河南省实验中学数学几何图形初步(基础篇)(Word版 含解析)
几何图形初步 基础知识详解+基本典型例题解析(全)
几何图形初步目录一、几何图形二、直线、射线、线段三、角四、《几何图形初步》全章复习与巩固本套“基础知识详解”资料特色是知识点分析汇总,题目比较基础,完全不同于《初中数学典型题思路分析》,是购买典型题书赠送的资料之一。
赠送文本为word,按照课本章节分类,有初中全套且群内会陆续分享,敬请关注!一、几何图形基础知识讲解【学习目标】1.理解几何图形的概念,并能对具体图形进行识别或判断;2. 掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.【要点梳理】要点一、几何图形1.定义:把从实物中抽象出的各种图形统称为几何图形.要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.2.分类:几何图形包括立体图形和平面图形(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等.(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.要点诠释:(1)常见的立体图形有两种分类方法:(2) 常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、从不同方向看从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.要点三、简单立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点四、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体.【典型例题1】类型一、几何图形1.如图所示,请写出下列立体图形的名称.【思路点拨】可以联系生活中常见的图形及基本空间想象能力,描述各种几何体的名称.【答案与解析】解:(1)五棱柱;(2)圆锥;(3)四棱柱或长方体;(4)圆柱;(5)四棱锥.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).举一反三:【变式】如图所示,下列各标志图形主要由哪些简单的几何图形组成?【答案】(1)由圆组成;(2)长方形和正方形;(3)菱形(或四边形);(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).类型二、从不同方向看2.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.【思路点拨】注意观察的角度和方向.【答案与解析】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.【总结升华】若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.举一反三:【变式1】画出下列几何体的主视图、左视图与俯视图.【答案】主视图左视图俯视图【变式2】如图所示的工件的主视图是()A.B.C.D.【答案】B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.3.已知一个几何体的三视图如图所示,则该几何体是( )A.棱柱 B.圆柱 C.圆锥 D.球【答案】B【解析】此题可采用排除法.棱柱的三视图中不存在圆,故A不对;圆锥的主视图、左视图是三角形,故C不对;球的三视图都是圆,故D不对,因此应选B.【总结升华】平面展开图中,含有三角形,一般考虑棱锥或棱柱;如果只有两个三角形,必是三棱柱;如果含长方形,一般考虑棱柱;如果含有圆和长方形,一般考虑圆柱;如果含有扇形和圆,一般考虑圆锥.举一反三:【变式】右图是某个几何体的三视图,该几何体是()A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D类型三、展开图4.(2016•徐州)下列图形中,不可以作为一个正方体的展开图的是()A.B. C.D.【思路点拨】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【答案】C【解析】正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:故选:C.【总结升华】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.举一反三:【变式】(2015•宜昌)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【答案】 A .类型四、点、线、面、体5.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个? 如图所示.【答案与解析】解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3) 9个面,16条线,9个顶点.【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).6.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.【答案与解析】连线如下:【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】将如图所示的Rt△ABC绕直角边AC旋转一周,所得几何体从正面看到的图形是( ).【答案】A【典型例题2】类型一、几何图形1.将图中的几何体进行分类,并说明理由.【思路点拨】首先要确定分类标准,可以按组成几何体的面是平面或曲面来划分,也可以按柱、锥、球来划分.【答案与解析】解:若按形状划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按构成划分:(1)(2)(4)(7)是一类,是柱体;(5)(6)是一类,即锥体;(3)是球体.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).类型二、从不同方向看2.(2016春•潮南区月考)如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.【思路点拨】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个直三棱柱;(2)根据直三棱柱的表面积公式计算即可.【答案与解析】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【总结升华】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,考查学生的空间想象能力.举一反三:【变式】如图所示的几何体中,主视图与左视图不相同的几何体是( ).【答案】D提示:圆锥的主视图与左视图为相同的三角形;圆柱的主视图与左视图为相同的矩形;球的主视图与左视图为相同的圆,正三棱柱的主视图和左视图为不相同的两个矩形,故选D.3.由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A. B. C. D.【答案】B【解析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,2,3个正方形.【总结升华】本题考查了对几何体三种视图的空间想象能力,注意找到该几何体的主视图中每列小正方体最多的个数.举一反三:【变式1】用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?【答案】几何体的形状不唯一,最少需要小方块的个数:3222110++++=,最多需要小方块的个数:3323116⨯+⨯+=.【变式2】下图是从正面、左面、上面看由若干个小积木搭成的几何体得到的图,那么这个几何体中小积木共有多少个?主视图俯视图【答案】这个几何体中小积木共有6个.类型三、展开图4.右下图是一个正方体的表面展开图,则这个正方体是( )【答案】D【解析】最直接的方法是做一个如图所示的正方体的表面展开图,然后再折叠后进行对照即可.也可用排除法,观察正方体的表面展开图,可发现分成4块的面中的4个小正方形中有3块的颜色是阴影,这就可排除A,再想象折叠的图形,可知正方体被分成4块的面的对面应是阴影,这就可排除B 、C,所以选D.【总结升华】培养空间想想能力的方法有两种,一是通过动手操作来解决;二是通过想象进行确定.正方体沿着棱展开,把各种展开图分类,可以总结为如下11种情况.举一反三:【变式】宜黄素有“华南虎之乡”的美誉.将“华南虎之乡美”六个字填写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“虎”相对的字是________.【答案】“美”.类型四、点、线、面、体5.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.【思路点拨】(1)根据图形可得侧面的个数,再加上上下底面即可;(2)顶点共有10个,棱有5×3条;(3)根据五棱柱顶点数、面数与棱的条数进行总结即可.【答案与解析】解:(1)侧面有5个,底面有2个,共有5+2=7个面;侧面积:2×5×4=40(cm2).(2)顶点共10个,棱共有15条;(3)n棱柱的顶点数2n;面数n+2;棱的条数3n.【总结升华】此题主要考查了认识立体图形,关键是掌握常见的立体图形的形状.6.将如右图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同 B.左视图相同 C.俯视图相同 D.三种视图都不相同【答案】D【解析】首先考虑三角形和长方形旋转后所得几何体的形状,然后再根据两种几何体的三视图做出判断.【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】(2015春•海安县校级期中)将如图所示放置的一个直角三角形ABC,(∠C=90°),绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图中的()A.B.C.D.【答案】C二、直线、射线、线段基础知识讲解【学习目标】1.理解直线、射线、线段的概念,掌握它们的区别和联系;2. 利用直线、线段的性质解决相关实际问题;3.利用线段的和差倍分解决相关计算问题.【要点梳理】要点一、直线1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:直线的特征:(1)直线没有长短,向两方无限延伸.(2)直线没有粗细.(3)两点确定一条直线.(4)两条直线相交有唯一一个交点.4.点与直线的位置关系:(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.要点二、线段1.概念:直线上两点和它们之间的部分叫做线段.2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.3. “作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图6所示,在A,B两点所连的线中,线段AB的长度是最短的.要点诠释:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(2)连接两点间的线段的长度,叫做这两点的距离.(3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.5.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如图7所示,点C 是线段AB的中点,则12AC CB AB==,或AB=2AC=2BC.要点诠释:若点C是线段AB的中点,则点C一定在线段AB上.要点三、射线1.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图8所示,直线l上点O和它一旁的部分是一条射线,点O是端点.l2.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线OA.(2)也可以用一个小写英文字母表示,如图8所示,射线OA可记为射线l.要点诠释:(1)端点相同,而延伸方向不同,表示不同的射线.如图9中射线OA,射线OB是不同的射线.图6图7图8图9(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图10中射线OA、射线OB、射线OC都表示同一条射线.要点四、直线、射线、线段的区别与联系1.直线、射线、线段之间的联系(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线.2.三者的区别如下表要点诠释:(1)联系与区别可表示如下:(2)在表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.【典型例题】类型一、相关概念1.下列说法中,正确的是( )A.射线OA与射线AO是同一条射线B.线段AB与线段BA是同一条线段C.过一点只能画一条直线D.三条直线两两相交,必有三个交点【答案】B图10【解析】射线OA的端点是O,射线AO的端点是A,所以射线OA与射线AO不是同一条射线,故A错误;过一点能画无数条直线,所以C错误;三条直线两两相交,有三个交点或一个交点(三条直线相交于一点时),所以D错误;线段AB与线段BA是同一条线段,所以B正确.【总结升华】直线和线段用两个大写字母表示时,与字母的前后顺序无关,但射线必须是表示端点的字母写在前面,不能互换.举一反三:【变式1】以下说法中正确的是()A.延长线段AB到C B.延长射线ABC.直线AB的端点之一是A D.延长射线OA到C【答案】A【变式2】如图所示,请分别指出图中的线段、射线和直线的条数,并把它们分别表示出来.【答案】解:如下图所示,在直线上点A左侧和点C右侧分别任取点X和Y.图中有6条射线:射线AX、射线AY、射线BX、射线BY、射线CX、射线CY.有3条线段:线段AB(或BA)、线段BC(或CB)、线段AC(或CA)有1条直线:直线AC(或AB,BC).类型二、有关作图2.如图所示,线段a,b,且a>b.用圆规和直尺画线段:(1)a+b;(2)a-b.【答案与解析】解:(1) 画法如图(1),画直线AF,在直线AF上画线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是a与b的和,记作AC=a+b.(2) 画法如图(2),画直线AF,在直线AF上画线段AB=a,再在线段AB上画线段BD=b,线段AD就是a与b的差,记作AD=a-b.【总结升华】在画线段时,为使结果更准确,一般用直尺画直线,用圆规量取线段的长度.举一反三:【变式1】如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【答案】解:【变式2】用直尺作图:P是直线a外一点,过点P有一条线段b与直线a不相交.【答案】解:类型三、有关条数及长度的计算3.如图,A、B、C、D为平面内任意三点都不在同一条直线上的四点,那么过其中两点,可画出条直线.【思路点拨】根据两点确定一条直线即可计算出直线的条数.【答案】6条直线【解析】由两点确定一条直线知,点A与B,C,D三点各确定一条直线,同理点B与C、D各确定一条直线,C与D确定一条直线,综上:共有直线:3+2+1=6(条).【总结升华】平面上有n个点,其中任意三点不在一条直线上,则最多确定的直线条数为:(1)123...(1)2n n n -++++-=. 举一反三:【变式1】如图所示,已知线段AB 上有三个定点C 、D 、E . (1)图中共有几条线段?(2)如果在线段CD 上增加一点,则增加了几条线段?你能从中发现什么规律吗? 【答案】解:(1)线段的条数:4+3+2+1=10(条);(2)如果在线段CD 上增加一点P ,则P 与其它五个点各组成一条线段,因此,增加了5条线段.(注解:若在线段AB 上增加一点,则增加2条线段,此时线段总条数为1+2;若再增加一点,则又增加了3条线段,此时线段总条数为1+2+3;…;当线段AB 上增加到n 个点(即增加n -2个点)时,线段的总条数为1+2+……+(n -1)=21n(n -1) .) 【变式2】)如图直线m 上有4个点A 、B 、C 、D ,则图中共有________条射线.【答案】84.(2016春•启东市月考)已知点C 在线段AB 上,线段AC=7cm ,BC=5cm ,点M 、N 分别是AC 、BC 的中点,求MN 的长度. 【思路点拨】根据M 、N 分别为AC 、BC 的中点,根据AC 、BC 的长求出MC 与CN 的长,由MC+CN 求出MN 的长即可. 【答案与解析】解:∵AC=7cm ,BC=5cm ,点M 、N 分别是AC 、BC 的中点, ∴MC=AC=3.5cm ,CN=BC=2.5cm , 则MN=MC+CN=3.5+2.5=6(cm ).【总结升华】此题考查了线段的和差,熟练掌握线段中点定义是解本题的关键.举一反三:【变式】在直线l 上按指定方向依次取点A 、B 、C 、D ,且使AB :BC :CD=2:3:4,如图所示,若AB 的中点M 与CD 的中点N 的距离是15cm ,求AB 的长.【答案】解:依题意,设AB =2x cm ,那么BC =3x cm ,CD =4x cm .则有: MN=BM+BC+CN= x+3x+2x=15 解得:52x =所以AB=2x =5252⨯=cm.类型四、最短问题5.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【答案】B.【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】 (1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.【典型例题】类型一、有关概念1.如图所示,指出图中的直线、射线和线段.【思路点拨】从图上看,A、D、F分别是线段CB、BC、BE的延长线上的点,也就是说,A、D、F三点的位置并不是完全确定的.此时,我们也就能分清楚图中的直线、射线和线段了.【答案与解析】解:直线有一条:直线AD;射线有六条:射线BA、射线BD、射线CA、射线CD、射线BF、射线EF;线段有三条:线段BC、线段BE、线段CE.【总结升华】在表示线段和直线时,两个大写字母的顺序可以颠倒.然而,在叙述线段的延长线的时候,表示线段的两个大写字母的顺序就不能颠倒了,因为线段向一方延伸后就形成了射线(延长部分已不再是线段本身了),而表示射线的两个大写字母的顺序是不能颠倒的,只能用第一个字母表示射线的端点,第二个字母表示射线方向上的任一点.举一反三:【变式】两条不同的直线,要么有一个公共点,要么没有公共点,不能有两个公共点. 这是为什么?画图说明.【答案】解:∵过两点有且只有一条直线.(或两点确定一条直线.)∴两条不同的直线,要么有一个公共点,如图(1);要么没有公共点,如图(2);不能有两个公共点.类型二、有关作图2.(2016春•高青县期中)已知平面上四点A、B、C、D,如图:(1)画直线AD;(2)画射线BC,与AD相交于O;(3)连结AC、BD相交于点F.【思路点拨】(1)画直线AD ,连接AD 并向两方无限延长;(2)画射线BC ,以B 为端点向BC 方向延长交AD 于点O ;(3)连接各点,其交点即为点F . 【答案与解析】 解:如图所示:【总结升华】本题主要考查直线、射线、线段的认识,掌握直线、射线、线段的特点是解题的关键. 举一反三:【变式1】下列说法正确的有 ( )①射线与其反向延长线成一条直线; ②直线a 、b 相交于点m ; ③两直线相交于两个交点; ④直线A 与直线B 相交于点MA .3个B .2个C .1个D .4个 【答案】 C【变式2】下列说法中,正确的个数有( )①已知线段a ,b 且a-b =c ,则c 的值不是正的就是负的; ②已知平面内的任意三点A ,B ,C 则AB+BC ≥AC ; ③延长AB 到C ,使BC =AB ,则AC =2AB ;④直线上的顺次三点D 、E 、F ,则DE+EF =DF . A .1个 B .2个 C .3个 D .4个 【答案】C类型三、个(条)数或长度的计算3. 根据题意,完成下列填空.如图所示,1l 与2l 是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3条直线3l ,那么这3条直线最多有________个交点;如果在这个平面内再画第4条直线4l ,那么这4条直线最多可有________个交点.由此我们可以猜想:在同一平面内,6条直线最多可有________个交点,n(n 为大于1的整数)条直线最多可有________个交点(用含有n 的代数式表示).【答案】3, 6, 15,(1)2n n .【解析】本题探索过程要分两步:首先要填好3条直线最多可有2+1=3个交点,再类推4条直线,5条直线,6条直线的情形所得到的和式,其次再研究这些和式的规律,得出一般性的结论.【总结升华】n(n 为大于1的整数)条直线的交点最多可有:(1)123...(1)2n n n -++++-=个 举一反三:【变式1】平面上有n 个点,最多可以确定 条直线 【答案】(1)2n n - 【变式2】一条直线有n 个点,最多可以确定 条线段, 条射线 【答案】(1)2n n -,2n 【变式3】一个平面内有三条直线,会出现几个交点? 【答案】0个,1个,2个,或3个.4.已知线段AB =14cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求线段AM 的长.【思路点拨】题目中只说明了A 、B 、C 三点在同一直线上,无法判定点C 在线段AB 上,还是在线段AB 外(也就是在线段AB 的延长线上).所以要分两种情况求线段AM 的长. 【答案与解析】解:①当点C 在线段AB 上时,如图所示.因为M 是线段AC 的中点, 所以12AM AC =. 又因为AC =AB-BC ,AB =14cm ,BC =4cm , 所以1()2AM AB BC =-1(144)5(cm)2=-=. ②当点C 在线段AB 的延长线上时,如图所示.因为M 是线段AC 的中点, 所以12AM AC =. 又因为AC =AB+BC ,AB =14cm ,BC =4cm , 所以1()2AM AB BC =+=9(cm). 所以线段AM 的长为5cm 或9cm .【总结升华】在解答没有给出图形的问题时,一定要审题,要全面考虑所有可能的情况,即当我们面临的教学问题无法确定是哪种情形时,就要分类讨论. 举一反三:。
河南省实验中学2024-2025学年上学期七年级入学测试数学试题(解析版)
数学(时间:70分钟满分:100分)亲爱的同学,欢迎来到河南省实验中学的大家庭,这是你进校的第一次考试,希望展示你真实的水平,努力加油哟!一.选择题(共10小题,满分20分)1. 一个三角形,其中有两个角分别是50°和70°,第三个角是( )A. 60°B. 70°C. 80°D. 50°【答案】A【解析】【分析】本题考查了三角形内角和定理,根据三角形内角和等于180°,直接求解即可.【详解】解:由题意可知:第三个角的度数是180507060°−°−°=°, 故选:A .2. 一张地图的比例尺是1:25000,从图中测得两地的距离是4cm ,它们的实际距离是( )kmA. 1B. 10C. 100D. 100000【答案】A【解析】A、B 两地的实际距离为cm x ,根据比例尺的定义,列方程解答即可.【详解】解:设A ,B 两地的实际距离为cm x ,由题意得: 1425000x= 解:100000x =,又100000cm 1km =故选A .3. 下面各选项中的两种量,成正比例关系的是( )A. 平行四边形的面积一定,它的底和高B. 已知3y x =+,y 和xC. 正方体的表面积与它的一个面的面积D. 已知9:4x y =:,y 和x 【答案】C【解析】【分析】本题主要考查了正反比例, 根据平行四边形的面积,正方体的表面积以及比例的关系列出式子一一判断即可.【详解】解:A .底×高=平行四边形的面积(一定),它的底和高成反比例关系,故该选项不符合题意; B .已知3y x =+,y 和x 不是正比例函数,故该选项不符合题意;C .正方体的表面积6=×一个面的面积,则正方体的表面积与它的一个面的面积成正比例关系,故该选项符合题意;D .9:4x y =:,则36xy =,y 和x 成反比例关系,故该选项不符合题意; 故选:C .4. 在5cm 5cm 8cm 8cm 10cm 、、、、的五根小棒中,任选三根围成一个等腰三角形,有( )种不同的围法.A. 2B. 3C. 4D. 5【答案】B【解析】【分析】本题考查了等腰三角形的定义,三角形的三边关系定理,熟记三角形的三边关系定理是解题关键.根据三角形的三边关系定理即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边则有以下两种选法:①选5cm 5cm 8cm 、、三根木棒,558+>,满足三角形的三边关系定理;②选8cm 8cm 10cm 、、三根木棒,8810+>,满足三角形的三边关系定理;③选885cm cm cm 、、三根木棒,5+8>8,满足三角形的三边关系定理;即有3种不同的围法,故选:B .5. 某超市按进价加40%作为定价销售某种商品,可是销售得不好,只卖出14,来老板按定价减价40%以210元出售,很快就卖完了,则这次生意盈亏情况是( )A. 不亏不赚B. 平均每件亏了5元C. 平均每件赚了5元D. 不能确定 【答案】B【解析】【分析】本题主要考查了百分数的应用,先求出进价,再求出现在的售价,相减即可得出答案.【详解】解:()()210140%140%250÷+−=(元),()11250140%210124544 ×+×+×−=(元), ∴2502455−=(元) 故选:B6. 同时掷出两枚相同的骰子,朝上的两个面上的两个点数的和不大于7的概率(可能性)是( ) A. 17 B. 16 C. 712 D. 13【答案】C【解析】【分析】本题主要考查可能性的求法,即求一个数是另一个数的几分之几用除法解答.同时掷两枚相同的骰子,出现的点数的可能结果有36种,点数之和不大于7的共21种,用除法计算即可.【详解】解:同时掷两枚相同的骰子,出现的点数的可能结果有36种,点数之和不大于7的有:()1,1,()1,2,()1,3,(1,4),()1,5,()1,6,(2,1),()2,2,(2,3),()2,4,()2,5, ()3,1,()3,2,()3,3,()3,4()4,1,()4,2,()4,3,()5,1,()5,2,()6,1,一共有21种,∴朝上的两个面上的两个点数的和不大于7的概率是2173612=, 故选:C .7. 小明将一个正方形纸对折两次,如图所示:并在中央点打孔再将它展开,展开后的图形是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了折叠的性质,解题的关键是熟练掌握折叠的性质,发挥空间想象力.动手按照图示顺序操作一下,先左右对折,再上下对折即可得出答案.【详解】解:动手按照图示顺序操作一下,先左右对折,再上下对折,所以得出的图是:故选:B .8. 把分数a 的分子扩大9倍,分母扩大11倍,得到一个新分数b ;把分数a 的分子扩大8倍,分母扩大9倍,得到一个新分数c ,那么b 和c 比较( )A. b c >B. b c <C. b c =D. 无法比较 【答案】B【解析】【分析】本题考查分式基本性质,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变,根据分式的性质求解即可.【详解】解:根据题意得:b =,89c a =, ∵999811111999×==×,881188991199×==×, ∵81889999<, ∴81889999a a <, ∴b c <,故选:B .9. 有两根长短粗细不同的蚊香,短的一根可燃8小时,长的一根的可燃时间是短的一根12,同时点燃两根蚊香,经过3小时,它们的长短正好相等,未点燃之前,短蚊香比长蚊香短( )的A. 35B. 67C. 25D. 45【答案】A【解析】【分析】本题考查代数式的应用,用燃烧3小时后的蚊香长度表示出短蚊香和长蚊香的原长是解题的关键. 【详解】解:长的可燃时间为1842×=小时, 3小时后:短蚊香可燃时间为835−=小时,长蚊香可燃时间为431−=小时,设后来的长度为a , 则短蚊香的长度为85a ,长蚊香的长度为4a , ∴短蚊香比长蚊香短8445a a a −÷=35, 故选:A .10. 如图,把三角形DBE 沿线段折叠AC ,得到一个多边形DACEFB G ′,这个多边形的面积与原三角形面积的比是7:9,已知图2中阴影部分的面积为15平方厘米,那么原三角形的面积是( )平方厘米.A. 26B. 27C. 28D. 29【答案】B 【解析】 【分析】本题考查分数的应用.解题的关键是确定阴影部分的面积是原三角形面积的几分之几. 根据多边形的面积是原三角形面积的79,得到多边形中空白部分的面积是原三角形面积的29,进而得到阴影部分的面积是原三角形面积的59,再根据阴影部分的面积进行求解即可. 【详解】解:由题意,可知:多边形中空白部分的面积是原三角形面积的72199−=, 多边形中阴影部分的面积是原三角形面积的2251999−−=,则原三角形的面积是5915152795÷=×=(平方厘米) 故选B . 二.填空题(共10小题,满分20分)11. 2.737373…用四舍五入法保留两位小数是____.【答案】2.74【解析】【分析】本题主要考查了求一个数的近似数,根据四舍五入法求解即可.【详解】解:2.737373…小数位上第三位数字是7,75>,∴2.737373 2.74…≈, 故答案为:2.74.12. 一个长方形,周长24厘米,宽4厘米.如果长增加2厘米,那么面积是______平方厘米.【答案】40【解析】【分析】本题主要考查了长方体的周长公式以及面积公式, 根据长方形的周长可求出长方形的长,然后再根据长方形的面积公式计算即可得出答案.【详解】解:长方形的长为24248÷−=(厘米), 如果长长增加2厘米,则长变成8210+=(厘米), 所以长方形的面积为:104×=, 故答案为:40.13. 陈老师花了600元买了48个本和72支笔.已知每个本8元,那么每支笔____元.【答案】3【解析】【分析】题目主要考查有理数的四则混合运算的应用,理解题意,列式计算即可. 【详解】解:根据题意得:600488372−×=元, 故答案为:3.14. 用黑、白两种颜色的正六边形地砖按如下图所示规律铺地面,则第n 个图形有____块白色地砖.【答案】(42)n +##()24n +【解析】【分析】本题考查了规律型−图形变化类,解决本题的关键是根据图形的变化寻找规律,总结规律,运用规律.根据图示,第1个图形有白色地砖6块;第2个图形有白色地砖6410+=(块);第3个图形有白色地砖64414++=(块);.….;第5个图形白色地砖的块数:64(51)22+×−=(块);……;第n 个图形白色地砖的块数:64(1)(42)n n +×−=+块.据此解答.【详解】解:第1个图形有白色地砖6块,第2个图形有白色地砖6410+=(块), 第3个图形有白色地砖64414++=(块), 第5个图形白色地砖的块数:64(51)22+×−=(块), 第n 个图形白色地砖的块数:64(1)(42)n n +×−=+块,故答案为:(42)n +.15. 在一个棱长为8的立方体上切去一个三棱柱(如图),那么表面积减少____.【答案】28【解析】【分析】本题主要考查求三棱柱表面积,根据题意先求得原三棱柱的表面积,再求得切去一个三棱柱后形成新的表面积,作差即可. 【详解】解:原三棱柱的表面积为138********×+×+×××=, 切去一个三棱柱后形成新的表面积为5840×=,则表面积减少了684028−=.故答案为:28.16. 如图,把梯形ABCD 分割成一个平行四边形和一个三角形,已知:3:5BE EC =,如果三角形CDE 的面积是200平方厘米,则平行四边形ABED 的面积是____平方厘米的.【答案】240【解析】【分析】本题考查了比的应用,得出:6:5ABED DEC S S = 是解题关键;根据比的性质,结合平行四边形和三角形的面积公式即可求解;【详解】解:设平行四边形ABED 和三角形CDE 的高为h ,35BE EC :=: ,1:?:?6:52ABED DEC S S BE h CE h ∴== , 三角形CDE 的面积是200平方厘米,∴平行四边形ABED 面积为:62002405×=平方厘米, 故答案为:240 17. 下面这个几何体,是由10个小正方体组成的.想一想,至少再摆上____个小立方体,它就能拼成一个长方体了.【答案】8【解析】【分析】本题考查从不同方向看几何体,解题的关键是理解题意,灵活运用所学知识解决问题;根据几何体特征即可求解;【详解】解:这个几何体是由10个小正方形组成的,332108××−=(个)至少再摆上8个小立方体,它就能拼成一个长方体了,故答案为:818. “16 ☆”是一个四位数,它同时是2,3,5的倍数,其中☆所代表的数字是0,则 所代表的数字最小是____.【答案】2的【解析】【分析】本题考查倍数的特征及其应用,熟练掌握根据倍数的特征是解题的关键;根据倍数的特征求解即可;【详解】解:同时是2,3,5的倍数的特征:个位必须为0且各位上的数字之和为3的倍数, 因此可知,169++= ,2= ,故答案为:219. 在甲、乙、丙三缸酒精溶液中,纯酒精含量分别占48%、62.5%和23,已知三酒精溶液的总量是100千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量,三缸溶液混合,酒精含量将达到56%,那么丙缸中纯酒精的量是____千克.【答案】12【解析】【分析】本题考查了百分数的应用,一元一次方程的应用;根据题意易得甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量50=千克,从而可设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,然后根据题意可得:()25048%62.5%5010056%3x x ×+−+×,最后进行计算即可解答. 【详解】解: 100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量,∴甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量1100502=×=(千克), 设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,由题意得:()25048%62.5%5010056%3x x ×+−+×, 解得:18x =, ∴丙缸中纯酒精的量218123=×=(千克), ∴丙缸中纯酒精的量是12千克,故答案为:12.20. 由200多枚棋子摆成一个n 行n 列的正方形,甲先从中取走10枚,乙再从中取走10枚……这样轮流取下去,直到取完为止,结果最后一枚被乙取走,乙一共取走了 ________枚棋子.【答案】126【解析】【分析】本题主要考查了完全平方数的性质,棋子数是一个完全平方数,最后一枚被乙取走,说明这个完全平方数的十位是奇数,找出200~300之间十位数是奇数的完全平方数即可求解.【详解】解: 棋子摆成n行n列的正方形,∴棋子数是一个完全平方数,最后一枚被乙取走,∴这个数的十位数是奇数,200~300间的完全平方数只有225,256,289,∴棋子数是256个,∴乙取走的棋子数为:24026126÷+=(个).故答案为:126.三.解答题(本大题共8小题,共60分)21. 请直接写出答案.(1)3.2 1.18+=(2)10.98−=(3)38415×=(4)60.5÷=(5)0.47 2.5××=(6)1132+÷=(7)3535 7878×÷×=(8)1542 111113×+=【答案】(1)4.38(2)0.02(3)2 5(4)12(5)7(6)5 6(7)25 64(8)1110 1573【解析】【分析】此题考查了有理数混合运算,小数的乘除法和减法的计算,是一个综合性题,我们要灵活运用小数计算的方法解答,计算除法时用商不变的规律思考,计算乘法时用积的变化规律思考,用整数减小数时,可以同时扩大小数位数的倍数,相减后再缩小回来,本题培养了学生计算能力(1)根据小数加小数计算法则计算即可;(2)根据小数减小数计算法则计算即可;(3)根据分数乘法法则计算即可;(4)根据小数除法法则计算即可;(5)根据乘法交换律,乘法法则计算即可;(6)先计算除法,再根据分数加法法则计算即可;(7)根据分数混合运算法则计算即可;(8)先计算括号里面的式子,再利用分数乘法法则计算即可【小问1详解】解:3.2 1.18 4.38+=小问2详解】10.980.02−=【小问3详解】3824155×=【小问4详解】60.512÷=【小问5详解】()0.47 2.50.4 2.577××=××=【小问6详解】11132513223666+÷=+=+=【小问7详解】3535552578788864×÷×=×=【小问8详解】【154215741110111113111431573×+=×= 22. 解方程.(1)13224x += (2)0.75:3:1.2=x(3)111523x x −= 【答案】(1)18(2)0.3(3)90【解析】【分析】本题考查解方程,注意书写格式,养成检验的好习惯.(1)根据等式的基本性质方程两边同时减去12,再同时除以2即可; (2)根据比例的基本性质化简方程,再根据等式的基本性质方程两边同时除以3即可;(3)先化简,再根据等式的基本性质方程两边同时除以16即可. 【小问1详解】 解:13224x += 113122242x +−=− 124x = 12224x ÷=÷ 18x 【小问2详解】解:0.75:3:1.2=x30.75 1.2x =×30.9x =0.3x =【小问3详解】解:111523x x −= 1156x = 11115666x ÷=÷ 90x =23. 计算下面各题,能简算的要求写出简便过程.(1)5721128336−+÷ (2)()130.58 4.870.4213 5.13 4.25×−+×−×;(3)91131624 ÷×−(4)1111121231234123410+++++++++++++++ 【答案】(1)152(2)12.75(3)34(4)911 【解析】【分析】题目主要考查有理数的四则混合运算,熟练掌握运算法则及运算律是解题关键.(1)将除法转化为乘法,然后运用乘法运算律计算即可;(2)运用乘法运算律先计算括号内的,然后再计算括号外的即可;(3)先计算小括号中的运算,然后计算乘法,最后计算除法即可;(4)将原式进行变形,然后运用简便方法计算即可.【小问1详解】 解:5721128336 −+÷572361283 =−+× 5723636361283=×−×+×6315242=−+ 63392=− 152=; 【小问2详解】()130.58 4.870.4213 5.13 4.25×−+×−×()()130.580.42 4.87 5.13 4.25 =×+−+×[]13110 4.25=×−×3 4.25=×12.75=;【小问3详解】91131624 ÷×− 913164 =÷× 94163=× 34=; 【小问4详解】1111121231234123410+++++++++++++++ 1111(12)22(13)32(14)42(110)102+++++×÷+×÷+×÷+×÷ 23344510112222=++++×××× )111111113402(2311145=×−+−+−++− 2()21111=×− 9222=× 911=. 24. 按要求画一画.(1)画出长方形绕点A顺时针旋转90°后的图形,并在图内标上①.(2)以点O为圆心,画一个半径是3m的圆.(3)在空白处画出原长方形按1:2缩小后的图形,并在图内标上②.【答案】(1)见详解(2)见详解(3)见详解【解析】【分析】本题主要考查作图,()1根据旋转的性质,绕点A作旋转图形;()2根据图中的圆心和已知小方格的长度作圆即可;()3根据题干要求画出长为2m,宽为1m的长方形即可.【小问1详解】解:如图,【小问2详解】解:见上图,【小问3详解】解:见上图,25. 下边是一个零件,由一个圆锥和圆柱组成,它的体积是600立方厘米,那么上面圆锥部分的体积是多少立方厘米?【答案】300立方厘米【解析】【分析】题目主要考查圆柱体积及圆锥体积的计算,设底面积为S ,则圆锥的体积为11243S S ×=,圆柱的体积为44S S ×=,得出两部分的体积相同即可求解.【详解】解:这个零件即圆柱和圆锥的底面都相同,设底面积为S , 则圆锥的体积为11243S S ×=,圆柱的体积为44S S ×=, ∴两部分的体积相同,∴上面圆锥部分的体积为:6002300÷=立方厘米.26. 芳芳从家出发去上学,走到A 地时,发现忘记带学具了,于是赶紧小跑回家;拿好学具后,怕上学迟到,就骑自行车赶往学校,芳芳的行程情况和时间分配如图.芳芳小跑回家的速度是多少?她骑自行车到学校用了多少时间?【答案】150米/分,12分钟【解析】【分析】题目主要考查从图象获取相关信息及扇形统计图的应用,根据题意及图象获取相关信息求解是即可.【详解】解:小跑回家的速度为:()45085150÷−=米/分, 骑自行车到学校用的时间为:525%60%12÷×=分钟.答:芳芳小跑回家的速度是15米/分;骑自行车到学校用的时间为12分钟.27. 一项工程,由甲队承租,需工期80天,工程费用100万元,由乙队承担,需工期100天,工程费用80万元.为了节省工期和工程费用,实际施工时,甲乙两队合做若干天后撤出一个队,由另一个队继续做到工程完成.结算时,共支出工程费用86.5万元,那么甲乙两队合做了多少天?【答案】甲、乙两队合作了26天【解析】【分析】此题考查的是一元一次方程的应用,找准等量关系列出方程是解决此题的关键.甲队工作x 天完成的工作量×甲队完成整个工程需要的费用+乙队整个工期完成的工作量×乙队完成整个工程需要的费用86.5=.【详解】解:设甲队工作x 天,则甲队完成的工作量为80x ,乙队完成的工作量为180x −, 由题意得,86.51008018080x x =×+×−, 解这个方程可得:26x =. 乙队工作的天数:261167.580100 −÷= (天), ∵2667.5<,∴撤出的一个队是甲队,则甲队工作的天数就是甲、乙两队合作的天数,答:甲、乙两队合作了26天.28. 如果一个四位数满足千位数字和十位数字的和为9,百位数字与个位数字的差为2,那么称M 为“跳跃数”.若一个四位“跳跃数”M 的千位数字与个位数字的2倍的和记作()P M ,百位数字与十位数字的和记作()Q M ,那么()()()P M F M Q M =为整数时,则称M 为“跳跃整数”. 例如:8614满足819,622+=−=,且()()86148816,8614617P Q =+==+=,即()()()167P M F M Q M ==不是整数,故8614不是“跳跃整数”. 又如:9503满足909,532+=−=,且()()95039615,9503505P Q =+==+=,即()()()1535P M F M Q M ===是整数,故9503是“跳跃整数”. (1)判断:5745 “跳跃整数”,5341 “跳跃整数”;(填“是”或“不是”); (2)证明:任意一个四位“跳跃数”与其百位数字的2倍之差能被11整除;(3)若2000100010010M a b c d =++++(其中14290909a b c d ≤≤≤≤≤≤≤≤,,,且a b c d、、、均为整数)是“跳跃整数”,请直接写出满足条件的所有M 的值.【答案】(1)不是,是(2)见解析 (3)9503或5341或3765【解析】【分析】本题考查了新定义运算,列代数式及整式的加减,关键是理解新定义,正确运用新定义解决问题.(1)根据新定义及其计算方法,即可一一判定;(2)设任意一个四位“跳跃数”千位上的数字为a ,百位上的数字为b ,则十位上的数字为9a −,个位上的数字为2b −,可得99010188M a b =++,()2119098M b a b −=++,据此即可证得; (3)根据题意和新定义可得:2192a c b d ++= −= 且212a d b c +++是整数,可得212352a d c b c b c ++−+=+++,再由82c a −=,a ,c 均为整数,可得c 是偶数,最后对c 的取值分别计算,即可分别求得. 【小问1详解】解:5745 满足549,752+=−=,且()574551015P =+=,(5745)=7+4=11Q , 即()()()5745155745=574511P F Q =,不是整数, 5745∴不是“跳跃整数”;5341 满足549,312+=−=,且()5341527P =+=,(5341)=3+4=7Q , 即()()()534175341==153417P F Q =, 5341∴是“跳跃整数”;【小问2详解】证明:设任意一个四位“跳跃数”的千位上的数字为a ,百位上的数字为b ,则十位上的数字为9a −,个位上的数字为2b −,()10001001092M a b a b ∴=++−+−100010090102a b a b ++−+−99010188a b =++()29909988119098M b a b a b ∴−=++=++,a ,b 均为整数,的9098a b ∴++也为整数,2M b ∴−能被11整除,∴任意一个四位“跳跃数”与其百位数字的 2 倍之差能被 11 整除;【小问3详解】解:()200010001001010002110010M a b c d a b c d =++++=++++ 是“跳跃整数”,2192a c b d ++= ∴ −=且212a d b c +++是整数, 把2192a c d b +=− =− 代入212a d b c +++,得 ()()92223525352c b b c c b c c b c b c b c b c −+−+−+−+−+===+++++ 219a c +=− ,82c a −∴=, a ,c 均为整数,8c − 是偶数,c ∴是偶数,09c ≤≤ ,∴当0c =时,52b+是整数, 29b ≤≤ ,b 为整数,∴当5b =时,52=35+是整数, 故此时,4a =,则219,5,0,3a b c d +====, =9503M ∴;当2c =时,6512=222b b −++−++是整数, 29b ≤≤ ,b 为整数,∴无满足条件的数;当4c =时,12572=244b b −++−++是整数, 29b ≤≤ ,b 为整数, ∴当3b =时,72=134−+是整数, 故此时,aa =2,则215,3,4,1a b c d +====, =5341M ∴;当6c =时,185132=266b b −++−++是整数, 29b ≤≤ ,b 为整数, ∴当7b =时,132=176−+是整数, 故此时,1a =,则213,7,6,5a b c d +====, =3765M ∴;当8c =时,245192=288b b −++−++是整数, 29b ≤≤ ,b 为整数,∴无满足条件的数;综上,满足条件的所有M 的值为或5341或3765.。
2024-2025学年河南省实验中学九年级(上)开学数学试卷(含答案)
2024-2025学年河南省实验中学九年级(上)开学数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.2.若a>b,则下列不等式不一定成立的是( )A. 2a>2bB. a2>b2C. −a2<−b2D. a+1>b+13.一个多边形的内角和是900°,则这个多边形的边数是( )A. 4B. 5C. 6D. 74.如图所示,是一块三角形的草坪(△ABC),现要在草坪上修建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A. △ABC三条边的垂直平分线的交点B. △ABC三个内角的角平分线的交点C. △ABC三角形三条边上的高的交点D. △ABC三角形三条中线的交点5.下列各式中,从左到右的变形是因式分解的是( )A. a2−b2+1=(a+b)(a−b)+1B. (m+3)(m−3)=m2−9C. y2−4y+4=(y−2)2D. 2a+3b=5ab6.关于x的一元二次方程x2+x−m2=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根7.如图,四边形ABCD是平行四边形,下列结论中错误的是( )A. 当∠ABC=90°,□ABCD是矩形B. 当AC=BD,□ABCD是矩形C. 当AB=BC,□ABCD是菱形D. 当AC⊥BD,□ABCD是正方形8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 139.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多10.如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,PBPC=y,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为( )A. 6B. 3C. 43D. 23二、填空题:本题共5小题,每小题3分,共15分。
七年级上册数学 几何图形初步(基础篇)(Word版 含解析)
(1)问运动多少时 BC=8(单位长度)? (2)当运动到 BC=8(单位长度)时,点 B 在数轴上表示的数是________;
3.如图,点 C 在线段 AB 上,AC=8 cm,CB=6 cm,点 M、N 分别是 AC、BC 的中点.
(1)求线段 MN 的长;
(2)若 C 为线段 AB 上任一点,满足 AC+CB=a cm,其它条件不变,你能猜想 MN 的长度 吗?并说明理由;
(3)若 C 在线段 AB 的延长线上,且满足 AC﹣BC=bcm,M、N 分别为 AC、BC 的中点,你 能猜想 MN 的长度吗?请画出图形,写出你的结论,并说明理由;
PC= 时,有 BD=AP+3PC,即
=3.
∵ P 在 C 点左侧或右侧, ∴ PD 的长有 3 种可能,即 5 或 3.5 【解析】【解答】解:(2)当运动 2 秒时,点 B 在数轴上表示的数是 4;当运动 4 秒时, 点 B 在数轴上表示的数是 16. 【分析】(1)设运动 t 秒时,BC=8(单位长度),然后分点 B 在点 C 的左边和右边两种情 况,根据题意列出方程求解即可;(2)由(1)中求出的运动时间即可求出点 B 在数轴上 表示的数;(3)随着点 B 的运动,分别讨论当点 B 和点 C 重合、点 C 在点 A 和 B 之间及 点 A 与点 C 重合时的情况.
当 PC= 时,有 BD=AP点 C 重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,
河南省实验中学七年级数学上册第四章《几何图形初步》经典练习(课后培优)
一、选择题1.如图.∠AOB=∠COD,则( )A.∠1>∠2 B.∠1=∠2C.∠1<∠2 D.∠1与∠2的大小无法比较B解析:B【解析】∵∠AOB=∠COD,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠1=∠2;故选B.【点睛】考查了角的大小比较,培养了学生的推理能力.2.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是() A.B.C.D. C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B.主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C.主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D.主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C.【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个.3.“枪挑一条线,棍扫一大片”,从数学的角度解释为().A.点动成线,线动成面B.线动成面,面动成体C.点动成线,面动成体D.点动成面,面动成线A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.4.已知:∠AOC=90°,∠AOB:∠AOC=2:3,则∠BOC的度数是()A.30°B.60°C.30°或60°D.30°或150°D解析:D【分析】根据两角的比和两角的和即可求得两个角的度数.【详解】由∠AOC=90°,∠AOB:∠AOC=2:3,可得当B在∠AOC内侧时,可以知道∠AOB23=⨯90°=60°,∠BOC=30°;当B在∠AOC外侧时,∠BOC=150°.故选:D.【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的().A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.在钟表上,1点30分时,时针与分针所成的角是( ).A.150°B.165°C.135°D.120°C解析:C【分析】根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.【详解】钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.故选C.【点睛】此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.7.如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,1D解析:D【分析】直线没有端点,射线有一个端点,线段有两个端点.【详解】以A点为端点的射线有2条,以B为端点的射线有3条,以C为端点的射线有2条,以D 为端点射线有1条,合计射线8条.线段:AB,BC,AC,BD ,合计4条.直线:AC,合计1条故本题 D.【点睛】直线没有端点,射线有一个端点,线段有两个端点.8.下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D. C解析:C【解析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.9.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB,直线a.故选C.【点睛】本题考查了几何中直线的表示方法,是最基本的知识.10.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C点折叠后的C'点∠的度数是()落在MB'的延长线上,则EMFA.85°B.90°C.95°D.100°B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题11.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.12.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C,区有10人,三个区在一直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在_____区.A【分析】根据题意分别计算停靠点分别在ABC各点时员工步行的路程和选择最小的即可求解【详解】∵当停靠点在A区时所有员工步行到停靠点路程和是:15×100+10×300=4500m当停靠点在B区时所有解析:A【分析】根据题意分别计算停靠点分别在A、B、C各点时员工步行的路程和,选择最小的即可求解.【详解】∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,∴当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A 区.故答案为A.【点睛】此题考查比较线段的长短,正确理解题意是解题的关键,要能把线段的概念在现实中进行应用,比较简单.13.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.14.魏老师去农贸市场买菜时发现,若把10千克的菜放在秤上,则指针盘上的指针转了180 ,第二天魏老师请同学们回答以下两个问题:(1)若把0.5千克的菜放在秤上,则指针转过________度;(2)若指针转了243︒,则这些菜共有________千克.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)24解析:13.5【分析】(1)算出秤上放1千克菜转过的角度为多少,乘以0.5即可;(2)让243°除以1千克菜转过的角度即可.【详解】解:(1)18010︒=18°,0.5×18°=9°,0.5千克的菜放在秤上,指针转过9°;(2)243°÷18°=13.5(千克),答:共有菜13.5千克.故答案为9,13.5【点睛】本题考查了角度计算的应用,解决本题的关键是得到秤上放1千克菜转过的角度为多少.15.已知点B在直线AC上,AB=6cm,AC=10cm,P、Q分别是AB、AC的中点,则PQ=_____2或8【分析】本题没有给出图形在画图时应考虑到ABC三点之间的位置关系的多种可能再根据正确画出的图形解题【详解】解:如图:当点BC在点A的不同侧时∴AP=AB=3cmAQ=AC=5cm∴PQ=AQ+解析:2或8【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.【详解】解:如图:当点B、C在点A的不同侧时,∴AP=12AB=3cm,AQ=12AC=5cm,∴PQ=AQ+AP=5+3=8cm.当点B、C在点A的同一侧时,∴AP=12AB=3cm,∴AQ=1AC=5cm,2PQ=AQ-AP=5-3=2cm.故答案为8cm或2cm.【点睛】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.16.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.17.如图所示,O是直线AB上一点,OD平分∠BOC, ∠COE=90°,若∠AOC=40°,则∠DOE=_________.20【解析】【分析】求出∠BOC=140°根据OD平分∠BOC得出∠COD=∠BOC求出∠COD=70°根据∠DOE=∠COE-∠COD求出即可【详解】∵O是直线AB上一点∴∠AOC+∠BOC=18解析:20【解析】【分析】求出∠BOC=140°,根据OD平分∠BOC得出∠COD=12∠BOC,求出∠COD=70°,根据∠DOE=∠COE-∠COD求出即可.【详解】∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=40°,∴∠BOC=140°,∵OD平分∠BOC,∴∠COD=12∠BOC=70°,∵∠DOE=∠COE-∠COD,∠COE=90°,∴∠DOE=20°,故答案为20°.【点睛】本题考查了角的计算、角平分线的定义,解题的关键是能求出各个角的度数. 18.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.53°【解析】由∠BOE与∠AOF是对顶角可得∠BOE=∠AOF又因为∠COD是平角可得∠1+∠2+∠AOF=180°将∠1=95°∠2=32°代入即可求得∠AOF的度数即∠BOE的度数解析:53°【解析】由∠BOE与∠AOF是对顶角,可得∠BOE=∠AOF,又因为∠COD是平角,可得∠1+∠2+∠AOF=180°,将∠1=95°,∠2=32°代入,即可求得∠AOF的度数,即∠BOE的度数.19.如图,把一张长方形纸片沿AB折叠后,若∠1=50°,则∠2的度数为______.65°【解析】∵把一张长方形纸片沿AB折叠∴∠2=∠3∵∠1+∠2+∠3=180°∠1=50°∴∠2=(180°-∠1)2=65°解析:65°【解析】∵把一张长方形纸片沿AB折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)÷2=65°.20.有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.【分析】先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比由于方木底面正方形与圆木底面圆面积相等故两比值之比即为结果【详解】正方形内作最大的圆:设圆的半径为r 圆的面积与解析:2 8π【分析】先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比,由于方木底面正方形与圆木底面圆面积相等,故两比值之比即为结果.【详解】正方形内作最大的圆:设圆的半径为r ,圆的面积与正方形的面积比是:2224r r r ππ=⨯圆内作最大的正方形:设圆的半径为R ,正方形的面积与圆的面积比是:222R R R ππ⨯=, 因为,方木与圆木的体积和高度都相等,说明底面积也相等,即图(1)的大正方形面积等于图(2)的大圆的面积,所以,现在的圆柱体积和长方体的体积的比值是:22:48πππ=; 答:圆柱体积和长方体的体积的比值为28π.故答案为:28π.【点睛】 本题以方木圆木的体积为背景,考查了正方形的内切圆,圆的内接正方形的面积问题,熟练的掌握以上关系是解题的关键.三、解答题21.已知:如图,在∠AOB 的内部从O 点引3条射线OC ,OD ,OE ,图中共有多少个角?若在∠AOB 的内部,从O 点引出4条,5条,6条,…,n 条不同的射线,可以分别得到多少个不同的角?解析:角的个数分别为10,15,21,28,…,(2)(1)2n n ++. 【分析】 1、在锐角∠AOB 的内部以O 为顶点作3条射线,由此你能得到以O 为顶点的射线共有多少条吗?2、根据以一条射线为边,以其余n+1条射线为另一边可作n+1个角,相信你能求得5条射线共多少个锐角;3、由于任意两射线所得的角都多计一次,所以当在∠AOB 的内部从O 点引3条射线共有1452⨯⨯个角;4、结合作3条射线得到的角的个数,可以推出以O为顶点共有n条射线时,得到的角的个数为(1)(2)2n n++,继而将n=5、6、7代入即可.【详解】解:顺时针数,与射线OA构成的角有4个,与射线OC构成的角有3个,与射线OD构成的角有2个,与射线OE构成的角有1个,故共有角4+3+2+1=10(个). 类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个),…,以此类推,引n条射线有角(n+1)+n+(n-1)+…+2+1=(1)(2)2n n++(个) .【点睛】本题中,根据以点O为顶点的射线有n+2条,再求这n+2条射线可形成的角的个数.要求同学们能够准确利用题目中的已知信息,灵活运用所学知识进行解答.本题还可以采用顺序枚举法进行解答,按一定顺序,把所有元素一一列举出来,要做到不重不漏,适合元素(射线)个数较少情况,如果图中有n条射线这时无法逐一列举,可用规律归纳法.22.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.解析:(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.23.把一副三角板的直角顶点O重叠在一起.(1)问题发现:如图①,当OB平分∠COD时,∠AOD+∠BOC的度数是;(2)拓展探究:如图②,当OB不平分∠COD时,∠AOD+∠BOC的度数是多少?(3)问题解决:当∠BOC的余角的4倍等于∠AOD时,求∠BOC的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB平分∠COD得出∠BOC及∠AOC的度数,进而可得出结论;(2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC.∵∠AOD=4(90°﹣∠BOC),∴180°﹣∠BOC=4(90°﹣∠BOC),∴∠BOC=60°.考点:余角和补角;角平分线的定义.24.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE ﹣CD=10.4cm.25.已知,A 、B 是线段EF 上两点,已知EA :AB :BF=1:2:3,M 、N 分别为EA 、BF 的中点, 且MN=8cm ,求EF 的长.解析:12cm【解析】【分析】由已知设设EA=x ,AB=2x ,BF=3x ,根据线段中点性质得MN=MA+AB+BN=12x+2x+32x=4x=8,可得EF=EA+AB+BF=6x=12. 【详解】解:∵EA :AB :BF=1:2:3,可以设EA=x ,AB=2x ,BF=3x ,而M 、N 分别为EA 、BF 的中点,∴MA=12EA ,NB=12BF , ∴MN=MA+AB+BN=12x+2x+32x=4x , ∵MN=8cm ,∴4x=8,∴x=2, ∴EF=EA+AB+BF=6x=12,∴EF 的长为12cm .【点睛】本题考核知识点:线段的中点.解题关键点:根据线段中点性质和线段的和差关系列出方程.26.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.解析:45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=.综上所述,45EOF ︒∠=.【点睛】本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.27.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.28.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.。
七年级几何图形初步(基础篇)(Word版 含解析)
一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.如图(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。
几何图形初步(基础篇)(Word版 含解析)
一、初一数学几何模型部分解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.3.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.4.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE(1)若∠COF=20°,则∠BOE=________°(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.【答案】(1)40(2)解:∵∴∴(3)解:存在.理由如下:∵设∴∵∴∴∴∴【解析】【解答】⑴∴∵OF平分∠AOE,∴∴∴故答案为:40。
人教版七年级数学上册 几何图形初步(基础篇)(Word版 含解析)
一、初一数学几何模型部分解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.(1)求证:AF//CG.(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.【答案】(1)证明:∵AB//CD∴∠BAC=∠ACE,∵AF、CG 分别为∠BAC、∠ACE的平分线,∴∠CAF= ∠BAC, ∠ACG= ∠ACE,∴∠CAF=∠ACG∴AF//CG.(2)解:AF⊥CG,理由如下:如图,AF、CG 分别为∠BAC、∠ACE的平分线,∴∠1= ∠BAC,∠2= ∠ACD,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠1+∠2= ∠BAC+ ∠ACD= (∠BAC+∠ACD)=90°,∴∠3=180°-(∠1+∠2)=90°,∴AF⊥CG.【解析】【分析】(1)根据二直线平行,内错角相等得出∠BAC=∠ACE,根据角平分线的定义得出∠CAF=∠ACG ,进而根据内错角相等,二直线平行得出AF∥CG;(2)根据题意作出图形,根据角平分线的定义得出∠1= ∠BAC,∠2= ∠ACD, 根据二直线平行,同旁内角互补得出∠BAC+∠ACD=180°,从而即可得出∠1+∠2= 90°,根据三角形的内角和定理得出∠3=90°,进而根据垂直的定义得出AF⊥CG.3.如图,已知,在的右侧,平分,平分,,所在直线交于点.(1)求的度数.(2)若,求的度数(用含的代数式表示).(3)将线段沿方向平移,使得点在点的右侧,其他条件不变,在图中画出平移后的图形,并判断的度数是否发生改变?若改变,求出它的度数(用含的式子表示);若不改变,请说明理由.【答案】(1)解:∵平分,,.(2)解:如图,过点作∵,,, .∵平分,平分,,,,,..(3)解:如图2为平移后的图形.的度数发生了改变.过点作,平分,平分,,,, .∵,,,,.【解析】【分析】(1)根据角平分线的定义即可求∠EDC的度数;(2)过点E作EF∥AB,根据平行于同一直线的两条直线互相平行得出AB∥CD∥EF,然后根据两直线平行内错角相等,即可求∠BED的度数;(3)∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE=∠ABC,∠CDE=∠ADC,然后根据两直线平行内错角相等及同旁内角互补可得:,进而可由求得答案.4.如图,在△ABC中,CD是AB边上的高,CE是∠ACB的平分线.(1)若∠A=40°,∠B=76°,求∠DCE的度数;(2)若∠A=α,∠B=β,求∠DCE的度数(用含α,β的式子表示);(3)当线段CD沿DA方向平移时,平移后的线段与线段CE交于G点,与AB交于H点,若∠A=α,∠B=β,求∠HGE与α、β的数量关系.【答案】(1)解:∵∠A=40°,∠B=76°,∴∠ACB=64°.∵CE是∠ACB的平分线,∴∠ECB ∠ACB=32°.∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=14°,∴∠DCE=∠ECB﹣∠BCD=32°﹣14°=18°;(2)解:∵∠A=α,∠B=β,∴∠ACB=180°﹣α﹣β.∵CE是∠ACB的平分线,∴∠ECB ∠ACB (180°﹣α﹣β).∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=90°﹣β,∴∠DCE=∠ECB﹣∠BCD β α;(3)解:如图所示.∵∠A=α,∠B=β,∴∠ACB=180°﹣α﹣β.∵CE是∠ACB的平分线,∴∠ECB ∠ACB (180°﹣α﹣β).∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=90°﹣β,∴∠DCE=∠ECB﹣∠BCD β α,由平移可得:GH∥CD,∴∠HGE=∠DCE β α.【解析】【分析】(1)根据三角形的内角和得到∠ACB的度数,根据角平分线的定义得到∠ECB的度数,根据余角的定义得到∠BCD=90°-∠B,于是得到结论;(2)根据角平分线的定义得到∠ACB=180°-α-β,根据角平分线的定义得到∠ECB= ∠ACB= (180°-α-β),根据余角的定义得到∠BCD=90°-∠B=90°-β,于是得到结论;(3)运用(2)中的方法,得到∠DCE=∠ECB-∠BCD= β- α,再根据平行线的性质,即可得出结论.5.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC=.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示).(3)将直线MN绕点P旋转。
2023-2024学年河南省实验中学高一上学期开学数学试题+答案解析(附后)
2023-2024学年河南省实验中学高一上学期开学数学试题✽一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则( )A. B. C. D.2.“”是“成立”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.集合与空集之间的关系中正确的是( )A. B. C. D.4.全集,集合,集合,图中阴影部分所表示的集合为( )A. B.C. D.5.集合或,,若,则实数a的取值范围是( )A. B. C. D.6.已知函数是定义在R上的连续函数,则函数在区间上存在零点是的条件( )A. 充分不必要B. 充要C. 必要不充分D. 既不充分也不必要7.已知命题“,使得”是真命题,则实数a的取值范围是( )A. B. C. D.8.已知全集,,,,则集合( )A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知集合,,若,则( )A. 0B. 1C.D. 310.已知集合,,,则( )A. B. C. D. R11.若全集,集合,,则中的元素有( )A. 1B. 2C. 3D. 412.关于命题p:“”的叙述,正确的是( )A. p的否定:B. p的否定:C. p是真命题,p的否定是假命题D. p是假命题,p的否定是真命题三、填空题:本题共4小题,每小题5分,共20分。
13.已知集合,,若,则__________14.若集合,且,则k的所有可能值的乘积为__________.15.命题:“”的否定是__________.16.已知集合,,则__________.四、解答题:本题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
17.本小题10分已知集合,若时,求B;若中有且仅有一个整数,求实数k的取值范围.18.本小题12分已知集合,或,分别根据下列条件求实数a的取值范围.;19.本小题12分我们知道,如果集合,那么S的子集A的补集且类似地,对于集合A,B,我们把集合且叫做集合A与B的差集,记作据此,试回答下列问题:直接写出答案若,,则__________,__________.在下列各图中用阴影表示集合;如果,则集合A与B之间具有怎样的关系?20.本小题12分已知全集,或,求;求21.本小题12分已知全集,集合,.求若,求实数a的取值范围.22.本小题12分已知,,若,求实数t的取值构成的集合.答案和解析1.【答案】D【解析】【分析】本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.利用并集定义直接求解即可.【解答】解:集合,,则故选2.【答案】A【解析】【分析】本题考查充分、必要条件的判断,属于基础题.先解不等式化简后者,判断前者和后者对应的集合的包含关系,利用集合的包含关系判断出前者是后者的什么条件.【解答】解:或,且或,“”是“成立”的充分不必要条件.故选3.【答案】C【解析】【分析】本题考查集合与元素,集合与集合的关系,属于基础题.利用空集没有元素,中有一个元素为0,结合集合与集合,集合与元素的关系,判断即可.【解答】解:空集中没有元素,中有一个元素为0,故A错误,表示集合与集合之间的关系不用,故B错误,元素为,中元素为0,不成立,D错误,只有C正确,故选:4.【答案】C【解析】【分析】本题考查集合的交并补混合运算、Venn图,属于基础题.由Venn图可知阴影部分对应的集合为,再由集合运算即可求解.【解答】解:集合,由Venn图可知阴影部分对应的集合为,其中或,则故选5.【答案】C【解析】【分析】本题考查含参数的集合关系的问题,考查了分类讨论思想,属于中档题.根据集合B中参数a与0的关系分类讨论,由子集关系确定a的范围.【解答】解:因为或,,当时,此时,符合题意;当时,若,则,因为,所以,解得,又,所以,若,则,因为,所以,解得,又,所以,综上可得,即实数a的取值范围是 .故选6.【答案】C【解析】【分析】本题考查的知识要点:充分条件和必要条件,零点和函数的连续性的关系,主要考查学生的转换能力及思维能力,属于基础题型.直接利用充分条件和必要条件和函数的连续性和零点的定理的应用求出结果,【解答】解:若二次函数在上存在零点,则可大于0,故函数在区间上存在零点不能推出若,由于函数在R上连续,根据零点存在性定理,在区间上必存在零点.故选:7.【答案】C【解析】【分析】本题考查一元二次不等式恒成立有关问题,为基础题.命题“,使得”是真命题,可得,解得a的范围.【解答】解:利用二次函数与二次不等式的关系,由题意知,二次函数的图象恒在x轴上方,所以,解得:,故选8.【答案】D【解析】【分析】本题考查集合的交并补混合运算,属于基础题.根据集合的交、并、补运算法则计算即可.【解答】解:由题意,得或,,.故选9.【答案】AD【解析】【分析】本题主要考查了含参数的并集运算问题,属于基础题.由题意,可得,所以或,求得m的值,并检验,可得结果.【解答】解:集合,,,则,所以或,解得或或,当时,,,满足,当时,,,满足,当时,,,不满足集合中元素的互异性,舍去,故选10.【答案】BD【解析】【分析】本题考查集合关系的判断以及运算,属于基础题.由题意,首先化简集合A,B,然后判断关系,进行交集,并集的运算即可.【解答】解:因为,,,所以A与B不具有包含关系,,故A错误,B正确;所以,故C错误,,D正确.故选:11.【答案】ABD【解析】【分析】本题考查集合的交并补混合运算,先求出集合M,N,再计算即可,属于基础题。
几何图形初步(基础篇)(Word版 含解析)
一、初一数学几何模型部分解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值. 2.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC= ________.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.(3)将直线MN绕点P旋转。
(i)当直线MN与AB,AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。
(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB,∠NPC,∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。
【答案】(1)130°(2)90°﹣∠A(3)解:(i)∠MPB+∠NPC= − ∠A.理由如下:∵∠BPC= +∠A,∴∠MPB+∠NPC= −∠BPC=180∘−( + ∠A)= −12 ∠A.(ii)不成立,有∠MPB−∠NPC= − ∠A.理由如下:由题图④可知∠MPB+∠BPC−∠NPC= ,由(1)知:∠BPC= + ∠A,∴∠MPB−∠NPC= −∠BPC= −( + ∠A)=− ∠A.【解析】【解答】(1)故答案为:( 2 )由 = 得∠MPB+∠NPC= −∠BPC= 1−( + ∠A)= − ∠A;故答案为:∠MPB+∠NPC= − ∠A【分析】(1)根据角平分线的定义得出∠PBC+∠PCB=(∠ABC+∠ACB),再根据三角形的内角和定理及∠A的度数,求出∠ABC+∠ACB的值,然后再利用三角形的内角和就可求出∠BPC的度数。
河南省实验中学2023-2024学年八年级上学期期中数学试题(解析版)
2023-2024学年河南省实验中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 下列实数中,属于无理数的是( )A.B. 0.5C.D.2. 下列各组数据中是勾股数的是( ) A. 6,8,10 B. 0.3,0.4,0.5C.,,D. 5,11,123. 已知是关于、的二元一次方程,则的值为( )A.B.C.D.4. 下列运算正确的是( )A. B. C. D.5. 函数图象上有两点,,则与的大小关系是( )A.B.C.D. 无法确定6. 剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,如果图中点E 的坐标为,其关于y 轴对称的点F 的坐标为,则的值为( )A. 1B.C.D. 07. 在同一平面直角坐标系中,函数和(为常数,)图象可能是( )A. B.C. D.8. 平面直角坐标系内轴,,点A的坐标为,则点B的坐标为( )A. B.C. 或D. 或9. 如图,一大楼的外墙面与地面垂直,点在墙面上,若米,点到的距离是6米,有一只蚂蚁要从点爬到点,它的最短行程是()米A. 16B.C. 15D. 1410. 如图,在直角坐标系中,矩形的边在轴上,在轴上,顶点的坐标为,将矩形沿对角线翻折,点落在点的位置,且交轴于点.那么点的坐标为()A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)11. 比较两数的大小:2___3.(填“<”或“>”)12. 象棋在中国有着三千多年的历史,如图是一方的棋盘,如果“帅”的坐标是,“卒”的坐标为,那么“马”的坐标是________.13. 若关于x,y的方程组的解满足,则的值为________.14. 把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.15. 如图,矩形中,,,点为射线上的一个动点,与关于直线对称,当为直角三角形时,的长为________.三、解答题(本大题共8小题,共75分)16. 计算:(1);(2).17. 下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:解:①×2,得……③第一步②-③,得第二步.第三步将代入①,得.第四步所以,原方程组的解为第五步(1)这种求解二元一次方程组的方法叫做法,以上求解步骤中,马小虎同学第步开始出现错误.(2)请写出此题正确的解答过程.18. 在平面直角坐标系中,点在轴上,点在第一象限,过点作轴的垂线,垂足为,已知点的坐标为,长为2.(1)求,的长.(2)请判断的形状,并说明理由.19. △ABC在平面直角坐标系中位置如图所示,三点在格点上.(1)作出关于y轴对称的;(2)的面积为;(3)在y轴上作点P,使得值最小,并求出点P的坐标.20. 勾股定理是人类早期发现并证明重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一,它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.(1)证明勾股定理据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,请你说说其中的道理.(2)应用勾股定理①应用场景1——在数轴上画出表示无理数的点.如图1,在数轴上找出表示4的点,过点作直线垂直于,在上取点,使,以点为圆心,为半径作弧,则弧与数轴的交点表示的数是______.②应用场景2——解决实际问题.如图2,郑州某公园有一秋千,秋千静止时,踏板离地的垂直高度,将它往前推至处时,水平距离,踏板离地的垂直高度,它的绳索始终拉直,求绳索的长.21. 郑州市政府为民生办实事,将污染多年“贾鲁河”进行绿化改造,现需要购买大量的景观树.某苗木种植公司给出以下收费方案:方案一:购买一张会员卡,所有购买的树苗按七折优惠;方案二:不购买会员卡,所有购买的树苗按九折优惠.设该市购买的景观树树苗棵数为x棵,方案一所需费用y1=k1x+b1,方案二所需费用y2=k2x,其函数图象如图所示,请根据图象回答下列问题.(1)k1= ,b1= ;(2)求每棵树苗的原价;(3)求按照方案二购买所需费用的函数关系式y2=k2x,并说明k2的实际意义;(4)若该市需要购买景观树600棵,采用哪种方案购买所需费用更少?请说明理由.22. 如图,正比例函数的图象与一次函数的图象交于点一次函数图象经过点,与y轴交于点C,与x轴的交点为D.(1)求一次函数解析式;(2)一次函数的图象上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,说明理由;(3)如果在y轴上存在一点Q,使是以为底边的等腰三角形,请直接写出点Q的坐标.23. 如图1,已知和为等腰直角三角形,按如图位置摆放,直角顶点C重合.(1)直接写出与的关系;(2)将按如图2的位置摆放,使点A、D、E在同一直线上,求证:;(3)将按如图3的位置摆放,使,,,求的长.2023-2024学年河南省实验中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 下列实数中,属于无理数的是()A. B. 0.5 C. D.【答案】A【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】解:A、是无理数,符合题意;B、0.5是有理数,不符合题意;C、是分数,不符合题意;D、,是有理数,不符合题意;故选:A.【点睛】本题主要考查了无理数的定义.解题的关键是掌握无理数就是无限不循环小数,初中范围内学习的无理数有:含π的数,开方开不尽的数和无限不循环小数.2. 下列各组数据中是勾股数的是()A. 6,8,10B. 0.3,0.4,0.5C. ,,D. 5,11,12【答案】A【解析】【分析】要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方,据此求解即可.【详解】解:∵,∴6,8,10是勾股数,故A符合题意;与,,均不是整数,不是勾股数,故B,C不符合题意;∵,∴不是勾股数,故D不符合题意故选:A.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理,关键是掌握勾股数:满足的三个正整数,称为勾股数.3. 已知是关于、的二元一次方程,则的值为()A. B. C. D.【答案】A【解析】【分析】根据二元一次方程的定义进行求解即可.【详解】解:∵是关于、的二元一次方程,∴,∴,故选A.【点睛】本题主要考查了二元一次方程的定义,一般地,形如且a、b是常数的方程叫做二元一次方程.4. 下列运算正确是( )A. B. C. D.【答案】C【解析】【分析】本题考查的是二次根式的运算.根据二次根式的加减和除法法则、二次根式的性质与化简对各选项进行逐一分析即可.【详解】解:A、,本选项不符合题意;B、与不能计算,本选项不符合题意;C、,本选项符合题意;D、,本选项不符合题意.故选:C.5. 函数图象上有两点,,则与的大小关系是()A. B. C. D. 无法确定【答案】A【解析】【分析】根据得出函数值随的增大而减小,再根据,即可比较与的大小关系.【详解】解:,随的增大而减小,,,故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键.6. 剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,如果图中点E的坐标为,其关于y轴对称的点F的坐标为,则的值为( )A. 1B.C.D. 0【答案】B【解析】【分析】本题考查坐标与图形对称变化,利用轴对称的性质,求出m,n可得答案.【详解】解:∵,关于y轴对称,∴,∴,故选:B.7. 在同一平面直角坐标系中,函数和(为常数,)的图象可能是( )A. B.C. D.【答案】D【解析】【分析】根据正比例函数和一次函数的性质,可以得到函数和的图象经过哪几个象限,本题得以解决.【详解】解:∵,∴函数是经过原点的直线,经过第二、四象限,函数是经过第一、三、四象限的直线,故选:D【点睛】本题考查正比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用正比例函数和一次函数的性质解答.8. 平面直角坐标系内轴,,点A的坐标为,则点B的坐标为( )A. B.C. 或D. 或【答案】D【解析】【分析】根据平行于横轴上的点纵坐标相等分析计算即可.【详解】∵轴,∴A点与B点纵坐标相同,横坐标之差等于其距离,B点横坐标,或,故B点坐标为:或.故选:D【点睛】本题考查平行于坐标轴的线上的点的坐标特征,能够掌握数形结合思想是解决本题的关键.9. 如图,一大楼的外墙面与地面垂直,点在墙面上,若米,点到的距离是6米,有一只蚂蚁要从点爬到点,它的最短行程是()米A. 16B.C. 15D. 14【答案】B【解析】【分析】可将教室的墙面与地面展开,连接,根据两点之间线段最短,利用勾股定理求解即可.【详解】解:如图,过P作于G,连接,∵米,米,∴米,∴(米),∴(米)∴这只蚂蚁的最短行程应该是米,故B正确.故选:B.【点睛】本题主要考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决.10. 如图,在直角坐标系中,矩形的边在轴上,在轴上,顶点的坐标为,将矩形沿对角线翻折,点落在点的位置,且交轴于点.那么点的坐标为()A. B. C. D.【答案】A【解析】【分析】先证明(设),根据勾股定理列出,求得,即可解决问题.【详解】解:设,∵矩形沿对角线翻折,∴,,∴,∴,∴,∵,∴,,∴,在中,,∴,解得:,∴,∴点的坐标为.故选:A.【点睛】本题考查翻折变换的性质及其应用问题.解题的关键是掌握翻折变换的性质,矩形的性质及勾股定理.二、填空题(本大题共5小题,每小题3分,共15分)11. 比较两数的大小:2___3.(填“<”或“>”)【答案】>【解析】【分析】将两个数平方,再根据两个正实数平方大的这个正实数也大比较即可.【详解】解:∵,,又∵,∴.故答案为:.【点睛】本题考查实数的大小比较.掌握比较实数大小的方法是解题关键.12. 象棋在中国有着三千多年的历史,如图是一方的棋盘,如果“帅”的坐标是,“卒”的坐标为,那么“马”的坐标是________.【答案】【解析】【分析】本题考查了平面直角坐标系位置确定,根据给定的坐标建立平面直角坐标系可得“马”的坐标.【详解】解:由“帅”的坐标是,“卒”的坐标为,那么“马”的坐标是,故答案为:.13. 若关于x,y的方程组的解满足,则的值为________.【答案】2022【解析】【分析】本题考查二元一次方程组的解,将原方程组中的两个方程相加可得,即,再将代入计算即可.【详解】解:,得,,即,又∵,∴,解得.故答案为:2022.14. 把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.【答案】【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.15. 如图,矩形中,,,点为射线上的一个动点,与关于直线对称,当为直角三角形时,的长为________.【答案】2或18【解析】【分析】分两种情况:①当E点在线段上时,②当E点在线段的延长线上时,利用全等三角形的判定和性质进行解答即可,熟练掌握三角形全等的判定和性质,活用勾股定理是解题的关键.【详解】解:分两种情况讨论:①当E点在线段上时,如图所示:∵矩形中,,,与关于直线对称,∴,,,∵,∴,∴三点共线,∵∴∵∴;②当E点在线段的延长线上,且经过点B时,如图所示:∵,∴,在和中,,∴,∴,∵∴;综上所知,的长为2或18,故答案为:2或18.三、解答题(本大题共8小题,共75分)16. 计算:(1);(2).【答案】(1)(2)【解析】【分析】本题结合完全平方公式和平方差公式,考查了二次根式的混合运算,(1)先进行乘方运算和去绝对值,然后把化简后合并即可;(2)先根据完全平方公式和平方差公式计算,然后合并即可.【小问1详解】解:原式;【小问2详解】原式17. 下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:解:①×2,得……③第一步②-③,得第二步.第三步将代入①,得.第四步所以,原方程组的解为第五步(1)这种求解二元一次方程组的方法叫做法,以上求解步骤中,马小虎同学第步开始出现错误.(2)请写出此题正确的解答过程.【答案】(1)加减消元法,第四步(2)见解析【解析】【分析】(1)根据解方程组的特点判断,注意系数化为1时的计算.(2)按照解方程组的步骤求解即可【小问1详解】根据解题步骤分析,这种求解方程组的方法是加减消元法,在第四步系数化为1时,出错,故答案为:加减消元法,第四步.【小问2详解】方程组:解:①×2,得……③,②-③,得,解得.将代入①,得3.解得x=.所以,原方程组的解为.【点睛】本题考查了二元一次方程组的解法,熟练掌握方程组的解法是解题的关键.18. 在平面直角坐标系中,点在轴上,点在第一象限,过点作轴的垂线,垂足为,已知点的坐标为,长为2.(1)求,的长.(2)请判断的形状,并说明理由.【答案】(1),(2)是直角三角形,理由见解析【解析】【分析】(1)由题意可得,,利用勾股定理即可求解;(2)由勾股定理可求得,利用勾股定理的逆定理进行判断即可.【小问1详解】解:点的坐标为,轴,,,,;【小问2详解】解:是直角三角形,理由如下:,,轴,,由(1)得,,,,,即,是直角三角形.【点睛】本题主要考查坐标与图形,解题的关键是对勾股定理及其逆定理的掌握与运用.19. △ABC在平面直角坐标系中的位置如图所示,三点在格点上.(1)作出关于y轴对称的;(2)的面积为;(3)在y轴上作点P,使得值最小,并求出点P的坐标.【答案】(1)见解析(2)(3)作图见解析,点P坐标为【解析】【分析】本题主要考查作图---轴对称变换,利用轴对称变换的定义和性质和待定系数法求一次函数解析式:(1)分别作出点A、B、C关于y轴的对称点,再首尾顺次连接即可;(2)用矩形的面积减去周围三个三角形的面积即可;(3)作点B关于y轴的对称点,连接,与y轴的交点即为所求,利用待定系数法求出所在直线解析式,然后求出时y的值即可得出点P的坐标,根据轴对称的性质和两点之间线段最短即可说明理由.【小问1详解】解:如图所示,即为所求.【小问2详解】△ABC的面积为,故答案为:;【小问3详解】如图所示,点P即为所求,点B关于y轴的对称点坐标为,设所在直线解析式为,则,解得,∴所在直线解析式为,当时,,∴点P坐标为,根据轴对称的性质知,由两点之间线段最短知最小,则最小.20. 勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一,它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.(1)证明勾股定理据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,请你说说其中的道理.(2)应用勾股定理①应用场景1——在数轴上画出表示无理数的点.如图1,在数轴上找出表示4的点,过点作直线垂直于,在上取点,使,以点为圆心,为半径作弧,则弧与数轴的交点表示的数是______.②应用场景2——解决实际问题.如图2,郑州某公园有一秋千,秋千静止时,踏板离地的垂直高度,将它往前推至处时,水平距离,踏板离地的垂直高度,它的绳索始终拉直,求绳索的长.【答案】(1)见解析(2)①;②绳索的长为【解析】【分析】(1)用含、的式子表示2个图中空白部分的面积,即可得出结论;(2)①根据勾股定理求出,根据实数与数轴解答即可.②设秋千的绳索长为,根据题意可得,利用勾股定理可得,即可得到结论.【小问1详解】解:由左图可知:,即,由右图可知:,即...即在直角三角形中斜边的平方等于两直角边的平方和.【小问2详解】解:①在中,,,点表示的数是,故答案为:;②,,.设秋千的绳索长为,根据题意可得,利用勾股定理可得.解得:.答:绳索的长为.【点睛】本题主要考查了勾股定理的应用,正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方是解题的关键.21. 郑州市政府为民生办实事,将污染多年的“贾鲁河”进行绿化改造,现需要购买大量的景观树.某苗木种植公司给出以下收费方案:方案一:购买一张会员卡,所有购买的树苗按七折优惠;方案二:不购买会员卡,所有购买的树苗按九折优惠.设该市购买的景观树树苗棵数为x棵,方案一所需费用y1=k1x+b1,方案二所需费用y2=k2x,其函数图象如图所示,请根据图象回答下列问题.(1)k1= ,b1= ;(2)求每棵树苗的原价;(3)求按照方案二购买所需费用的函数关系式y2=k2x,并说明k2的实际意义;(4)若该市需要购买景观树600棵,采用哪种方案购买所需费用更少?请说明理由.【答案】(1)21,3000;(2)每棵树苗的原价30元;(3)y2=27x,k2的实际意义是:每棵树苗打九折后的价格;(4)该市需要购买景观树600棵,采用方案一购买所需费用更少.理由见解析【解析】【分析】(1)根据题意和函数图象中的数据,可以得到k1和b1的值;(2)根据(1)中的结果和题意,可以计算出每棵树苗的原价;(3)根据函数图象中的数据和题意,可以得到函数关系式y2=k2x,并说明k2的实际意义;(4)将x=600代入y1和y2,然后比较大小,即可解答本题.【详解】解:(1)由图象可得,函数y1=k1x+b1,过点(0,3000),(200,7200),则,解得:,故答案为:21,3000;(2)由(1)可得,每棵树苗按七折优惠的价格是21元,∴每棵树苗的原价是21÷0.7=30(元),即每棵树苗的原价30元;(3)∵方案二中的树苗打九折优惠,∴按照方案二购买的每棵树苗的价格为30×0.9=27(元),∵方案二:不购买金卡,所有购买的树苗按九折优惠,当x=0时,y2=0,∴y2=27x,k2的实际意义是:每棵树苗打九折后的价格;(4)该市需要购买景观树600棵,采用方案一购买所需费用更少,理由:由(1)(3)可知,y1=21x+3000,y2=27x,当x=600时,y1=21×600+3000=15600,y2=27×600=16200,∵15600<16200,∴该市需要购买景观树600棵,采用方案一购买所需费用更少.【点睛】本题考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22. 如图,正比例函数的图象与一次函数的图象交于点一次函数图象经过点,与y轴交于点C,与x轴的交点为D.(1)求一次函数解析式;(2)一次函数的图象上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,说明理由;(3)如果在y轴上存在一点Q,使是以为底边的等腰三角形,请直接写出点Q的坐标.【答案】(1)一次函数解析式为(2)存在,P点的坐标或(3)点Q的坐标为【解析】【分析】(1)由待定系数法即可求解;(2)由,即可求解;(3)由得:,即可求解.【小问1详解】解:∵正比例函数的图象与一次函数的图象交于点,∴可有,解得,∴A点的坐标;∵一次函数的图象过点和点则有,解得:,∴一次函数解析式为;【小问2详解】解:存在,理由如下:设点,对于一次函数,令,则有,解得,∴点,根据题意可知:,解得,当时,,当时,,∴P点坐标或;【小问3详解】解:设点,则,即,解得:,即点Q的坐标为:.【点睛】本题主要考查了正比例函数图象上点的坐标特征、待定系数法求函数解析式、一次函数图象与坐标轴交点以及一次函数几何问题等知识,解题关键是熟练掌握相关知识,并运用数形结合的思想分析问题.23. 如图1,已知和为等腰直角三角形,按如图的位置摆放,直角顶点C重合.(1)直接写出与的关系;(2)将按如图2的位置摆放,使点A、D、E在同一直线上,求证:;(3)将按如图3位置摆放,使,,,求的长.【答案】(1)且(2)见解析(3)【解析】【分析】对于(1),先证明≌即可得出数量关系,再根据角之间的关系得出位置关系;对于(2),设交于O,先证明,可得结论;对于(3),连接,首先证明,利用勾股定理求出线段,再证明≌推出,即可解决问题.【小问1详解】结论:且.理由:如图1中,延长交一点O.∵和为等腰直角三角形,∴,,∴,∴≌,∴,.∵,∴,∴.【小问2详解】如图2中,设交于O.由(1)可知≌,∴,.∵,∴,∴.∵,,∴,即,∴;【小问3详解】如图3中,连接,∵,,∴,.∵,∴.∵,,∴.∵,∴.∵,,∴≌,∴,∴.【点睛】本题主要考查了三角形综合题、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,正确寻找全等三角形解决问题,属于中考常考题型.。
数学七年级上册 几何图形初步(基础篇)(Word版 含解析)
一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。
河南省实验中学人教版初中七年级数学上册第四章《几何图形初步》模拟测试题(包含答案解析)
一、选择题1.(0分)[ID :68652]已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( )A .点B 在线段CD 上(C 、D 之间)B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上 2.(0分)[ID :68636]平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定 3.(0分)[ID :68634]如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南4.(0分)[ID :68625]下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个 5.(0分)[ID :68624]如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72° 6.(0分)[ID :68623]下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )A .B .C .D . 7.(0分)[ID :68612]从不同方向看一只茶壶,你认为是俯视效果图的是( )A .B .C .D . 8.(0分)[ID :68609]平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .189.(0分)[ID :68608]如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒10.(0分)[ID :68600]下列说法正确的是( )A .射线PA 和射线AP 是同一条射线B .射线OA 的长度是3cmC .直线,AB CD 相交于点 P D .两点确定一条直线11.(0分)[ID :68597]已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 12.(0分)[ID :68591]一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A .字母AB .字母FC .字母ED .字母B 13.(0分)[ID :68587]对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( ) A .①④ B .②④ C .①②④ D .①②③④ 14.(0分)[ID :68581]22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′ 15.(0分)[ID :68580]在钟表上,1点30分时,时针与分针所成的角是( ).A .150°B .165°C .135°D .120° 二、填空题16.(0分)[ID:68718]线段AB=12cm,点C在线段AB上,且AC=13BC,M为BC的中点,则AM的长为_______cm.17.(0分)[ID:68714]硬币在桌面上快速地转动时,看上去象球,这说明了_________________.18.(0分)[ID:68712]长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.19.(0分)[ID:68698]如图,共有_________条直线,_________条射线,_________条线段.20.(0分)[ID:68708]如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.21.(0分)[ID:68695]已知,如图,点M,N分别是线段AB,BC的中点,且9MN=,线段1143BD AB CD==,则线段BD的长为________.22.(0分)[ID:68687]分别指出图中截面的形状;23.(0分)[ID:68681]已知线段AB的长度为16厘米,C是线段AB上任意一点,E,F分别是AC,CB的中点,则E,F两点间的距离为_______.24.(0分)[ID:68675]下面的图形是某些几何体的表面展开图,写出这些几何体的名称.25.(0分)[ID:68664]把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.26.(0分)[ID :68659]如图,用边长为4cm 的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm 2.27.(0分)[ID :68743]已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是__和___.三、解答题28.(0分)[ID :68843]如图所示,点A 、O 、C 在同一直线上,OE 是BOC ∠的平分线,90EOF ∠=︒,()1420x ∠=+︒,()210x ∠=-︒.(1)求1∠的度数(请写出解题过程).(2)如以OF 为一边,在COF ∠的外部画DOF COF ∠=∠,问边OD 与边OB 成一直线吗?请说明理由.29.(0分)[ID :68842]已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 30.(0分)[ID :68786]线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF .【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.D4.A5.B6.C7.A8.B9.B10.D11.C12.D13.B14.B15.C二、填空题16.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C在AB 上且AC=BC∴AC=AB=3cm∴BC=9cm又M为BC的中点∴CM=BC=45cm∴AM=AC+CM=75cm 故答案为17.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解18.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)19.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条20.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出21.3【分析】根据等式的性质可得AB与BD的关系CD与BD的关系根据线段中点的性质可得AM与BM的关系DN与NC的关系根据线段的和差可得BD的长根据线段的和差可得答案【详解】∵∴AB=4BDCD=3BD22.长方形;五边形;圆【解析】【分析】根据长方体各面的特点结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答【详解】①截面与长面平行可以得23.8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答【详解】解:∵C是线段AB的中点∴AC=CB=AB=8∵EF分别是ACCB的中点∴CE=AC=4CF=CB=4∴EF=8(cm24.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;25.100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算正方体的体积=棱长×棱长×棱长1分米=01米即可解答【详解】棱长为1米的正方体的体积是1立方米棱长为1分米的小正方体的体积是1立方分米26.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=127.4【分析】从图形进行分析结合正方体的基本性质得到底面的数字即可求得结果【详解】第一个正方体已知235第二个正方体已知245第三个正方体已知124且不同的面上写的数字各不相同可求得第一个正方体底面的数三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD上(C、D之间),故选:A.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.2.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:+=,从图中我们可以发现AC BC AB所以点C在线段AB上.故选A.【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.3.D解析:D【分析】如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D.4.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.5.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.6.C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B.主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C.主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D.主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C.【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个.7.A解析:A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.8.B解析:B【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,进而可得答案.【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m=21;则m+n=21+1=22.故选:B.【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为12n(n﹣1)个.9.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG,∴∠BEF=180°-50°=130°,又∵EG平分∠BEF,∴∠BEG=12∠BEF=65°,∴∠2=65°.故选:B.【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.10.D解析:D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.11.C【分析】分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C在线段AB上时,BC=AB-AC= 8-6=2;当C在线段BA的延长线上时,BC=AB+AC =8+6=14;当C不在直线AB上时,AB、AC、BC三边构成三角形,则2<BC<14,综上所述①②④正确故选:C.【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键.12.D解析:D【分析】根据与A相邻的四个面上的数字确定即可.【详解】由图可知,A相邻的四个面上的字母是B、D、E、F,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.13.B解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB,M不在线段AB上时,则M不是AB的中点,故①错误,若AM=MB=12AB,则M是AB的中点,故②正确;若AM=12AB,M不在线段AB上时,则M不是AB的中点,故③错误;若A,M,B在一条直线上,且AM=MB,则M是AB的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点.14.B解析:B根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 15.C解析:C【分析】根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.【详解】钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.故选C.【点睛】此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.二、填空题16.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.17.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解解析:面动成体【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.【点睛】本题考查了点、线、面、体,掌握面动成体原理是解题的关键.18.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体体面平曲【解析】【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.19.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条解析:6 3【解析】【分析】根据线段、射线和直线的特点:线段有两个端点,有限长,可以测量;射线有一个端点,无限长;直线无端点,无限长;进行解答即可.【详解】因为线段有两个端点,射线只有一个端点,所以由图可以看出:图中有1条直线,3条线段,有6条射线.故此题答案为:1,6,3.【点睛】此题主要考查直线、线段和射线的特点,此类型的题,在数时,应做到有顺序,做到不遗漏、不重复.20.450°【分析】(1)∠AOE =90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA 即和为90°而有的角相加等于∠BOD 即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE =90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA ,即和为90°,而有的角相加等于∠BOD ,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD ,∠EOC ,∠EOB ,∠EOA ,∠DOC ,∠DOB ,∠DOA ,∠COB ,∠COA ,∠BOA 共10个;它们的度数之和是(∠EOD +∠DOA)+(∠EOC +∠COA)+(∠ EOB +∠BOA)+[(∠DOC +∠COB)+∠DOB]+∠EOA =90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.21.3【分析】根据等式的性质可得AB 与BD 的关系CD 与BD 的关系根据线段中点的性质可得AM 与BM 的关系DN 与NC 的关系根据线段的和差可得BD 的长根据线段的和差可得答案【详解】∵∴AB=4BDCD=3BD解析:3【分析】根据等式的性质,可得AB 与BD 的关系,CD 与BD 的关系,根据线段中点的性质,可得AM 与BM 的关系,DN 与NC 的关系,根据线段的和差,可得BD 的长,根据线段的和差,可得答案.【详解】 ∵1143BD AB CD ==,∴AB =4BD ,CD =3BD . 点M 、N 分别是线段AB 、BC 的中点,AM =BM =2BD ,DB =BN =NC .由线段的和差,得MN =MB +BN =3BD =9.所以BD =3.故答案为3.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.22.长方形;五边形;圆【解析】【分析】根据长方体各面的特点结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答【详解】①截面与长面平行可以得 解析:长方形;五边形;圆.【解析】【分析】根据长方体各面的特点,结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答.【详解】①截面与长面平行,可以得到长方形形截面;②截面与棱柱的底面平行,可得到五边形截面;③截面与圆锥底平行,可以得到圆形截面.故答案为:长方形、五边形、圆.【点睛】此题考查截一个几何体,解题的关键是要掌握截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答【详解】解:∵C是线段AB的中点∴AC=CB=AB=8∵EF分别是ACCB 的中点∴CE=AC=4CF=CB=4∴EF=8(cm解析:8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答.【详解】解:∵C是线段AB的中点,∴AC=CB=12AB=8,∵E、F分别是AC、CB的中点,∴CE=12AC=4,CF=12CB=4,∴EF=8(cm),故答案为:8cm.【点睛】本题主要考查了线段的中点的概念和性质,解决本题的关键是要能够根据中点准确运用式子表示并进行计算.24.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断.【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体,四棱锥,三棱柱;【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.25.100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算正方体的体积=棱长×棱长×棱长1分米=01米即可解答【详解】棱长为1米的正方体的体积是1立方米棱长为1分米的小正方体的体积是1立方分米解析:100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算,正方体的体积=棱长×棱长×棱长,1分米=0.1米,即可解答【详解】棱长为1米的正方体的体积是1立方米,棱长为1分米的小正方体的体积是1立方分米,1立方米=1000立方分米,所以1000÷1=1000(个),则总长度是1×1000=1000(分米)=100(米).【点睛】此题考查正方体的体积公式以及长度单位之间的换算,掌握换算法则是解题关键26.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=1解析:9【解析】【分析】先求出最小的等腰直角三角形的面积=18×12×42=1,再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可.【详解】解:阴影部分的面积=42-7×18×12×42=16-7=9.故答案为9.【点睛】本题考查七巧板、图形的拼剪,解题的关键是求出最小的等腰直角三角形的面积,学会利用分割法求阴影部分的面积.27.4【分析】从图形进行分析结合正方体的基本性质得到底面的数字即可求得结果【详解】第一个正方体已知235第二个正方体已知245第三个正方体已知124且不同的面上写的数字各不相同可求得第一个正方体底面的数解析:4从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【详解】第一个正方体已知2,3,5,第二个正方体已知2,4,5,第三个正方体已知1,2,4,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,5对应的底面数字为4.故答案为3,4.三、解答题28.(1)1140∠=︒;(2)边OD 与边OB 成一直线,理由详见解析.【分析】(1)因为OE 是∠BOC 的平分线 所以∠BOC=2∠2,再根据点A 、O 、C 在一直线上,求出∠1和∠2关于x 的关系式,列出等式求出x 的值;(2)根据∠EOF=∠EOC+∠COF=90°和∠EOC=12∠BOC ,∠FOC=12∠DOC ,12∠BOC+12∠DOC=90°,得出∠BOC+∠DOC=180°,进而可可判断边OD 与边OB 成一直线.【详解】(1)因为OE 是BOC ∠的平分线,所以22BOC ∠=∠,因为点A 、O 、C 在同一直线上,所以1180BOC ∠+∠=︒,又因为()1420x ∠=+︒,()210x ∠=-︒,所以()()420210180x x ++-=,解得:30x =,1140∠=︒(2)边OD 与边OB 成一直线.理由:因为90EOF EOC COF ∠=∠+∠=︒, 又因为12EOF BOC ∠=∠,12FOC DOC ∠=∠. ∴119022BOC DOC ∠+∠=︒, 即180BOC DOC ∠+∠=︒,所以点D 、O 、B 在同一直线上,即边OD 与边OB 成一直线.【点睛】本题主要考查角的计算和角平分线的知识点,解答本题的关键是熟练运用角之间的等量关系.29.7或3求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =, 12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.30.【分析】根据题意和图形可以求得线段EB 、BC 、CF 的长,从而可以得到线段EF 的长.【详解】∵E ,F 分别是线段AB ,CD 的中点,∴AB=2EB=2AE ,CD=2CF=2FD ,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。
河南省实验中学必修二第一章《立体几何初步》测试题(有答案解析)
一、选择题1.已知正方体1111ABCD A BC D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .902.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .47D .473.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m4.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π5.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π6.已知正四棱锥的高为2,底面正方形边长为4,其正视图为如图所示的等腰三角形,正四棱锥表面点M 在正视图上的对应点为腰的中点A ,正四棱锥表面点N 在正视图上对应点为B ,则||MN 的取值范围为( ).A .[10,19]B .[11,19]C .[10,25]D .[11,25]7.已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为22 ) A .4π B .8πC .12πD .24π8.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( ) A 2B .22C .12D 39.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+ D .8,1625VL ==+10.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π11.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'12.在正方体1111ABCD A BC D -中,M 和N 分别为11AB ,和1BB 的中点.,那么直线AM 与CN 所成角的余弦值是( )A .25B .10 C .35D .3 二、填空题13.若一个底面边长为62,侧棱长为6的正六棱柱的所有定点都在一个球的面上,则此球的体积是___________.14.已知ABC 三个顶点都在球O 的表面上,且1AC BC ==,2AB =,S 是球面上异于A 、B 、C 的一点,且SA ⊥平面ABC ,若球O 的表面积为16π,则球心O 到平面ABC 的距离为____________.15.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为____________.16.一个三棱锥的三视图如图所示,该三棱锥中最长棱的长度为_______.17.一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计一个各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形(如图所示),高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为_________元.18.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π; ③E 到平面ADF 3④EC 与BF 所成角为60°. 其中正确的说法为__________.(填序号)19.表面积为16π的球与一个正三棱柱各个面都相切,则这个正三棱柱的体积为___________.20.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =则侧棱PA 与底面ABC 所成的角的大小是___________.三、解答题21.如图,在正四棱柱1111ABCD A BC D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.22.在所有棱长均为2的直棱柱1111ABCD A BC D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ; (Ⅱ)求二面角1D AC D --的余弦值.23.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,6,,PA PD PB E F ===分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ; (2)求点B 到平面PAD 的距离.24.如图,在正三棱柱111ABC A B C -中,若12AB BB =,AD DC =,试证明:(1)1//AB 平面1BC D ; (2)11AB BC ⊥.25.如图,在三棱锥M 中,M 为BC 的中点,3PA PB PC AB AC =====,26BC =.(1)求二面角P BC A --的大小; (2)求异面直线AM 与PB 所成角的余弦值.26.如图,四棱锥P ABCD -,底面ABCD 为矩形,PD ⊥面ABCD ,E 、F 分别为PA 、BC 的中点.(1)求证://EF 面PCD ;(2)若2AB =,1AD PD ==,求三棱锥P BEF -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A BC D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A BC D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.2.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得1122==A B AC ,1A BC 为等腰三角形,所以1A BC 的高为7,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为112772=⨯⨯=A BC S △,12332ABCS =⨯⨯=,所以111233⨯⨯=⨯⨯A BC ABC S h S △△,即232217h ==. 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.3.C解析:C 【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算. 【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V=三棱柱ABC A B C '''-V+四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.4.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍, 所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-= 所以()(2222322R R =+,解得3R =, 所以外接球的表面积为2100433S ππ==(2cm ).故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.5.B解析:B 【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =. 【详解】设底面圆半径为r , 由母线长4l,可知侧面展开图扇形的圆心角为22r rl ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===, 所以222AM AB MB +=, 所以2MAB π∠=,故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=, 故选:B 【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2rlπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.6.A解析:A 【分析】由题意画出如图正四棱锥,可得M 点在GK 上运动,N 点在CD 上运动,且四边形KCDG 是等腰梯形,则||MN 的取值范围的最小值就是等腰梯形的高,最大值就是梯形的对角线长,作KH ED ⊥,在直角三角形中求KJ KD 、的长可得答案. 【详解】如图正四棱锥P ECDF -,PO ⊥平面ECDF ,O 是底面中心,G K 、分别是PF PE 、的中点,由题意知,M 点在GK 上运动,N 点在CD 上运动,所以////GK FE DC ,且11222GK FE DC ===, 所以四边形KCDG 是梯形,在ECK 与FDG △中,,,EC FD EK FG KEC GFD ==∠=∠,所以ECK ≅FDG △,所以KC GD =,所以四边形KCDG 是等腰梯形,则||MN 的取值范围的最小值就是等腰梯形的高, 最大值就是梯形的对角线长,且22PO EC CD ===,,1222EO ED ==, 作KH ED ⊥于H ,所以//KH PO ,KH ⊥平面ECDF ,112KH PO ==,且H 是EO 的中点,122EH EO ==,32DH =,45EDC ∠=,作KJ CD ⊥于J ,连接HJ ,12CD KGCJ -==, 所以3DJ =, 由余弦定理得2222cos 9HJ DH DJ DH DJ EDC =+-⋅∠=, 所以2221910KJ KH HJ =+=+=,10KJ =,22211819DK EH HD =+=+=,19DK =,故选:A. 【点睛】本题考查了正四棱锥的性质及线段的取值范围问题,关键点是画出正四棱锥分析出问题的实质,考查了学生的空间想象力.7.C解析:C 【分析】将正三棱锥补成一个正方体,计算出正方体的棱长,可得出正方体的体对角线长,即为外接球的直径,进而可求得这个球的表面积. 【详解】设该正三棱锥为A BCD -,将三棱锥A BCD -补成正方体AEBF GCHD -,如下图所示:则正方体AEBF GCHD -的棱长为22222⨯=,该正方体的体对角线长为23, 所以,正三棱锥A BCD -的外接球直径为223R =,可得3R =, 该球的表面积为2412S R ππ==. 故选:C. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.8.B解析:B 【分析】 连接11A N B AB =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解. 【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为22111115142MB MC C B =+=+=,2215142MA MC CA =+=+, 所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线, ∴1⊥MN AB 且1MNA B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离,又因为1111211222B N AB==⋅+=,所以点1B 到截面1A BM 的距离为22, 故选:B. 【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据AB n d n⋅=即可求解出点A 到平面α的距离.9.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A BC D -中,P ,E 分别为11,BC BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10.C解析:C 【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.11.C解析:C 【分析】设AH a =,则3BH a ,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a ,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AHa =-=-,所以在Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.12.A解析:A 【分析】作出异面直线AM 和CN 所成的角,然后解三角形求出两条异面直线所成角的余弦值. 【详解】设,E F 分别是1,AB CC 的中点,由于,M N 分别是111,A B BB 的中点,结合正方体的性质可知11//,//B E AM B F CN ,所以1EB F ∠是异面直线AM 和CN 所成的角或其补角, 设异面直线AM 和CN 所成的角为θ,设正方体的边长为2,2211125B E B F ==+=,2221216EF =++=,则1cos cos EB F θ=∠=55625255+-=⨯⨯.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】计算出正六棱柱的外接圆直径进而可求得外接球的半径利用球体体积公式即可计算出正六棱柱的外接球的体积【详解】如下图所示:圆柱的底面圆直径为母线长为则的中点到圆柱底面圆上每点的距离都相等则为圆柱外 解析:43π【分析】计算出正六棱柱的外接圆直径,进而可求得外接球的半径,利用球体体积公式即可计算出正六棱柱的外接球的体积. 【详解】 如下图所示:圆柱12O O 的底面圆直径为2r ,母线长为h ,则12O O 的中点O 到圆柱底面圆上每点的距离都相等,则O 为圆柱12O O 外接球的球心,设球O 的半径为R ,则()2222R r h =+可作出正六棱柱111111ABCDEF A BC D E F -的外接圆,可将正六棱柱111111ABCDEF A BC D E F -放在圆柱12O O 中,如下图所示:连接11O A 、11O B ,则11160AO B ∠=,且1111O A O B =,则111O A B △为等边三角形, 则圆1O 的半径为11116r O A A B ===正六棱柱111111ABCDEF A BC D E F -的侧棱长为6h = 设正六棱柱111111ABCDEF A BC D E F -的外接球的半径为R ,则()222223R r h =+=所以,3R 33443=4333V R πππ==⨯.故答案为:43π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.【分析】根据题中的垂直关系确定球心再根据球的表面积公式计算再求点到平面的距离【详解】由并且平面平面且平面是直角三角形和的公共斜边取的中点根据直角三角形的性质可知所以点是三棱锥外接球的球心设则则三棱锥 解析:142【分析】根据题中的垂直关系,确定球心O ,再根据球的表面积公式计算SA ,再求点O 到平面ABC 的距离.【详解】由222AC BC AB +=,AC BC ∴⊥,并且SA ⊥平面ABC ,BC ⊂平面ABC ,SA BC ∴⊥,且AC SA A ⋂=BC ∴⊥平面SAC ,BC SC ∴⊥,SB ∴是直角三角形SBC 和SAB 的公共斜边,取SB 的中点O ,根据直角三角形的性质可知OA OB OC OS ===, 所以点O 是三棱锥S ABC -外接球的球心, 设SA x =,则211222r SB x ==+, 则三棱锥S ABC -外接球的表面积2416S r ππ==,()21264x +=,解得:14x =, 点O 到平面ABC 的距离1142d SA ==.故答案为:142【点睛】方法点睛:本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,是两个直角三角形的公共斜边的中点是外接球的球心.15.【分析】根据正方体的表面积可得正方体边长然后计算外接球的半径利用球的体积的公式可得结果【详解】设正方体边长正方体外接球的半径为R 由正方体的表面积为24所以则又所以所以外接球的体积为:故答案为:【点睛 解析:43π【分析】根据正方体的表面积,可得正方体边长a ,然后计算外接球的半径3R =,利用球的体积的公式,可得结果. 【详解】设正方体边长a ,正方体外接球的半径为R , 由正方体的表面积为24,所以2624a =,则2a =,又3R a =,所以3R =, 所以外接球的体积为:()334434333R πππ==.故答案为:43π. 【点睛】方法点睛:求多面体的外接球的表面积和体积问题关键是要求出外接球的半径,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.【分析】由三视图还原几何体得到三棱锥P-ABC 分别计算其棱长可得答案【详解】由三视图还原几何体得到三棱锥P-ABC 可将此三棱锥放入棱长为2的正方体内如下图所示所以:BC=所以该三棱锥最长棱的长度为故 解析:23【分析】由三视图还原几何体得到三棱锥P -ABC ,分别计算其棱长,可得答案. 【详解】由三视图还原几何体得到三棱锥P -ABC ,可将此三棱锥放入棱长为2的正方体内,如下图所示,所以:2AB =,BC =2,22,23BP AC PC AP ====. 所以该三棱锥最长棱的长度为23. 故答案为:23.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.17.4000【分析】根据题意先求出正四棱柱的底面边长和高由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积进而求出所需的费用【详解】由题意可知文物底部是直径为09m 的圆形文物底部与玻璃罩底边至解析:4000 【分析】根据题意,先求出正四棱柱的底面边长和高,由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积,进而求出所需的费用. 【详解】由题意可知,文物底部是直径为0.9 m 的圆形,文物底部与玻璃罩底边至少间隔0.3 m , 所以由正方形与圆的位置关系可知:底面正方形的边长为0.9+2×0.3=1.5m , 由文物高1.8m ,文物顶部与玻璃置上底面至少间隔0.2m ,所以正四棱柱的高为1.8+0.2=2m .,则正四棱柱的体积为V =1.52×2=4.5m 3 因为文物体积为0.5m 3,所以置内空气的体积为4.5-0.5 = 4 m 3, 气体每立方米1000元,所以共需费用为4×1000=4000(元) 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型.18.②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点即可得出半径求出表面积;③取AD 的中点G 连接EGFGEF 过E 作求出即可;④可得为所成角【详解】①八面体的体积为;②八面体解析:②④ 【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点,即可得出半径求出表面积;③取AD 的中点G ,连接EG ,FG ,EF ,过E 作EH FG ⊥,求出EH 即可;④可得DEC ∠为所成角. 【详解】①八面体的体积为212(23⨯⨯=②八面体的外接球球心为正方形ABCD 8π;③取AD 的中点G ,连接EG ,FG ,EF ,易得3EG FG ==AD ⊥平面EGF , 过E 作EH FG ⊥,交FG 的延长线于H ,又EH AD ⊥,AD FG G ⋂=,故EH ⊥平面ADF , 解得26EH =,所以E 到平面ADF 的距离为63; ④因为//ED BF ,所以EC 与BF 所成角为60︒. 故答案为:②④. 【点睛】解本题的关键是正确理解正八面体的性质,根据线面垂直关系得到点到平面的垂线段.19.【分析】求出正三棱柱的高底面三角形的边长和高即可求出正三棱柱的体积【详解】设球的半径为r 由得则球的半径为2正三棱柱的高为正三棱柱底面正三角形的内切圆的半径是2所以正三角形的边长是高是6正三棱柱的体积 解析:483【分析】求出正三棱柱的高、底面三角形的边长和高,即可求出正三棱柱的体积. 【详解】设球的半径为r ,由2416r π=π,得2r,则球的半径为2,正三棱柱的高为24r =,正三棱柱底面正三角形的内切圆的半径是2,所以正三角形的边长是436, 正三棱柱的体积为136432⨯⨯= 故答案为:483【点睛】本题考查正三棱柱的内切球、正三棱柱的体积,考查空间想象能力与计算能力.20.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可.【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC 所以平面PAD ⊥平面ABC ,所以PAD ∠即为侧棱PA 与底面ABC 所成的角 由侧面PBC 和底面ABC 都是边长为2的正三角形得3AD PD ==3PA =所以PAD ∆为等边三角形,则=PAD ∠o 60 即侧棱PA 与底面ABC 所成的角为o 60 故答案为:o 60 【点睛】本题主要考查空间直线与平面所成角的计算,较简单.三、解答题21.(1)22;(2)23;(3)33. 【分析】(1)取BD 中点G ,连接GC ,FG ,根据线面垂直的判定定理及性质,先证明EF 为1BD 与1CC 的公垂线,再由题中数据,计算出EF 的长,即可得出结果;(2)连接1ED ,由(1)得到EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d ,根据等体积法,由11E DBD D DBE V V --=求出d ,记直线1BD 与平面BDE 所成角为θ,由1sin dBD θ=即可得出结果;(3)由(2)得到1D 到平面BDE 的距离d ,根据题中条件,得到F 到平面BDE 的距离为2d,即可得出结果. 【详解】(1)在正四棱柱1111ABCD A BC D -中,取BD 中点G ,连接GC ,FG , ∵F ,G 分别为1,BD BD 的中点,∴1//FG D D 且112FG D D =, 又1//CE D D ,112CE D D =,所以//FG CE 且FG CE =,则四边形EFGC 为平行四边形,又CE ⊥平面ABCD ,CG ⊂平面ABCD ,∴CE CG ⊥, ∴四边形EFGC 为矩形,∴1EF CC ⊥, ∵11//D D C C ,∴1EF DD ⊥,又CG BD ⊥,//EF CG ,BD ⊂平面1BDD ,1D D ⊂平面1BDD ,1BD D D D ⋂=, ∴EF ⊥平面1BDD ,又1BD ⊂平面1BDD ,∴1EF BD ⊥, ∴EF 为1BD 与1CC 的公垂线,且1E CC ⊂,1F BD ⊂, ∴异面直线1BD 与1CC的距离为||2EF =. (2)在正四棱柱1111ABCD A BC D -中,连接1ED ,则11E DBD D DBE V V --=, 由(1)知EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d , ∵12AA =,1AB =,∴BD BE ED ===EF =1BD =∴1122DBD S==212DBES =⨯=从而1DBEDBD Sd SEF ⨯=⨯,∴d ==,记直线1BD 与平面BDE 所成角为θ,则1sin d BD θ===, ∴直线1BD 与平面BDE。
河南省实验中学七年级数学上册第四单元《几何图形初步》-解答题专项提高卷(培优提高)
一、解答题1.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
解析:60°【分析】根据∠AOC:∠COD:∠BOD=2:3:4分别设∠AOC=2x,∠COD=3x,∠BOD=4x,根据这三个角之和等于180°,求得三个角的度数,然后根据角平分线的性质即可求得∠EOF的大小.【详解】设∠AOC=2x,∠COD=3x,∠BOD=4x∵∠AOC+∠COD+∠BOD=∠AOB=180°∴2x+3x+4x=180°∴x=20°∴∠AOC=40°∠COD=60°∠BOD=80°∵OE,OF平分∠AOC,∠BOD∴∠EOC=20°,∠DOF=40°∴∠EOF=120°又∵OG平分∠EOF∴∠EOG=∠GOF=60°∴∠GOF=60°.【点睛】本题考查角平分线的性质.角平分线把一个角平分成两部分,它们都等于原来角的1 2 .2.如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.解析:6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).3.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意.解析:如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A爬到G的最短途径.(2)分情况讨论,作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.4.已知A ,B ,C 三点,他们所表示的数分别是5,-3,a.(1)求线段AB 的长度AB ;(2)若AC=6,求a 的值;(3)若d=3a ++5a -,求d 的最小值,并判定d 与AB .解析:(1)8;(2)a =11或-1;(3)8,d =AB .【分析】(1)线段AB 的长等于A 点表示的数减去B 点表示的数;(2)AC =|A 点表示的数-C 点表示的数|,然后解方程即可;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8.【详解】(1)AB =5-(-3)=8;(2)AC =5a -=6,解得:a =11或-1;即在数轴上,若 C 点在A 点左边,则a =-1,若C 点在A 点右边,则a =11;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8,所以d =AB .【点睛】本题考查了数轴上两点之间的距离,利用数轴上求线段长度的方法,找出等量关系,解决问题.5.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.6.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程. 7.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠, 40120=︒+︒,160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒, 40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 8.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.9.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.解析:(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.【分析】(1)根据COE DOE BOC =-∠∠∠,即可求出COE ∠的度数;(2)根据角平分线的性质即可求出COD ∠的度数;(3)根据余角的性质即可求出∠COE -∠BOD =10°.【详解】(1)∵90DOE ∠=︒,80BOC ∠=︒∴908010COE DOE BOC =-=︒-︒=︒∠∠∠∴∠COE =10°(2)∵OC 恰好平分∠BOE ∴12COE COB BOE ==∠∠∠ ∴∠COD =∠DOE -∠COE =∠DOE -∠BOC =10°(3)猜想:∠COE -∠BOD =10°理由:∵∠COE =∠DOE -∠COD =90°-∠COD∠COD =∠BOC -∠BOD =80°-∠B OD∴∠COE =90°-(80°-∠B OD )=10°+∠B OD即∠COE -∠BOD =10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键. 10.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析 【分析】(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.【详解】解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC )=12b .【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.11.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 12.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.解析:画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 13.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.14.如图,C,D,E为直线AB上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.能用大写字母表示的射线:射线AC、射线CD、射线DE、射线EB、射线CA、射线DC、射线ED、射线BE.(2)因为n个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,所以n个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC与线段CA,所以这条直线上共有(1)2n n条线段.因为一个端点对应延伸方向相反的两条射线,所以当一条直线上有n个点时,共有2n条射线.【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法.15.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.16.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.17.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.18.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.解析:45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=.综上所述,45EOF ︒∠=.【点睛】本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.19.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点, 所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.20.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点,所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =. (3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 21.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.解析:8cm【分析】先由中点的定义求出AM ,BM 的长,再根据MC :CB=1:2的关系,求MC 的长,最后利用AC=AM+MC 得其长度.【详解】∵线段AB 的中点为M ,∴AM=BM=6cm设MC=x ,则CB=2x ,∴x+2x=6,解得x=2即MC=2cm .∴AC=AM+MC=6+2=8cm .故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22.如图,点C 为线段AD 上一点,点B 为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段?(2)求AD 的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.23.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:(1)线段AB 的长;(2)线段DE 的长.解析:(1)10.8cm ;(2)0.6cm【分析】(1)设2cm AC x =,3cm CD x =,4cm BD x =,则根据6cm AD =列式计算即可. (2)由E 为线段AB 的中点,且根据(1)知AB 的长为10.8cm ,即可求出DE 的长.【详解】(1)设2cm AC x =,3cm CD x =,4cm BD x =.则有236x x +=,解得 1.2x =.则234910.8x x x x ++==.所以AB 的长为10.8cm .(2)因为E 为线段AB 的中点, 所以1 5.4cm 2AE AB ==. 所以6 5.40.6cm DE AD AE =-=-=【点睛】本题考查的是两点之间的距离,熟知各线段之间的和及倍数关系是解答此题的关键. 24.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠.因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,25.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.26.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)解析:见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.27.已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE =50°,求:∠BHF 的度数.解析:∠BHF=115° .【分析】由AB ∥CD 得到∠AGE=∠CFG ,由此根据邻补角定义可得∠GFD 的度数,又FH 平分∠EFD ,由此可以先后求出∠GFD ,∠HFD ,继而可求得∠BHF 的度数.【详解】∵AB ∥CD ,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH 平分∠EFD ,∴∠HFD=12∠EFD=65°; ∵AB ∥CD ,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的. 28.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线,11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;②当射线OP 在BOC ∠外部时(如图3-2),10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.综上所述,COP ∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.29.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.30.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF.解析:【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【详解】∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=2FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。
河南省实验中学七年级数学上册第四单元《几何图形初步》经典练习(课后培优)
一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B 的长度为( )A .0B .1C .2D .32.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑 3.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 4.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个 5.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°6.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n,则AB=()A.m﹣n B.m+n C.2m﹣n D.2m+n7.下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是3cmAB CD相交于点P D.两点确定一条直线C.直线,8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.49.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°∠=∠的图形的个数是()10.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.411.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种12.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.4cm或10cm D.6cm或10cm 13.22°20′×8等于( ).A.178°20′B.178°40′C.176°16′D.178°30′14.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为()A.7 B.3 C.3或7 D.以上都不对15.把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A .85°B .90°C .95°D .100°二、填空题16.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________. 17.如图所示,128∠=︒,272∠=︒,OC 平分BOD ∠,则COD ∠=________.18.同一条直线上有三点A ,B ,C ,且线段BC=3AB ,点D 是BC 的中点,CD=3,则线段AC 的长为______.19.已知一个角的补角是它余角的3倍,则这个角的度数为_____.20.分别指出图中截面的形状;21.车轮旋转时,看起来像一个整体的圆面,这说明了_______;直角三角形绕它的直角边旋转一周形成了一个圆锥体,这说明了________.22.如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.23.钟表在8:30时,时针与分针所成角的度数为________,2:40时,时针与分针所成角的度数是_________.24.魏老师去农贸市场买菜时发现,若把10千克的菜放在秤上,则指针盘上的指针转了180︒,第二天魏老师请同学们回答以下两个问题:(1)若把0.5千克的菜放在秤上,则指针转过________度;(2)若指针转了243︒,则这些菜共有________千克.25.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.3AC cm =,1CP cm =,线段PN =__cm .26.在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分.三、解答题27.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度.(2)若6AB =,求MN 的长度.28.如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向左移动3cm 到达B 点,然后向右移动9cm 到达C 点.(1)用1个单位长度表示1cm ,请你在数轴上表示出A ,B , C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA=______cm.(3)若点B 以每秒2cm 的速度向左移动,同时A .C 点分别以每秒1cm 、4cm 的速度向右移动.设移动时间为t 秒,试探索:CA−AB 的值是否会随着t 的变化而改变?请说明理由. 29.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?30.如图,有一只蚂蚁想从A 点沿正方体的表面爬到G 点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意.。
河南省实验中学七年级数学上册第四单元《几何图形初步》测试题(有答案解析)
解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,
则小虫从点A沿着正方体的棱长爬行到点B的长度为1.
故选B.
【点睛】
本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.
3.B
解析:B
【分析】
根据余角的性质,补角的性质,可得答案.
【详解】
解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;
二、填空题
13.【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语
解析:
【分析】
根据AC= AD,CD=4cm,求出 ,再根据 是线段 的中点,即可求得答案.
15.CDBCBDADCD【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC(2)BC+CD=BD=AD-AB(3)AD=AC+CD故答案为:CD;BC;BD;AD
解析:CD BC BD AD CD
【分析】
根据线段之间的和差关系进行解答即可得答案.
【详解】
(1)AC=AD-CD=AB+BC,
∴BD=8,
∴ED= BD=4,
∴|6-E|=4,
∴点E所表示的数是:6-4=2.
∴离线段BD的中点最近的整数是2.
故选:A.
【点睛】
本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
7.B
解析:B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)1.综合题(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.(2)对于(1)问,如果我们这样叙述:“已知点C在直线AB上,且AC=6cm,BC=4cm,点M、N分别是AC,BC的中点,求线段MN的长度.”结果会有变化吗?如果有,求出结果;如果没有,说明理由.【答案】(1)解:∵AC=6cm,且M是AC的中点,∴MC= AC= 6=3cm,同理:CN=2cm,∴MN=MC+CN=3cm+2cm=5cm,∴线段MN的长度是5m(2)解:分两种情况:当点C在线段AB上,由(1)得MN=5cm,当C在线段AB的延长线上时,∵AC=6cm,且M是AC的中点∴MC= AC= ×6=3cm,同理:CN=2cm,∴MN=MC﹣CN=3cm﹣2cm=1cm,∴当C在直线AB上时,线段MN的长度是5cm或1cm.【解析】【分析】(1)根据线段的中点定义,由M是AC的中点,求出MC、CN的值,得到MN=MC+CN的值;(2)当点C在线段AB上,由(1)得MN的值;当C在线段AB 的延长线上时,再由M是AC的中点,求出MC、CN的值,得到MN=MC﹣CN的值.2.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.3.已知,与两角的角平分线交于点P,D是射线上一个动点,过点D的直线分别交射线,,于点E,F,C.(1)如图1,若,,,求的度数;(2)如图2,若,请探索与的数量关系,并证明你的结论;(3)在点运动的过程中,请直接写出,与这三个角之间满足的数量关系:________.【答案】(1)解:∵PA、PB是∠BAM、∠ABN的角平分线,∴∠BAP=∠PAE= ∠BAM= ,∠ABP=∠PBE= ∠ABN= ,∴∠BPC=∠BAP+∠ABP= ;(2)解:,理由如下:∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,∵,∴,又∵,∴,∴;(3)【解析】【解答】解:(3)∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,如图,当点P在线段BD上时,,∴;如图,当点P在线段BD的延长线上时,,即,∴,即;故答案为:.【分析】(1)根据角平分线的性质结合三角形外角的性质即可求解;(2)设,,根据角平分线的性质结合四边形内角和定理即可求解;(3)分点P在线段BD上和点P在线段BD的延长线上两种情况讨论即可求解.4.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.【答案】(1)解:在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°-(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,∵α+β=120°,∴∠MBC+∠NDC=120°(2)解:β﹣α=60°理由:如图1,连接BD,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG= ∠MBC,∠CDG= ∠NDC,∴∠CBG+∠CDG= ∠MBC+ ∠NDC= (∠MBC+∠NDC)= (α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴(α+β)+180°﹣β+30°=180°,∴β﹣α=60°(3)解:平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE= ∠MBC,∠CDH= ∠NDC,∴∠CBE+∠CDH= ∠MBC+ ∠NDC= (∠MBC+∠NDC)= (α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB= (α+β),∵α=β,∴∠CBE+β﹣∠DHB= (β+β)=β,∴∠CBE=∠DHB,∴BE∥DF【解析】【分析】(1)由四边形的内角和等于360°并结合已知条件可求得∠ABC+∠ADC 的度数;再根据邻补角的定义可得:∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC),代入计算即可求解;(2)由(1)得,∠MBC+∠NDC=α+β,由角平分线的性质可得∠CBG=∠MBC,∠CDG=∠NDC,所以∠CBG+∠CDG=(∠MBC+∠NDC)=(α+β),分别在三角形BCD 和三角形BDG中,根据三角形内角和定理可得:∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,∠GBD+∠GDB+∠BGD=180°,即∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,分别把(∠CBG+∠CDG)、(∠BDC+∠CDB)、∠BGD代入计算即可求解;(3)延长BC交DF于H,由(1)得,∠MBC+∠NDC=α+β,由角平分线的性质可得:∠CBE=∠MBC,∠CDH=∠NDC,两式相加整理可得∠CBE+∠CDH=(α+β);由三角形的外角的性质可得∠BCD=∠CDH+∠DHB,所以∠CDH=β﹣∠DHB,则∠CBE+β﹣∠DHB=(α+β),把α=β代入整理可得∠CBE=∠DHB,由内错角相等两直线平行可得BE∥DF。
5.如图,在△ABC中,点E在AC边上,连结BE,过点E作DF∥BC,交AB于点D.若BE 平分∠ABC,EC平分∠BEF.设∠ADE=α,∠AED=β.(1)当β=80°时,求∠DEB的度数.(2)试用含α的代数式表示β.(3)若β=kα(k为常数),求α的度数(用含k的代数式表示).【答案】(1)解:∵β=80°,∴∠CEF=∠AED=80°,∵BE平分∠ABC,∴∠BEC=∠CEF=80°,∴∠DEB=180°﹣80°﹣80°=20°;(2)∵DF∥BC,∴∠ADE=∠ABC=α,∵BE平分∠ABC,∴∠DEB=∠EBC=∵EC平分∠BEF,∴β=∠CEF=(180°﹣)=90°﹣α;(3)∵β=kα,∴90°﹣α=kα,解得:α=【解析】【分析】(1)根据对顶角的性质得到∠CEF=∠AED=80°,根据角平分线的定义即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据题意列方程即可得到结论.6.已知,,点在射线上, .(1)如图1,若,求的度数;(2)把“ °”改为“ ”,射线沿射线平移,得到,其它条件不变(如图2所示),探究的数量关系;(3)在(2)的条件下,作,垂足为,与的角平分线交于点,若,用含α的式子表示(直接写出答案).【答案】(1)解:∵CD//OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-90°-120°=150°(2)解:如图2,过O点作OF//CD,∴CD//OE,∴OF∥OE,∴∠AOF=180°-∠OCD,∠BOF=∠EO'O=180°-∠BO'E,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO'E=360°-(∠OCD+∠BO'E)=120°,∴∠OCD+∠BO'E=240°(3)30°+【解析】【解答】解:(3)如图,∵CP是∠OCD的平分线,∴∠OCP= ∠OCD,∴∠CPO'=360°-90°-120°-∠OCP=150°- ∠OCD=150°- (240°-∠BO'E)=30°+【分析】(1)先求出到∠AOE的度数,再根据直角、周角的定义即可求解;(2)过O点作OF//CD,根据平行线的判定和性质可得∠OCD、∠BO'E的数量关系;(3)根据四边形内角和为360°,再结合(2)的结论以及角平分线的定义即可解答.7.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD.当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外),∠CPQ+∠CQP与∠BAC有何数量关系?直接写出结论,其数量关系为________.【答案】(1)解:AB∥CD;理由如下:∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE,∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°,∴AB∥CD(2)解:∠BAE+∠MCD=90°;理由如下:过E作EF∥AB,如图2所示:∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠AEC=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD∴∠ECD=∠MCD∴∠BAE+∠MCD=90°(3)∠BAC=∠CPQ+∠CQP【解析】【解答】解:(3)∠BAC=∠CPQ+∠CQP;理由如下:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠CPQ+∠CQP+∠PCQ=180°,即(∠CPQ+∠CQP)+∠ACD=180°,∴∠BAC=∠CPQ+∠CQP.故答案为:∠BAC=∠CPQ+∠CQP.【分析】(1)由角平分线的性质得出∠BAC=2∠EAC,∠ACD=2∠ACE,推出∠BAC+∠ACD=180°,即可得出结论;(2)过E作EF∥AB,则EF∥AB∥CD,得出∠BAE=∠AEF,∠FEC=∠DCE,由∠AEC=90°,推出∠BAE+∠ECD=90°,∠ECD=∠MCD,得出∠BAE+∠MCD=90°;(3)由平行线的性质得出∠BAC+∠ACD=180°,由三角形内角和定理得出∠CPQ+∠CQP +∠PCQ=180°,即可得出结果.8.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.(1)求证:∠ABE+∠C﹣∠E=180°.(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.【答案】(1)证明:如图1,过点E作∴∵∴∴∴;(2)解:∵BF、EG分别平分、∴设∵∴∴由(1)知,即∴;(3)解:∵CN、BF分别平分、∴设由(1)知:即如图3,过M作则∴∴∴ .【解析】【分析】(1)过点E作,由平行线的性质得出,进而得出答案;(2)设,由平行线的性质得出,由(1)知,即可得出答案;(3)设,由(1)知,过M 作,由平行线的性质得出,求出,即可得出答案.9.如图,直线和直线互相垂直,垂足为,直线于点B,E 是线段AB上一定点,D为线段OB上的一动点(点D不与点O、B重合),直于点,连接AC.(1)当,则 ________°;(2)当时,请判断CD与AC的位置关系,并说明理由;(3)若、的角平分线的交点为P,当点D在线段上运动时,问的大小是否会发生变化?若不变,求出的大小,并说明理由;若变化,求其变化范围. 【答案】(1)40(2)解:由(1)可得:∠CDO=∠BED,∵,∴∠A=∠BED,∴AC∥DE,∵CD⊥DE,∴AC⊥CD;(3)解:∠P的大小不会发生变化,理由如下:如图,连接PD并延长,∵CP平分∠OCD,PE平分∠BED,∴∠1= ∠OCD,∠2= ∠BED,即∠1+∠2= (∠OCD+∠BED),∵∠CDO=∠BED,∴∠OCD+∠BED=∠OCD+∠CDO=90°,∴∠1+∠2=45°,∵CD⊥DE,∴∠3+∠4=90°,∵∠5=∠3−∠1,∠6=∠4−∠2,∴∠P=∠5+∠6=∠3−∠1+∠4−∠2=∠3+∠4−(∠1+∠2)=45°,即∠P的大小是定值45°.【解析】【解答】解:(1)∵直线,CD⊥DE,∴∠EDB+∠BED=90°,∠CDO+∠EDB=90°,∴∠CDO=∠BED=50°,∵直线和直线互相垂直,∴∠OCD=40°;【分析】(1)首先根据题意得出∠EDB+∠BED=90°,∠CDO+∠EDB=90°,由此可以求出∠CDO度数,最后进一步求出答案即可;(2)由(1)可得∠CDO=∠BED,然后进一步利用“同位角相等,两直线平行”证明CD∥AC,最后利用平行线性质进一步求证即可;(3)连接PD并延长,首先根据角平分线性质得出∠1= ∠OCD,∠2= ∠BED,由此结合题意进一步得出∠1+∠2=45°,再根据三角形外角性质得出∠5=∠3−∠1,∠6=∠4−∠2,据此利用∠P=∠5+∠6进一步计算即可.10.(1)①如图1,已知,,可得 ________.②如图2,在①的条件下,如果平分,则 ________.③如图3,在①、②的条件下,如果,则 ________.(2)尝试解决下面问题:已知如图4,,,是的平分线,,求的度数.【答案】(1)60°;30°;60°(2)解:∵,∴,∵,∴ .∵是的平分线,∴∵,∴ .【解析】【解答】解:(1)①由两直线平行,内错角相等得到∠BCD=60°;②如果平分,则 =30°;③如果,则 90°- 60°.【分析】(1) ①根据两直线平行,内错角相等即可求解;②根据角平分线的定义求解即可;③根据互余的两个角的和等于90°,计算即可;(2)先根据两直线平行,同旁内角互补和角平分线的定义求出∠BCN的度数,再利用互余的两个角的和等于90°即可求出.11.如图所示,O为一个模拟钟面圆心,M、O、N 在一条直线上,指针OA、OB 分别从OM、ON 出发绕点 O 转动,OA 运动速度为每秒 30 ,OB 运动速度为每秒10 ,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:(1)如图①,若OA顺时针转动,OB逆时针转动, =________秒时,OA与OB第一次重合;(2)如图②,若OA、OB同时顺时针转动,①当 =3秒时,∠AOB=________ ;②当为何值时,三条射线OA、OB、ON其中一条射线是另两条射线夹角的角平分线?________【答案】(1)4.5(2);解:由题意知,∴∠BON=10t ,∠AON=180-30t (0≤t≤6),∠AON=30t-180(6<t≤12).当ON为∠AOB的角平分线时,有180-30t =10t ,解得:t =4.5;当OA为∠BON的角平分线时,10t =2(30t -180),解得:t =7.2;当OB为∠AON的角平分线时,30t -180=2×10t ,解得:t =18(舍去);∴经过4.5,7.2秒时,射线OA、OB、ON其中一条射线是另外两条射线夹角的平分线【解析】【解答】(1)解:若OA顺时针转动,OB逆时针转动,∴∠AOM+∠BON=180 ,∴,解得:;∴秒,OA与OB第一次重合;故答案为:4.52)解:①若OA、OB同时顺时针转动,∴,,∴;故答案为:120;【分析】(1)设t秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180 减去OA转动的角度,加上OB转动的角度,即可得到答案;②先用t的代数式表示∠BON和∠AON,然后分为三种情况进行讨论:当ON、OA、OB为角平分线时,分别求出t的值,即可得到答案.12.如图,∠AOB是平角,OD是∠AOC的角平分线,∠COE=∠BOE.(1)若∠AOC= 50 ,则∠DOE=________ ;(2)若∠AOC= 50 ,则图中与∠COD互补的角为________;(3)当∠AOC的大小发生改变时,∠DOE的大小是否发生改变?为什么?【答案】(1)(2)∠BOD(3)解:不发生改变,设∠AOC=2x .∵OD是∠AOC的平分线,∴∠AOD =∠COD=x,∴∠BOC=180 ̶2x,∵∠COE=∠BOE,∴∠COE==90 +x,∴∠DOE=90 +x ̶x=90【解析】【解答】(1)解:∵∠AOC=50 ,∴∠BOC=180 130 ,∵OD是∠AOC的角平分线,∴∠AOD=∠COD=25 ,∴∠COE=∠BOE= ,∴∠DOE=115 ;故答案为:90( 2 )解:由(1)知∠AOD=∠COD=25 ,∴∠BOD=155 ,∴图中与∠COD互补的角为∠BOD;故答案为:∠BOD【分析】(1)由∠AOC=50 ,得到∠AOD=∠COD=25 ,∠BOC=130 ,求得∠COE=∠BOE=115 .即可求出∠DOE;(2)由(1)得∠AOD=∠COD=25 ,则∠BOD=155 ,即可得到答案;(3)设∠AOC=2x,则∠AOD =∠COD =x,得到∠COE=90 +x,即可得到∠DOE=90 .。