八、牛吃草问题 基础公式:y=(N-x)×t,其中y代表原草量,N代表牛的头数,x代表草生长的速度,t 代表牛吃完这片草所用的时间。
九、植树问题 1.单边线形植树公式(两端都植): 棵数=总长÷间隔+1 2.单边楼间植树公式(两端都不植): 棵数=总长÷间隔-1 3.环形植树公式: 棵数=总长÷间隔 十、方阵问题 1、n排n列的实心方阵:人数为n2。
2、n排n列的方阵:最外层有(4n-4)人。
3、无论是方阵还是矩形方阵,相邻两圈的人数都满足外圈比内圈多8人。
十一、过河爬楼问题 1、从地面爬到第n楼,需要爬n层。
2、从第m层爬到第n层,需要爬(n-m)层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hing at a time and All things in their being are good for somethin
概率
1. 给情况求概率 公式:概率=满足需求的情况数/全部的情况数。 注:正难则反,满足概率=1-不满足概率
2. 给概率求概率 方法: 分类:P(A)=P1+P2+…….Pn 分布:P(A)=P1×P2×…….Pn
工程问题
一、 工程量=效率×时间,效率=工程量÷时间,时间=工程量÷效率。 注意:工程问题在于找对切入点。
二、 工程问题切入点: 1. 给定时间型(完工时间):
赋值工作量为完工时间的最小公倍数。 2. 给效率型:
具体值→列方程,效率比→赋值销量为对应的比值。
行程问题
一、 行程问题的三量关系:路程=速度×时间,速度=路程÷时间,时间=路程÷速度。
(A);无差别,与顺序无关(C)。 4. 相邻捆绑法
有必须相邻的,先把相邻的捆绑起来,考虑内部顺序,捆绑后在与其它排列。 5. 不相邻插空法
先将可以相邻的进行排列,排列后行程若干个空位。再将不相邻的插入到行程的空 位中去。谁不相邻,拿谁插空。 6. 枚举法 按照面额或数值的大小,从大到小列举枚举,不漏不重。注意每种数值的个数不 得超过条件给的上限。
8. 容斥问题解体方法: a) 公式法:题目当中,所给所求都是公式的一部分。 b) 画图法:公式法解决不了的,问“只”满足。 画图,标数字(从里往外标、每部分一层),列算式(尾数法)
最值问题
1. 识别:题目问法为“至少……才能保证……”。 2. 方法:保证数=最不利数+1。若要最不利就是要考虑最倒霉的情况,考虑最不利要
对数量赋值。
hing at a time and All things in their being are good for somethin
分段计价
1. 在生活中,水电费、出租车计费等,每段计费标准不等。 2. 计算方法:按标准,分开。计算后,汇总。
排列组合与概率
一、 分类与分布 1. 分类(要么…要么…):相加。 2. 分布(先…后…):相乘。 二、 排列与组合 1. 排列:与顺序有关。 2. 组合:与顺序无关。 3. 判断标准:从已选的主体中任意挑选出两个,调换顺序。有差别,与顺序有关
V2,问全程的平均速度是多少。 推导:V=S/t,设前一半路程为 S,后一半路程为 S,则 V=2S/(S/V1+S/V2) =2V1×V2/(V1+V2)。 2. 适用于:往返(一来一回为等距离)、上下坡(上下坡为等距离)。 四、 相遇与追击: 1. 直线相遇:总路程 S=(V1+V2)×t 2. 直线追击:追击路程 S=V1t-V2t=(V1-V2)t 3. 环形相遇: a) 出发点相同,方向不同。 b) 公式:S= (V1+V2)×t c) 相遇一次 S=一圈,相遇 N 次,S=N 圈 4. 环形追击: a) 同点出发,同向而行。 b) 追击路程 S=V1t-V2t=(V1-V2)t c) 追上一次,S 追=1 圈,追上 N 次,S 追=N 圈 5. 多次相遇 a) 两端出发:第 n 次相遇,两人共走(2n-1)×S,n 是次数,S 是全程,如果第 7 次相遇,共计走了 13S,13 个全程。 b) 同端出发:第 n 次相遇,两人共走 2nS,2n 个全程。 c) 小结: 给相遇次数,问路程或时间:根据相遇次数推路程,根据路程算时间。 给相遇时间,问相遇次数:根据时间算路程,根据路程算次数。 6. 流水行船
hing at a time and All things in their being are good for somethin
a) 概念:V 顺、V 逆、V 水、V 船。 b) 公式:
顺水航行:V 顺=V 船+V 水 逆水航行:V 逆=V 船-V 水 V 船=(ห้องสมุดไป่ตู้ 顺+V 逆)/2 静水速度=船速 ,漂流=水速 7. 比例行程:S=VT a) S 一定,V 与 T 成反比;V 一定,S 与 T 成正比;T 一定,S 与 V 成正比。 b) 方法:确定不变量,再去找比例。
男生是 3 的倍数,女生是 5 的倍数,全班人数是 5+3=8 的倍数,男生女 生差值是 5-3=2 的倍数 b) A/B=M/N(M、N 互质)
hing at a time and All things in their being are good for somethin
A 是 M 的倍数,B 是 N 的倍数,A+B 是 M+N 的倍数,A-B 是 M-N 的倍 数。 c) 做题逻辑: 想:看到比例要想到使用倍数特性。 看:直接看问题,倍数特性是技巧性方法,无需分析题目,找出与问题相 关的比例。 干:找到做题方法,直接秒殺。
方程法
一、 普通方程: 找等量,设未知数,列方程,解方程。 设未知数的技巧: 1. 设小不设大(减少分数计算)。 2. 设中间值(方便列式)。 3. 问谁设谁(避免陷阱) 二、 不定方程 1. 未知数必须是整数的不定方程: a) 不定方程 ax+by=m
方法:分析奇偶、尾数、倍数等数字特性,尝试带入排除。 奇偶:a、b 恰好一奇一偶。 尾数:a 或 b 的尾数是 5 或 0。 倍数:a 或 b 与 m 有公因子。 b) 不定方程组 a1x+b1y+c1z=m a2x+b2y+c2z=n 方法:先消元转化为不定方程,再按不定方程求解。
数字特性
一、 奇偶特性: 范围: 1. 知和求差、知差求和:和差同性。 2. 不定方程:一般先考虑奇偶性。注意是“先”考虑。 3. A 是 B 的 2 倍,将 A 平均分成两份:A 为偶数。 4. 质数:逢质必 2. 方法: 1. 加减法:同奇同偶则为偶,一奇一偶则为奇。a+b 和 a-b 的奇偶性相同。 2. 乘法:一偶则偶,全奇为奇。4x、6x 必为偶数,3x、5x 不确定。
容斥原理
1. 在计数时,先不考虑重复的部分,先把符合条件的加在一起,最后再把重复的剔除、 遗漏的补上,做到“不重不漏”。
2. 题型:两集合、三集合。 3. 方法:公式法、画图法。 4. 容斥问题在于找对题型和方法。 5. 两集合。
a) A+B-A∩B=总数-都不满足。 b) 推导:大框为总数,圈 A 和圈 B,中间为 A∩B,圆圈外的为都不满足的,可以
b) 推导:全部为大框,都不为圈外的部分,三个圆分别为 A、B、C,求 AUBUC。 先把符合的 A、B、C 加在一起,即 A+B+C。 刨除重复的部分:A∩B、B∩C、A∩C 都加了 2 次,但是只要 1 次,因此需要减 去 1 次。 A∩B∩C:在 A+B+C 中加了 3 次,只要 1 次;但是在减 A∩B、B∩C、A∩C,把 A∩B∩C 减了 3 次,需要再加上一个 A∩B∩C。
有思维的过度。 3. 引例:袋子中装有 5 个红球,8 个白球,10 个黄球。
a) 至少取出()个,才能保证有红球:8+10+1=19。 b) 至少取出()个,才能保证至少有 2 个同色的球:3+1=4。 c) 至少取出()个,才能保证至少有 8 个同色的球:5+7+7+1=20。
hing at a time and All things in their being are good for somethin
注意:如果拿 10 个球完成了 8 个同色,这只是一种可能出现的状况,但是不能保 证一定完成,而如果拿 20 个球一定能保证完成 8 个同色球。 d) 最不利数(求保证数的关键点):不够,全给你。够,少给一个气死你。
构造数列(和定最值)
1. 识别:和一定,求某个量的最多或最少。注:题干是否有各不相同,如果没有,默 认相同。
12345,能被 3 整除不能被 9 整除。 b) 4/8 看末 2/3 位,末 2/3 位能被 4/8 整除,这个数就能被 4/8 整除。例:
12124,能被 4 整除不能被 8 整除。 c) 2/5 看末位能否被 2/5 整除。2 看末位能否被 2 整除,即是不是偶数,5 是
看尾数是不是 0 或 5。 拆分法: 要验证是否是 m 的倍数,只需拆分成 m 的若干被+-小数字 n,若小数字 n 能 被 m 整除,原数即能被 m 整除。 例:217 能否被 7 整除?217=210+7,所以可以被 7 整除。 复杂倍数用因式分解: 判断一个数是否能被整除,这个数拆解后的数是否能被整除,拆分的数必须互 质。 3. 比例型: a) 某班男女生比例为 3:5,即可把男生看成 3 份,女生看成 5 份。
hing at a time and All things in their being are good for somethin
2. 未知数可以不是整数的不定方程: a) 未知数可以不是整数(时间、金钱)的方程。属于非限方程,只能考查方程组求
总体,一般的方法是凑和赋 0。 b) 赋 0 法:
未知数个数多于方程个数,且未知数可以不是整数。 答案是一个算式的值,而非单一未知数的值,即必须是 N×(x+y+z)的形式。 操作:赋其中的一个未知数为 0,从而快速计算出其它未知数。 赋 0 法只限用于求总体的情况,如果求单一值则不适用。
发现总数-都不满足的=圆覆盖的面积=A+B-A∩B。 c) AUB:合集,两个集合共同覆盖的面积。A∩B:交集,两个集合共有的面积。 6. 三集合:标准型。 a) 标准型公式(给了两两之间的交集):全部-都不=A+B+C-
(A∩B+B∩C+A∩C)+A∩B∩C。
hing at a time and All things in their being are good for somethin
2. 方法(三步走): a) 定位:求最大还是最小。 b) 反向构造(要有最值思想):和一定是此消彼长的关系。即若求最多,其他尽 量少;若求最少,其它尽量多。 c) 加和求解。若结果不为整,问最多往小取,问最少往大取。