spss使用教程均值比较和T检验
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS 16实用教程
第4章 均值比较和T检验
4.1
Means过程
4.2
单一样本T检验
4.3
两独立样本T检验
4.4
两配对样本T检验
在正态或近似正态分布的计量资料中,经 常在使用前一章统计描述过程分析后,还要进 行组与组之间平均水平的比较。本章介绍的T 检验方法,主要应用在两个样本间比较。如果 需要比较两组以上样本均数的差别,这时就不 能使用上述的T检验方法作两两间的比较。对 于两组以上的均数比较,可以使用第5章中介 绍的方差分析方法。
从两种情况下的T统计量计算公式可以看 出,如果待检验的两样本均值差异较小,t值 较小,则说明两个样本的均值不存在显著差异; 相反,t值越大,说明两样本的均值存在显著 差异。
4.3.2 SPSS中实现过程
研究问题 分析A、B两所高校大一学生的高考数学成
绩之间是否存在显著性差异。
实现步骤
表4-2 两所学校学生的高考数学成绩表
1.判断两个总体的方差是否相同
SPSS采用Levene F方法检验两总体方差 是否相同。
2.根据第一步的结果,决定T统计量和 自由度计算公式
(1)两总体方差未知且相同情况下,T统 计量计算公式为
(2)两总体方差未知且不同情况下,T统 计量计算公式为
T统计仍然服从T分布,但自由度采用修正 的自由度,公式为
本没有任何影响,两组样本个案数目可以不同,
个案顺序可以随意调整。
样本来自的两个总体应该服从正态分 布。
两独立样本T检验的零假设H0为两总体均 值之间不存在显著差异。
在具体的计算中需要通过两步来完成:第 一,利用F检验判断两总体的方差是否相同; 第二,根据第一步的结果,决定T统计量和自 由度计算公式,进而对T检验的结论作出判断。
在方差不相同的情况下,估计标准误差的 计算方法是
4.4 两配对样本T检验
4.4.1 统计学上的定义和计算公式
定义:两配对样本T检验是根据样本数据 对样本来自的两配对总体的均值是否有显著性 差异进行推断。一般用于同一研究对象(或两 配对对象)分别给予两种不同处理的效果比较, 以及同一研究对象(或两配对对象)处理前后 的效果比较。前者推断两种效果有无差别,后 者推断某种处理是否有效。
Means过程的计算公式为
研究问题 比较不同性别同学的数学成绩平均值和方
差。数据如表4-1所示。
表4-1
数学成绩表
性别
数学
Male
99
79
59
89
79
89
99
Female
88
54
56
23
实现步骤
图4-1 在菜单中选择“Means”命令
图4-2 Means对话框
图4-3 “Means:Options”对话框
两配对样本T检验的前提要求如下。 两个样本应是配对的。在应用领域中, 主要的配对资料包括:具有年龄、性别、体重、 病况等非处理因素相同或相似者。首先两个样 本的观察数目相同,其次两样本的观察值顺序 不能随意改变。 样本来自的两个总体应服从正态分布。
两配对样本T检验的零假设H0为两总体均 值之间不存在显著差异。
学校 清华 北大
数学 99 88 79 59 54 89 79 56 89 99 23 89 70 50 67 78 89 56
图4-6 “Independent-Samples T Test”对话框
图4-7 “Define Groups”对话框
4.3.3 结果和讨论
在分析结果中,SPSS还自动给出了两样本 均值差值的估计标准误差(Std. Error Difference)。在方差相同的情况下,估计标 准误差的计算方法是
4.4.2 SPSS中实现过程
4.1.3 结果和讨论
4.2 单一样本T检验
4.2.1 统计学上的定义和计算公式
定义:SPSS单样本T检验是检验某个变量 的总体均值和某指定值之间是否存在显著差异。 统计的前提样本总体服从正态分布。也就是说 单样本本身无法比较,进行的是其均数与已知 总体均数间的比较。
计算公式如下。 单样本T检验的零假设为H0总体均值和指 定检验值之间Leabharlann Baidu存在显著差异。 采用T检验方法,按照下面公式计算T统计量:
4.3 两独立样本T检验
4.3.1 统计学上的定义和计算公式
定义:所谓独立样本是指两个样本之间彼 此独立没有任何关联,两个独立样本各自接受 相同的测量,研究者的主要目的是了解两个样 本之间是否有显著差异存在。这个检验的前提 如下。
两个样本应是互相独立的,即从一总 体中抽取一批样本对从另一总体中抽取一批样
首先求出每对观察值的差值,得到差值序 列;然后对差值求均值;最后检验差值序列的 均值,即平均差是否与零有显著差异。如果平 均差和零有显著差异,则认为两总体均值间存 在显著差异;否则,认为两总体均值间不存在 显著差异。
SPSS将自动计算T值,由于该统计量服从 n−1个自由度的T分布,SPSS将根据T分布表给 出t值对应的相伴概率值。如果相伴概率值小 于或等于用户设想的显著性水平,则拒绝H0, 认为两总体均值之间存在显著差异。相反,相 伴概率大于显著性水平,则不拒绝H0,可以 认为两总体均值之间不存在显著差异。
4.1 Means过程
4.1.1 统计学上的定义和计算公式
定义:Means过程是SPSS计算各种基本描 述统计量的过程。与第3章中的计算某一样本 总体均值相比,Means过程其实就是按照用户 指定条件,对样本进行分组计算均数和标准差, 如按性别计算各组的均数和标准差。
用户可以指定一个或多个变量作为分组变 量。如果分组变量为多个,还应指定这些分组 变量之间的层次关系。层次关系可以是同层次 的或多层次的。同层次意味着将按照各分组变 量的不同取值分别对个案进行分组;多层次表 示将首先按第一分组变量分组,然后对各个分 组下的个案按照第二组分组变量进行分组。
4.2.2 SPSS中实现过程
研究问题 分析某班级学生的高考数学成绩和全国的
平均成绩70之间是否存在显著性差异。数据如 表4-1所示。
实现步骤
图4-4 “One-Sample T Test”设置框
图4-5 “One-Sample T Test:OPtions”对话框
4.2.3 结果和讨论
第4章 均值比较和T检验
4.1
Means过程
4.2
单一样本T检验
4.3
两独立样本T检验
4.4
两配对样本T检验
在正态或近似正态分布的计量资料中,经 常在使用前一章统计描述过程分析后,还要进 行组与组之间平均水平的比较。本章介绍的T 检验方法,主要应用在两个样本间比较。如果 需要比较两组以上样本均数的差别,这时就不 能使用上述的T检验方法作两两间的比较。对 于两组以上的均数比较,可以使用第5章中介 绍的方差分析方法。
从两种情况下的T统计量计算公式可以看 出,如果待检验的两样本均值差异较小,t值 较小,则说明两个样本的均值不存在显著差异; 相反,t值越大,说明两样本的均值存在显著 差异。
4.3.2 SPSS中实现过程
研究问题 分析A、B两所高校大一学生的高考数学成
绩之间是否存在显著性差异。
实现步骤
表4-2 两所学校学生的高考数学成绩表
1.判断两个总体的方差是否相同
SPSS采用Levene F方法检验两总体方差 是否相同。
2.根据第一步的结果,决定T统计量和 自由度计算公式
(1)两总体方差未知且相同情况下,T统 计量计算公式为
(2)两总体方差未知且不同情况下,T统 计量计算公式为
T统计仍然服从T分布,但自由度采用修正 的自由度,公式为
本没有任何影响,两组样本个案数目可以不同,
个案顺序可以随意调整。
样本来自的两个总体应该服从正态分 布。
两独立样本T检验的零假设H0为两总体均 值之间不存在显著差异。
在具体的计算中需要通过两步来完成:第 一,利用F检验判断两总体的方差是否相同; 第二,根据第一步的结果,决定T统计量和自 由度计算公式,进而对T检验的结论作出判断。
在方差不相同的情况下,估计标准误差的 计算方法是
4.4 两配对样本T检验
4.4.1 统计学上的定义和计算公式
定义:两配对样本T检验是根据样本数据 对样本来自的两配对总体的均值是否有显著性 差异进行推断。一般用于同一研究对象(或两 配对对象)分别给予两种不同处理的效果比较, 以及同一研究对象(或两配对对象)处理前后 的效果比较。前者推断两种效果有无差别,后 者推断某种处理是否有效。
Means过程的计算公式为
研究问题 比较不同性别同学的数学成绩平均值和方
差。数据如表4-1所示。
表4-1
数学成绩表
性别
数学
Male
99
79
59
89
79
89
99
Female
88
54
56
23
实现步骤
图4-1 在菜单中选择“Means”命令
图4-2 Means对话框
图4-3 “Means:Options”对话框
两配对样本T检验的前提要求如下。 两个样本应是配对的。在应用领域中, 主要的配对资料包括:具有年龄、性别、体重、 病况等非处理因素相同或相似者。首先两个样 本的观察数目相同,其次两样本的观察值顺序 不能随意改变。 样本来自的两个总体应服从正态分布。
两配对样本T检验的零假设H0为两总体均 值之间不存在显著差异。
学校 清华 北大
数学 99 88 79 59 54 89 79 56 89 99 23 89 70 50 67 78 89 56
图4-6 “Independent-Samples T Test”对话框
图4-7 “Define Groups”对话框
4.3.3 结果和讨论
在分析结果中,SPSS还自动给出了两样本 均值差值的估计标准误差(Std. Error Difference)。在方差相同的情况下,估计标 准误差的计算方法是
4.4.2 SPSS中实现过程
4.1.3 结果和讨论
4.2 单一样本T检验
4.2.1 统计学上的定义和计算公式
定义:SPSS单样本T检验是检验某个变量 的总体均值和某指定值之间是否存在显著差异。 统计的前提样本总体服从正态分布。也就是说 单样本本身无法比较,进行的是其均数与已知 总体均数间的比较。
计算公式如下。 单样本T检验的零假设为H0总体均值和指 定检验值之间Leabharlann Baidu存在显著差异。 采用T检验方法,按照下面公式计算T统计量:
4.3 两独立样本T检验
4.3.1 统计学上的定义和计算公式
定义:所谓独立样本是指两个样本之间彼 此独立没有任何关联,两个独立样本各自接受 相同的测量,研究者的主要目的是了解两个样 本之间是否有显著差异存在。这个检验的前提 如下。
两个样本应是互相独立的,即从一总 体中抽取一批样本对从另一总体中抽取一批样
首先求出每对观察值的差值,得到差值序 列;然后对差值求均值;最后检验差值序列的 均值,即平均差是否与零有显著差异。如果平 均差和零有显著差异,则认为两总体均值间存 在显著差异;否则,认为两总体均值间不存在 显著差异。
SPSS将自动计算T值,由于该统计量服从 n−1个自由度的T分布,SPSS将根据T分布表给 出t值对应的相伴概率值。如果相伴概率值小 于或等于用户设想的显著性水平,则拒绝H0, 认为两总体均值之间存在显著差异。相反,相 伴概率大于显著性水平,则不拒绝H0,可以 认为两总体均值之间不存在显著差异。
4.1 Means过程
4.1.1 统计学上的定义和计算公式
定义:Means过程是SPSS计算各种基本描 述统计量的过程。与第3章中的计算某一样本 总体均值相比,Means过程其实就是按照用户 指定条件,对样本进行分组计算均数和标准差, 如按性别计算各组的均数和标准差。
用户可以指定一个或多个变量作为分组变 量。如果分组变量为多个,还应指定这些分组 变量之间的层次关系。层次关系可以是同层次 的或多层次的。同层次意味着将按照各分组变 量的不同取值分别对个案进行分组;多层次表 示将首先按第一分组变量分组,然后对各个分 组下的个案按照第二组分组变量进行分组。
4.2.2 SPSS中实现过程
研究问题 分析某班级学生的高考数学成绩和全国的
平均成绩70之间是否存在显著性差异。数据如 表4-1所示。
实现步骤
图4-4 “One-Sample T Test”设置框
图4-5 “One-Sample T Test:OPtions”对话框
4.2.3 结果和讨论