光谱法仪器与光学器件

合集下载

仪器分析-光谱分析法概论(第十章)

仪器分析-光谱分析法概论(第十章)

三个主要过程:(1)能源提供能量;(2)能量与被测物
质相互作用;(3)产生被检测信号。
第一节
电磁辐射及其物质的相互作用
一、电磁辐射和电磁波谱
1. 波动性(干涉、衍射、反射和折射) 用波长(nm)、波数(cm-1)和频率(Hz)表示。 =c/ = 1 / = /c
波长是在波的传播路线上具有相同振动相位的相邻两点间的线性距
光学分析法光谱分析法非光谱分析法原子光谱分析法分子光谱分析法原子吸收光谱原子发射光谱原子荧光光谱x射线荧光光谱折射法圆二色性法x射线衍射法干涉法旋光法紫外光谱法红外光谱法分子荧光光谱法分子磷光光谱法核磁共振波谱法光谱分析法吸收光谱法发射光谱法原子光谱法分子光谱法原子发射原子吸收原子荧光x射线荧光原子吸收紫外可见红外可见核磁共振紫外可见红外可见分子荧光分子磷光核磁共振化学发光原子发射原子荧光分子荧光分子磷光x射线荧光化学发光第三节光谱分析仪器光学分析法三个基本过程
原 子 发 射
原 子 吸 收
原 子 荧 光
X 射 线 荧 光
紫 外 可 见
红 外 可 见
分 子 荧 光
分 子 磷 光
核 磁 共 振
化 学 发 光
原子光谱法 光谱分析法 吸收光谱法 原 子 吸 收 紫 外 可 见 红 外 可 见 核 磁 共 振
分子光谱法
发射光谱法
原 子 发 射
原 子 荧 光
分 子 荧 光
离;波数是每厘米长度中波的数目; 频率是每秒内的波动次数。
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小
2. 微粒性(光电效应、光的吸收和发射) 用每个光子具有的能量E作为表征。 E = h =h c / = h c h (普朗克常数) , h=6.6262×10-34J•s ※ 光量子的能量(E)与波长成反比, 而与频率(或波数) 成正比.

光谱分析仪器的组成部件

光谱分析仪器的组成部件

光谱分析仪器的组成部件光谱分析仪器光谱分析仪器是测量发光体的辐射光谱,常见的发射,吸收,荧光货散射的光谱分析,虽然仪器构造不同,但是组成的光谱仪大致相同的。

由五个部件组成:辐射源,单色器,试样的容器,检测器和信号处理器(读出装置)各类仪器的裣测器和信号处理器两个部分基本相同。

发射光谱法不需外加辐射源,因样品本身就是发射体,样品的容器就是电弧、火花或火焰。

吸收、荧光和散射光谱法都需辐射能源。

吸收光谱的光源辐射经波长选择器后通过样品,光源、样品和检测器都处于一条直线上;而对于荧光或敢射辑射,通常检测器的位置与光源具有一定的角度(90°)。

根据波长区域的不同,对各种部件的功能和性能总的要求大体类似,但是具体的要求又有所区别。

下面对这些部件分别进行介绍:一、辐射源光谱分析中,光源必须具有足够的功率并且要求稳定。

一般连续光源主要用于分子吸收法,线光源用于荧光、原子吸收和拉曼散射法。

1.紫外、可见和近红外辐射的连续光源(1)紫外连续光源。

紫外区的连续光源可在低气压下用电能激发氢或氘而获得,例如髙压氢灯,低压氢灯。

(2)可见连续光源。

例如钨灯,氙弧灯。

(3)红外连续光源。

例如Nemst灯,炽热的碳硅棒光源,白炽金属丝光源等。

2.线光原例如金属蒸气灯、空心阴极灯,激光器等。

二、单色器其主要作用是把多色辐射色散成只含限定波长区域的谱带。

紫外、可见和红外辐射用的单色器在机械结构方面相类似,都使用狭缝、透镜、反射镜、窗口和棱境(或光栅)。

但视所用波长区域的不同,用以制作这些部件的材料也有所区别。

在350nm以下通常采用石英棱镜,在350~2000nm范围内同样大小的玻璃棱镜的分辩本领比石英为优。

因为它的折射率随波长的改变值较大。

三、样品容器与单色器的光学元件一样,样品池必须用能透过所研究的光谱区域辐射的材料制成。

在紫外区(低于350nm)应采用石英或熔凝石英,这两种材料在可见区到大约3/xm 的红外区域也都是透明的。

第二章-光谱分析法概论

第二章-光谱分析法概论
E hν hc hcν λ
E单位:电子伏(eV)或焦耳(J) h -普朗克常数,h=6.626×10-34 J·s-1; C为光速。
例:波长为200nm的电磁波,其能量是多少电子伏特(eV)? 解:
电磁波谱
13
二、电磁辐射与物质相互作用
电磁辐射与物质的相互作用是复杂的物理现象。 涉及能量变化:吸收、发射; 不涉及能量变化:反射、散射、折射、衍射。
第二章 光谱分析法概论
1
本章主要内容:
一、电磁辐射及其与物质的相互作用 二、光学分析法的分类 三、光谱分析仪器
概述
光学分析法是基于电磁辐射与物质相互作用后,电磁辐 射发生某些变化或被作用物质的某些性质发生改变而产 生各种信号,利用这些信号对物质的性质、组成及结构 进行分析的一种方法。
光学分析法的原理主要包含三个过程: (1)能源提供能量; (2)能量与被测物质相互作用; (3)产生被检测的信号。
3
第一节 电磁辐射及其与物质的相互作用
4
电磁辐射的性质:波粒二象性
1.波动性
电磁辐射的传播以及反射、折射、散射、衍射及 干涉等现象表现出电磁辐射具有波的性质。
图2-1 电磁波的传播
6
波动性参数描述
(1)周期 T 相邻两个波峰或波谷通过某一固定点所需要的时间间隔称为周期。单 位:s(秒)。
(2)频率ν 单位时间内电磁波振动的次数称为频率。单位:Hz或周/秒。 ν =1/T
范围的谱带。
2.组成:
单色器
入射狭缝 色散元件 准直镜
棱镜 光栅
分光系统
出射狭缝
滤光器
47
(1)狭缝 狭缝为光的进出口, 狭缝宽窄直接影响分 光质量。狭缝过宽, 单色光不纯,将使吸 光度变大;过窄,则 通光量变小,灵敏度 降低。因此狭缝宽度 要适当。

教学课件第十二章光分析法导论

教学课件第十二章光分析法导论
一、光分析法及其特点
optical analysis and its characteristics
光分析法:基于电磁辐射能量与待测物质相互作用后 所产生的辐射信号与物质组成及结构关系所建立起来的分析 方法;
电磁辐射范围:射线~无线电波所有范围; 相互作用方式:发射、吸收、反射、折射、散射、干 涉、衍射等; 光分析法在研究物质组成、结构表征、表面分析等方 面具有其他方法不可区代的地位;
2024/8/2
非光谱分析法
光分析法 光谱分析法
折 射 法
圆 二 色 性 法
X 射 线 衍 射 法
干 涉 法
旋 光 法
2024/8/2
原子光谱分析法 分子光谱分析法
原 子 吸 收 光 谱
原 子 发 射 光 谱
原 子 荧 光 光 谱
X 射 线 荧 光 光 谱
分分核 紫红子子磁 外外荧磷共 光光光光振 谱谱光光波 法法谱谱谱
法法法
原 原原 X
子 子子 射

吸荧
线 荧
射 收光 光
原子光谱法
吸收光谱法
原紫红核 子外外磁 吸可可共 收见见振
2024/8/2
光谱分析法
紫红分分核化 外外子子磁学 可可荧磷共发 见见光光振光
分子光谱法
发射光谱法
原原分分 X 化
子子子子 射 学




线 荧

射光光光 光 光
四、各种光分析法简介
12.旋光法
溶液的旋光性与分子的非对称结构有密切关系,可利用旋 光法研究某些天然产物及配合物的立体化学问题,旋光计测定 糖的含量。
13.衍射法
X射线衍射:研究晶体结构,不同晶体具有不同衍射图。 电子衍射:电子衍射是透射电子显微镜的基础,研究物质 的内部组织结构。

光学器件与光学仪器

光学器件与光学仪器
光电探测器是一种光 学器件,主要功能是 将光信号转换为电信 号。通过光电效应, 光线射到光电探测器 表面的光敏元件上, 激发电子的跃迁,从 而产生电信号。
光电探测器的种类
光电二极管
常用于普通光电 探测
光电二极管 阵列
可以同时探测多 个位置的光信号
光电二极管 电路
用于信号处理和 放大
91%
光电倍增管
光学器件与光学仪器
汇报人:XX
2024年X月
目录
第1章 光学器件与光学仪器简介 第2章 透镜 第3章 反射镜 第4章 光栅 第5章 激光器件 第6章 光电探测器 第7章 总结与展望
● 01
第1章 光学器件与光学仪器 简介
光学器件的定义
光学器件是指利用光 学原理和技术,用以 收集、调制、传输、 放大、检测和处理光 信号的各种器件。它 们在光学领域发挥着 重要作用,种类繁多, 功能各异。
光学器件的分类
折射器件
如透镜、棱镜等
干涉器件
如干涉仪、衍射 光栅等
光栅器件
如光栅透镜、相 位光栅等
91%
反射器件
如镜面、反射镜 等
光学仪器的应用领域
生物医药
光学显微摄像头、 光学传感器等
显微镜
荧光显微镜、共 聚焦显微镜等
太阳能
太阳能光伏电池、 太阳能热发电站

91%
通信
激光通信、光纤 通信等
医疗领域
光学器件与光学仪器的未来发展方向
激光技术应用
激光在通信领域的重要性 激光切割与焊接技术
人工智能
智能光学器件研究 光学仪器智能化趋势
传感技术结合
光学传感器在环境监测中 的应用 光学传感技术发展趋势
91%

光学分析法---分子光谱分析法光学分析法---概述

光学分析法---分子光谱分析法光学分析法---概述
23
激光光源
激光光源具有单色性好,方向性强,高亮度及 相干性好等特点。可以大大提高光谱分析的灵 敏度和分辨率。常用的激光器有气体激光器、 固体激光器、染料激光器及半导体激光器。 作为一种新型光源应用于Raman光谱、荧光光 谱、发射光谱、Fourier变换红外光谱等领域。 气体激光器:如氦氖激光器(632.8nm)和氩离 子激光器(514.5nm,488.0nm) 固体激光器:红宝石(掺Cr3+的Al2O3)激光器 (694.3nm)和Nd:YAG(掺钕的钇铝石榴石)激光 器(1064nm)

26
棱镜单色器
棱镜单色器使用棱镜为分光元件。棱镜的作用是把 复合光分解为单色光。由于不同波长的光在同一介 质中具有不同的折射率,波长短的光折射率大,波 长长的光折射率小。因此,平行光经色散后按波长 顺序分解为不同波长的光,经聚焦后在焦面的不同 位置成像,得到按波长展开的光谱。 在400nm ~ 800nm波长范围内,玻璃棱镜比石英棱 镜的色散率大。使用玻璃棱镜更合适。但在200nm ~ 400nm的波长范围内,由于玻璃强烈地吸收紫外 光,无法采用,故只能采用石英棱镜。 由于介质材料的折射率n与入射光的波长有关,因 此棱镜给出的光谱与波长有关,是非均排光谱。
3
原子能级和分子能级
2p 分子的电子能级 2s 分子振动
1s
原子能级
分子能级
分子转动
4
光谱分析法分类
吸收光谱、发射光谱和荧光光谱 电磁波谱与跃迁能量 原子光谱和分子光谱 常用的光学分析法
5
发射光谱法和吸收光谱法
物质通过电致激发、热致激发或光致激发等激发 过程获得能量,变为激发态原子或分子M* ,当从 激发态过渡到低能态或基态时产生发射光谱。 M* M + hv 通过测量物质的发射光谱的波长和强度进行定性 和定量分析的方法叫做发射光谱分析法。 当物质所吸收的电磁辐射能与该物质的原子核、 原子或分子的两个能级间跃迁所需的能量满足△E = hv的关系时,将产生吸收光谱。 M + hv M* 通过测量物质的吸收光谱的波长和强度进行定性 和定量分析的方法叫做吸收光谱分析法。

仪器分析知识点总结大全

仪器分析知识点总结大全

仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。

以下是对常见仪器分析方法的知识点总结。

一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。

其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。

原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。

优点:选择性好、灵敏度高、分析范围广、精密度好。

局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。

(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。

原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。

其仪器包括激发光源、分光系统和检测系统。

优点:可同时测定多种元素、分析速度快、选择性好。

缺点:精密度较差、检测限较高。

(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。

原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。

仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。

应用广泛,可用于定量分析、定性分析以及化合物结构研究。

(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。

原理是:分子的振动和转动能级跃迁产生红外吸收。

仪器包括红外光源、样品室、单色器、检测器和记录仪。

常用于有机化合物的结构鉴定。

二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。

包括直接电位法和电位滴定法。

光学器件和光学仪器

光学器件和光学仪器

特点:反射镜具有较高的反射率、 稳定性和耐久性,能够实现精确的 成像和光束控制。
分束器
分束器是一种将光束分成多个部分的光学器件
分束器通常由反射镜、棱镜或光栅等光学元件组成
分束器广泛应用于光学通信、光谱分析、光学传感等领域
分束器的性能指标包括分束比、光谱范围和透射率等
滤光片
定义:滤光片是能够 通过特定波长范围的 光学器件,用于过滤 不需要的光线
智能化和自动化
光学器件和仪器的发展趋势正朝着 智能化和自动化方向发展,以提高 测量精度和效率。
智能化和自动化技术将有助于光学 器件和仪器在各个领域的应用,如 医疗、工业、科研等。
添加标题
添加标题
添加标题
添加标题
智能化和自动化技术将光学器件和 仪器与计算机技术相结合,实现自 动控制和数据处理。
光学器件和仪器的智能化和自动化 发展将促进相关产业的发展,提高 经济效益和社会效益。
应用:在摄影、显 微镜、望远镜等领 域广泛应用
反射镜
定义:反射镜是一种利用反射原理 成像的光学器件,其表面通常镀有 金属薄膜以提高反射率。
应用:反射镜广泛应用于光学仪器、 摄影、电影、电视、望远镜、显微 镜等领域,是光学系统中不可或缺 的重要元件之一。
添加标题
添加标题
添加标题
添加标题
分类:根据形状和用途的不同,反 射镜可分为球面反射镜、平面反射 镜、凹面反射镜和凸面反射镜等多 种类型。
医学诊断:光学器件如光谱仪、内窥镜等在医学诊断中发挥着重要作用, 可用于检测疾病和诊断病情。
通信技术:光学仪器和器件在光纤通信中扮演着关键角色,可以实现高速、 大容量的数据传输。
科学研究:光学仪器广泛应用于物理、化学、生物学等领域的研究,如光 谱仪、望远镜等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等强度的两条谱线(I,II)中,一条(II)的衍射最大 强度落在另一条的第一最小强度上时,两衍射图样中间的 光强约为中央最大的80%,在这种情况下,两谱线中央最大 距离即是光学仪器能分辨的最小距离(可分离的最小波长 间隔);
10:00:34
光栅的分辨率R
光栅的分辨率R 等于光谱级次(n)与光栅刻痕条数(N)
10:00:34
(4)聚焦透镜或凹面反射镜,使每个单色光束在单色器 的出口曲面上成像。
10:00:34
棱镜
棱镜对不同波长的光具有不同的折射率,波长长的光, 折射率小;波长短的光,折射率大。
平行光经过棱镜后按波长顺序排列成为单色光;经聚焦 后在焦面上的不同位置上成像,获得按波长展开的光谱;
棱镜的分辨能力取 决于棱镜的几何尺寸和 材料;
10:00:34
3.试样装置
光源与试样相互作用的场所 (1)吸收池
分辨率大小不仅与色散元件的性能有关,也取决于成 像的大小,因此希望采用较窄的进口狭缝。分辨率用来衡 量单色器能分开波长的最小间隔的能力;最小间隔的大小 用有效带宽表示:
S = DW D为线色散率的倒数;W为狭缝宽度;
10:00:34
在原子发射光谱分析中, 定性分析时,减小狭缝宽度,使相邻谱线的分辨率提高; 定量分析时,增大狭缝宽度,可使光强增加。 狭缝两边的边缘应锐利且位于同一平面上;
的乘积:
R nN
光栅越宽、单位刻痕数越多、R 越大。
宽度50mm,N=1200条/mm, 一级光谱的分辨率: R=1×50×1200=6×104
10:00:34
狭缝
单色器的进口狭缝起着单色器光学系统虚光源的作用 。复合光经色散元件分开后,在出口曲面上形成相当于每 条光谱线的像,即光谱。转动色散元件可使不同波长的光 谱线依次通过。
连续光源:在较大范 围提供连续波长的光源, 氢灯、氘灯、钨丝灯等;
线光源:提供特定波 长的光源,金属蒸气灯( 汞灯、钠蒸气灯)、空心 阴极灯、激光等;
10:00:34
2.单色器
单色器:获得高光谱纯度辐射束的装置,而辐射束的波长 可在很宽范围内任意改变;
主要部件: (1)进口狭缝; (2)准直装置(透镜或反射镜):使辐射束成为平行光线; (3)色散装置(棱镜、光栅):使不同波长的辐射以不同的 角度进行传播;
线色散率:用dl /dλ表示,两条相邻谱线在焦面上被分开
的距离对波长的变化率;
倒线色散率:用dλ/dl 表示,
10:00:34
(2)分辨率
相邻两条谱线分开程度的度量:
R b dn d
: 两条相邻谱线的平均波长;△λ:两条谱线的波长差;
b:棱镜的底边长度;n:棱镜介质材料的折射率。
分辨率与波长有关,长波的分辨率要比短波的分辨率小, 棱镜分离后的光谱属于非均排光谱。
当光线M1、M2、M3到达焦点 时,如果他们沿平面波阵面AKI 同相位,他们就会产生一个明亮 的光源相,只有JCK是光线波长 的整数倍时才能满足条件。
10:00:34
光栅的特性:
如果: d =AC=CE JC+CK=d (sinα+sinθ)=nλ
即光栅公式:d (sinα+sinθ)=nλ
α、θ分别为入射角和反射角;整数n为光谱级次; d为光 栅常数;
棱镜的光学特性可 用色散率和分辨率来表 征;
10:00:34
棱镜的特性与参数
(1)色散率
角色散率:用dθ/dλ表示,偏向角θ对波长的变化率;
d d
2sin
2
dn
1 n2 sin 2 d
2
棱镜的顶角越大或折射率越大,角色散率越大,分开两
条相邻谱线的能力越强,但顶角越大,反射损失也增大,通
常为60度角;
α角规定取正值,如果θ角与α角在光栅法线同侧, θ角取 正值,反之区负值;
当n=0时,零级光谱,衍射角与波长无关,无分光作用。
10:00:34
光栅的特性:
将反射光栅的线槽加工 成适当形状能使有效强度集中 在特定的衍射角上。
图所示反射光栅是由与光 栅表面成β角的小斜面构成(小 阶梯光栅,闪耀光栅),β角叫 做闪耀角。
定于光栅常数 d 和光谱级数n ,常数,不随波长改变,均排 光谱(优于棱镜之处)。
角色散率只与色散元件的性能有关;线色散率还与仪器 的焦距有关。
10:00:34
光栅的线色散率
dl d f n f n f d d d cos d
f 为会聚透镜的焦距。 光栅的分辨能力根据
Rakleigh准则来确定。
10:00:34
光栅
透射光栅,反射光栅; 光栅光谱的产生是多狭缝干 涉与单狭缝衍射共同作用的结果 ,前者决定光谱出现的位置,后 者决定谱线强度分布;
10:00:34
光栅的特性
ABCDE表示平面光栅的一段;
光 线 L 在 AJF 处 同 相 , 到 达 AKI 平面,光线L2M2要比光线L1M1多 通过JCK这段距离。FEI=2JCK, 其后各缝隙的光程差将以等差级 数增加,3JCK 、4JCK等。
10:00:34
一、光分析法仪器的基本流程
general process of spectrometry
光谱仪器通常包括五 个基本单元: 光源;单色器;样品;检 测器;显示与数据处理;
10:00:34
二、光分析法仪器的基本单元
main parts of spectrometry 1. 光源
依据方法不同,采用不同的光源:火焰、灯、激光、电 火花、电弧等;依据光源性质不同,分为:
选择适宜的闪耀角,可以 使90%的有效能量集中在单独 一级的衍射上。
10:00:34
光栅的参数:
光栅的特性可用色散率和分辨率来表征,当入射角不变 时,光栅的角色散率可通过对光栅公式求导得到:
d n d d cos
dθ/dλ为入射角对波长的变化率,即光栅的角色散率。 当θ很小,且变化不大时,cosθ ≈1,光栅的角色散率决
第十二章 光分析导论
an introduction to仪器的基本流程 general process of spectrometry 二、光谱仪器的基本器件 main parts of spectrometry
光谱法仪器与光 学器件
instruments for spectrometry and optical parts
相关文档
最新文档