指数函数知识点总结
指数函数知识点归纳总结(精华版)
指数函数知识点归纳总结一、指数的性质 (一)整数指数幂1.整数指数幂概念: ()010a a =≠ ()10,n na a n N a-*=≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +⋅=∈(2)()(),nm mn a a m n Z =∈(3)()()n n n ab a b n Z =⋅∈其中m n m nm n a a a a a --÷=⋅=, ()1nn n n nn a a a b a b b b --⎛⎫=⋅=⋅= ⎪⎝⎭.3.a 的n 次方根的概念一般地,如果一个数的n 次方等于a ()*∈>N n n ,1,那么这个数叫做a 的n 次方根,即: 若a x n =,则x 叫做a 的n 次方根, ()*∈>N n n ,1说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0<n a ;②若n 是偶数,且0>a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±)③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④()*∈>=N n n n ,100 0=;⑤式子na 叫根式,n 叫根指数,a 叫被开方数。
∴na =.(二)分数指数幂1.分数指数幂:()10250a a a ==>()12430a a a ==>即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质()nk kn aa =对分数指数幂也适用,例如:若0a >,则3223233a a a ⨯⎛⎫== ⎪⎝⎭,4554544a a a ⨯⎛⎫== ⎪⎝⎭, ∴23a =45a =.即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
指数函数知识点归纳
指数函数知识点归纳一、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。
需要注意的是,指数函数的底数\(a\)必须满足\(a > 0\)且\(a ≠ 1\)。
当\(a = 1\)时,\(y = 1^x = 1\),是一个常函数,不是指数函数;当\(a < 0\)时,比如\(a =-2\),那么当\(x =\frac{1}{2}\)时,\((-2)^{\frac{1}{2}}\)在实数范围内无意义。
二、指数函数的图像当\(a > 1\)时,指数函数\(y = a^x\)的图像是上升的,经过点\((0, 1)\)。
因为\(a > 1\),所以当\(x\)的值越来越大时,\(y\)的值增长得越来越快。
当\(0 < a < 1\)时,指数函数\(y = a^x\)的图像是下降的,同样经过点\((0, 1)\)。
此时,当\(x\)的值越来越大时,\(y\)的值越来越趋近于\(0\)。
例如,\(y = 2^x\)和\(y =(\frac{1}{2})^x\)的图像就分别呈现出上升和下降的趋势。
三、指数函数的性质1、定义域:\(R\)(即实数集)2、值域:\((0, +∞)\)这是因为对于任何实数\(x\),\(a^x\)的值总是大于\(0\)的。
3、过定点:\((0, 1)\)无论\(a\)的值是多少,当\(x = 0\)时,\(a^0 = 1\)。
4、单调性:当\(a > 1\)时,函数在\(R\)上单调递增;当\(0 < a < 1\)时,函数在\(R\)上单调递减。
四、指数运算的性质1、\(a^m × a^n = a^{m + n}\)例如:\(2^3 × 2^2 = 2^{3 + 2} = 2^5\)2、\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))比如:\(\frac{3^5}{3^2} = 3^{5 2} = 3^3\)3、\((a^m)^n = a^{mn}\)举例:\((2^2)^3 = 2^{2×3} = 2^6\)4、\(a^0 = 1\)(\(a ≠ 0\))任何非零数的\(0\)次幂都等于\(1\)。
【精】高中数学知识点总结-指数函数
指数函数
1.定义:形如y=a x(a>0,且a≠1)的函数叫做指数函数。
注:形如y=a x+b(b≠0)、y=ka x(k≠1)、y=a x+b(b≠0)等这类函数叫做指数型函数,不是指数函数。
y=a(0<a<1) y=a(a>1)
R
3.指数式比较大小
(1)底数相同、指数不同:利用函数的单调性解决。
(2)底数不同、指数相同:利用函数的图像解决。
(3)底数不同、指数不同:采用中间值法。
当两个指数式的底数一个大于1,一个大于0且小于1,以1为中间值,两个指数式分别与1比较;当两个指数式的底数都大于1或都大于0小于1,以一个指数式的底数为底,另一个指数式的指数为指数的指数式为中间值,两个指数式分别与该指数式比较。
例如:0.5π<π0.5;ππ>33;0.60.7<0.70.6
4.指数型复合函数
(1)定义域:见求定义域方法。
(2)值域:从内到外求值域。
(3)奇偶性:根据奇偶性定义判断。
(4)单调性:同增异减。
指数函数知识点总结
指数函数知识点总结指数函数是高中数学中的重要内容之一。
它是以底数为常数、指数为自变量的函数,具有独特的性质和应用。
本文将从定义、性质、图像和应用四个方面对指数函数进行总结。
一、定义指数函数是具有形式f(x) = a^x的函数,其中a为大于0且不等于1的常数。
指数函数是一种通过指数幂运算的方式获得函数值的数学函数。
二、性质1. 底数大于1时,指数函数是增函数;底数在0和1之间时,指数函数是减函数。
这意味着指数函数的图像可以分为两种情况:斜上升和斜下降。
2. 指数函数有定义域为全体实数,值域为正实数。
3. 指数函数的图像经过点(0,1),即a^0 = 1。
4. 指数函数的平行于x轴的渐近线为y = 0。
这是因为指数函数在负无穷大时趋于0。
5. 指数函数的性质可以推广到负指数,即f(x) = a^(-x)。
相同的性质适用于负指数函数。
三、图像指数函数的图像特点很明显。
当底数a大于1时,指数函数的图像会从左下方无限趋近于x轴。
当底数a在0和1之间时,指数函数的图像会从左上方无限趋近于x轴。
指数函数的图像在逼近x轴时变得非常陡峭。
这是因为随着指数不断增加,函数的增长速度越来越快。
四、应用指数函数在现实世界中有许多应用。
以下是一些常见的应用领域:1. 金融领域:指数函数在复利计算中发挥着重要作用。
复利是指在计算利息时将利息加入到本金中,进而计算下一阶段的利息。
指数函数可用于计算定期存款或贷款的未来价值或余额。
2. 自然科学:指数函数在自然科学中广泛应用,尤其是在物理学和化学方面。
例如,放射性衰变是一个指数运动,指数函数可用于描述放射性物质的衰变过程。
3. 经济学:指数函数在经济学中用于描述人口增长、市场价格和物品生产等。
经济学家常常使用指数函数来分析和预测经济趋势。
4. 生物学:指数函数在生物学中用于描述生物种群的增长。
当环境资源充足时,生物种群的增长可以被指数函数描述。
总结:指数函数是一种重要的数学函数,在各个领域都有重要的应用。
指数函数知识点总结
指数函数知识点总结指数函数是高中数学中的重要内容,也是数学课本上的一个章节。
本文将从定义、性质、图像、运算等方面对指数函数的知识点进行总结,以帮助读者更好地理解和掌握指数函数的相关内容。
一、定义指数函数是以一个正常数b(b>0,b≠1)为底的幂函数,函数公式为f(x)=b^x,其中b称为底数,x称为指数,f(x)称为指数函数。
指数函数在生活中的例子有人口增长、细菌繁殖等。
二、性质1.定义域:指数函数的定义域是所有实数。
2.值域:对于b>1的指数函数,值域为(0,+∞);对于0<b<1的指数函数,值域为(0,+∞)。
3.奇偶性:指数函数当底数为奇函数时为奇函数,当底数为偶函数时为偶函数。
4.单调性:对于b>1的指数函数,其在定义域上是增函数;对于0<b<1的指数函数,其在定义域上是减函数。
5.渐近线:指数函数没有水平渐近线,但有垂直渐近线x=0。
6.交点与性质:当x=0时,指数函数的值为1,表示该点在y轴上;当b>1时,指数函数经过(1,b)点,当0<b<1时,指数函数经过(1,1/b)点。
三、图像1.b>1的指数函数的图像:在x轴左侧(负半轴)逐渐趋于0,在x轴右侧(正半轴)逐渐增大,图像位于y轴的上方。
2.0<b<1的指数函数的图像:在x轴左侧(负半轴)逐渐减小,在x轴右侧(正半轴)逐渐趋于0,图像位于y轴的下方。
四、运算1.指数函数的乘法法则:b^m*b^n=b^(m+n),底数相同的指数函数相乘时,指数相加。
2.指数函数的除法法则:(b^m)/(b^n)=b^(m-n),底数相同的指数函数相除时,指数相减。
3.指数函数的幂次法则:(b^m)^n=b^(m*n),指数函数的幂次公式,即指数的指数等于底数的两个指数相乘。
五、常用函数2. 对数函数:对数函数是指指数函数的反函数,记作y = logb(x),其中b为底数,x为指数。
指数函数和对数函数知识点总结
指数函数和对数函数知识点总结一、指数函数:1.基本概念:指数函数是形如y=a^x(a>0,且a≠1)的函数,其中a称为底数,x 称为指数,a^x称为底数a的x次幂。
2.基本性质:(1)a^0=1,任何数的0次幂等于1;(2)a^x*a^y=a^(x+y),相同底数的指数幂相乘,底数不变,指数相加;(3)a^x÷a^y=a^(x-y),相同底数的指数幂相除,底数不变,指数相减;(4)(a^x)^y=a^(x*y),指数幂的乘积再乘方,指数相乘;(5)a^(-x)=1/(a^x),任何数的负指数满足倒数规律。
3.常见指数函数:(1)指数函数y=2^x:以2为底的指数函数,可以用来描述2的x 次幂关系,是一种常见的指数型增长函数,图像逐渐向上凸起。
二、对数函数:1.基本概念:对数函数是指y=loga(x),其中a>0,且a≠1,a称为底数,x称为真数,y称为以a为底x的对数。
2.基本性质:(1)loga(1)=0,底数为任何正数时,1的对数都是0;(2)loga(a)=1,底数为任何正数时,底数的对数都是1;(3)loga (x*y) = loga(x) + loga(y),对数相乘,真数取乘积,对数相加;(4)loga (x/y) = loga(x) - loga(y),对数相除,真数取商,对数相减;(5)loga(x^k) = k * loga(x),对数乘方,真数取底数的k次方,对数乘以指数。
3.常见对数函数:(1)常用对数函数:y=log10(x),其中底数为10,对数函数可以简写为y=log(x)。
常用对数函数是以10为底的对数函数,输入一个正实数x,输出满足10^y=x的y值。
(2)自然对数函数:y=ln(x),其中底数为e。
自然对数函数是以e 为底的对数函数,输入一个正实数x,输出满足e^y=x的y值。
三、指数函数与对数函数的关系:四、指数函数与对数函数的应用:1.科学中的指数增长:指数函数常常用于描述原子衰变、细胞分裂和放射性物质的衰变等过程。
指数函数知识点总结
指数函数知识点总结1. 什么是指数函数?指数函数是数学中常见的一类函数,它以底数为基准,将指数作为自变量,得到相应的函数值。
指数函数可以用数学表达式y = a^x来表示,其中a表示底数,x表示指数,y表示函数值。
2. 指数函数的特点指数函数具有以下几个特点:•当底数a大于 1 时,函数呈递增的趋势;当底数a介于 0 和 1 之间时,函数呈递减的趋势。
•指数函数图像总是过点(0, 1),因为a^0 = 1。
•指数函数的图像在x轴的正半轴上是渐进于 0 的,即函数值无限趋近于 0。
•当指数x为负数时,指数函数的值可以通过倒数得到,即a^(-x) =1 / a^x。
3. 指数函数的基本性质指数函数具有以下几个基本性质:•指数函数在自变量为 0 时取值为 1,即a^0 = 1。
•当指数x为正整数时,指数函数表示连乘,即a^x = a * a * ... * a(共x个a相乘)。
•当指数x为负整数时,指数函数表示连除,即a^(-x) = 1 / (a * a * ... * a)(共x个a相除)。
•指数函数具有指数与对数的互逆性质,即loga(a^x) = x和a^(loga(x)) = x。
•当指数函数的底数a大于 1 时,函数图像与x轴交于点(0, 0);当底数a介于 0 和 1 之间时,函数图像与y轴交于点(0, 0)。
4. 指数函数的图像变化规律指数函数的图像变化规律取决于底数a的大小,具体如下:•当a > 1时,指数函数图像从左下方逐渐增加到右上方。
•当0 < a < 1时,指数函数图像从左上方逐渐减小到右下方。
•当a = 1时,指数函数恒为y = 1,即一条水平直线。
5. 指数函数的应用指数函数在实际生活和科学研究中有广泛的应用,以下列举几个常见的应用场景:•金融领域:指数函数在复利计算中起到重要的作用,可以用来计算投资收益、贷款利息等。
•物理学:指数函数可以描述某些物理量的增长或衰减规律,如放射性物质的衰变、电路中的电荷充放电过程等。
指数函数知识点
指数函数知识点专题复习一、基础知识 1.指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. 形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数. 2.指数函数y =a x (a >0,且a ≠1)的图象与性质二、常用结论指数函数图象的特点(1)指数函数的图象恒过点(0,1),(1,a ),⎪⎭⎫⎝⎛-a 1,1,依据这三点的坐标可得到指数函数的大致图象. (2)函数y =a x 与y =xa ⎪⎭⎫⎝⎛1(a >0,且a ≠1)的图象关于y 轴对称.(3)底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”. 三、考点解析考点一 指数函数的图象及应用例、(1)函数f (x )=21-x 的大致图象为( )(2)若函数y=|3x-1|在(-∞,k]上单调递减,则k的取值范围为________.变式练习1.[变条件]本例(1)中的函数f(x)变为:f(x)=2|x-1|,则f(x)的大致图象为()2.[变条件]本例(2)变为:若函数f(x)=|3x-1|-k有一个零点,则k的取值范围为________.3.若函数y=21-x+m的图象不经过第一象限,求m的取值范围.考点二指数函数的性质及应用考法(一)比较指数式的大小例、已知a=243,b=425,c=2513,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b考法(二)解简单的指数方程或不等式例、若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为________.[解题技法]简单的指数方程或不等式问题的求解策略:(1)a f(x)=a g(x)⇔f(x)=g(x).(2)a f(x)>a g(x),当a>1时,等价于f(x)>g(x);当0<a<1时,等价于f(x)<g(x).(3)解决简单的指数不等式的问题主要利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.考法(三)指数型函数性质的综合问题例、已知函数f(x)=34231+-⎪⎭⎫⎝⎛xax(1)若a=-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.[解题技法]与指数函数有关的复合函数的单调性:形如函数y=a f(x)的单调性,它的单调区间与f(x)的单调区间有关:(1)若a>1,函数f(x)的单调增(减)区间即函数y=a f(x)的单调增(减)区间;(2)若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间.即“同增异减”. 跟踪训练 1.函数y =12221-+⎪⎭⎫ ⎝⎛x x 的值域是( )A .(-∞,4)B .(0,+∞)C .(0,4]D .[4,+∞) 2.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a 3.设函数f (x )=x 2-a与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =1.01⎪⎭⎫⎝⎛a 的大小关系是( ) A .M =N B .M ≤N C .M <N D .M >N4.已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.课后作业1.函数f (x )=1-e |x |的图象大致是( )2.已知函数f (x )=4+2a x-1的图象恒过定点P ,则点P 的坐标是( )A .(1,6)B .(1,5)C .(0,5)D .(5,0) 3.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a 4.函数f (x )=xx +-⎪⎭⎫⎝⎛221的单调递增区间是( )A.]21,(-∞ B.]21,0[ C.)21[∞+, D.]121[, 5.函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <06.已知函数f (x )=⎩⎪⎨⎪⎧1-2-x ,x ≥0,2x -1,x <0,则函数f (x )是( )A .偶函数,在[0,+∞)上单调递增B .偶函数,在[0,+∞)上单调递减C .奇函数,且单调递增D .奇函数,且单调递减7.已知a =3.331⎪⎭⎫ ⎝⎛,b =9.331⎪⎭⎫⎝⎛,则a ________b .(填“<”或“>”)8.函数y =x ⎪⎭⎫ ⎝⎛41-x⎪⎭⎫⎝⎛21+1在[-3,2]上的值域是________.9.已知函数f (x )=a x +b (a >0,且a ≠1)的定义域和值域都是[-1,0],则a +b =________.10.已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.11.已知函数f (x )=ax⎪⎭⎫⎝⎛21,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.12.已知函数f (x )=ax -⎪⎭⎫⎝⎛32.(1)求f (x )的单调区间;(2)若f (x )的最大值是94,求a 的值.。
新高一数学指数函数知识点
新高一数学指数函数知识点一、指数函数的定义指数函数是指形如f(x) = a^x的函数,其中a是一个正实数且a≠1。
二、指数函数的性质1. 定义域:指数函数的定义域为实数集R。
2. 值域:当a>1时,指数函数的值域为(0, +∞);当0<a<1时,指数函数的值域为(0, 1)。
3. 增减性:当a>1时,指数函数是严格单调递增函数;当0<a<1时,指数函数是严格单调递减函数。
4. 连续性:指数函数在其定义域上连续。
5. 零点:指数函数在x=0处有且仅有一个零点,即a^0 = 1。
6. 渐近线:当x趋近负无穷时,指数函数趋近于0;当x趋近正无穷时,指数函数趋近于正无穷。
三、指数函数的图像1. 当a>1时,指数函数的图像是逐渐上升的曲线,经过点(0,1)。
2. 当0<a<1时,指数函数的图像是逐渐下降的曲线,经过点(0,1)。
3. 指数函数的图像在y轴上没有与x轴交点。
四、指数函数的基本性质1. a^m * a^n = a^(m+n):指数函数的乘法法则。
2. (a^m)^n = a^(m*n):指数函数的指数乘法法则。
3. a^m / a^n = a^(m-n):指数函数的除法法则。
4. (a*b)^m = a^m * b^m:指数函数的乘方法则。
5. a^0 = 1:任何正实数的0次幂等于1。
五、指数方程与指数不等式1. 指数方程:形如a^x = b的方程,其中a和b是已知的正实数。
解指数方程的基本步骤是取对数,将指数方程转化为对数方程求解。
2. 指数不等式:形如a^x > b或a^x < b的不等式,其中a和b是已知的正实数。
解指数不等式的基本步骤是通过对数性质将不等式转化为对数不等式,并得到解集合。
六、指数函数的应用1. 复利问题:指数函数常用于复利计算中。
例如,计算存款在多年后的本息和。
2. 指数增长问题:指数函数也可用于描述人口增长、细菌繁殖等指数型增长问题。
(完整版),指数函数讲义经典整理(含答案),推荐文档
1指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数叫做指数函数,其中是自变量,函数的定义域是(01)xy a a a =>≠且x R 知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则,01c d a b <<<<<在轴右侧,图像从下到上相应的底数也由小变大,y 在轴左侧,图像从上到下相应的底数也由小变大y 即无论在轴左侧还是右侧,底数按逆时针方向变大y 在第一象限内,“底大图高”知识点4:指数式、指数函数的理解2① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像等1223,,21xx y y x y y =⋅===-函数均不符合形式,因此,它们都不是指数函数()01x y a a a =>≠且⑤ 画指数函数的图像,应抓住三个关键点:x y a =()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明.专题:计算题.(1)欲求m的值,只须根据f(4)=的值,当x=4时代入f(x)解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f(x)与f(﹣x)的关系,即可得到答案;(3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f(x1)>f(x2),即可.解答:解:(1)因为,所以,所以m=1.(2)因为f(x)的定义域为{x|x≠0},又,所以f(x)是奇函数.(3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f(x1)>f(x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.3指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,4故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.5分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n 为奇数时,=×1=;n 为偶数时,=+f ()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.6题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.7点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;8解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a (﹣)+b (﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b (﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;9(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),10故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为11t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,12∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).13(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数14(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.15(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.16解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.1718。
指数函数知识点总结
指数函数知识点总结指数函数是高中数学中的重要知识点之一,也是解决实际问题的重要数学模型之一。
它以指数为自变量的函数,表达式为y=a^x,其中a为底数,x为指数,y为函数值。
一、指数函数的定义指数函数是自变量的指数变化与与其函数值的关系。
指数函数的定义域是实数集R,值域是正实数集,即f(x)>0。
二、指数函数的图像1. 底数大于1的指数函数:当a>1时,指数函数的图像在x轴右侧向上增长,且逐渐加速增长,图像开口向上;2. 0<a<1的指数函数:当0<a<1时,指数函数的图像在x轴右侧向上增长,但增长速度逐渐减缓,图像开口向下;3. 底数等于1的指数函数:当a=1时,指数函数的图像是一条平行于x轴的直线,函数值恒为1。
三、指数函数的性质1. 指数函数的奇偶性:当底数为负数时,指数函数是偶函数;当底数为正数时,指数函数是奇函数;2. 指数函数的单调性:当底数大于1时,指数函数是增函数;当0<a<1时,指数函数是减函数;3. 指数函数的性质:指数函数的函数值不会等于0,即f(x)≠0;指数函数关于y轴对称,即关于y轴对称轴反射对称;4. 指数函数的极限:当x趋于无穷大时,指数函数以无穷大增长,并没有上界;当x趋于负无穷大时,指数函数趋于0。
四、指数函数与直线的相交性质1. 幂函数与指数函数的相交性质:幂函数y=x^n与指数函数y=a^x的图像在第一象限有且只有一个交点;2. 幂函数与指数函数的比较性质:当x趋于无穷大时,指数函数的增长速度快于幂函数;当x趋于负无穷大时,指数函数的增长速度慢于幂函数。
五、指数函数的应用1. 复利问题:指数函数可以用来解决复利问题,如存款定期利息的计算等;2. 比较问题:指数函数可以用来比较两个量的大小,特别是涉及到增长速度的比较问题;3. 自然现象的描述:指数函数可以用来描述一些自然现象,如人口增长、物种灭绝等;4. 经济问题:指数函数可以用来描述经济增长、货币贬值等问题。
指数函数知识点的总结
指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a nn=,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =;指数函数·例题解析【例1】求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3练习:(1)412-=x y ; (2)||2()3x y =; (3)1241++=+x x y ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0), 则得b <a <1<d <c .练习:指数函数① ② 满足不等式 ,则它们的图象是( ).【例3】比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4.54.1________3.73.6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).练习: (1)1.72.5 与 1.73 ( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3 与 0.93.1 (4)5.31.2和7.20.2【例4】解比较大小与>且≠,>.当<<,∵>,>,a a a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>a a a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】作出下列函数的图像:(1)y (2)y 22x ==-,()121x +(3)y =2|x-1| (4)y =|1-3x |解 (1)y (264)(0)(11)y 1=的图像如图.-,过点,及-,.是把函数=的图像向左平移个单位得到的.()()1212121x x +解 (2)y =2x -2的图像(如图2.6-5)是把函数y =2x 的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y =2|x|的图像,再把y =2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6).解 (4)作函数y =3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y =-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8a C 、4a D 、2a3、若1,0a b ><,且bba a-+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C、a <D、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、1(1)2x + B 、14x + C 、2x D 、2x -6、下列2()(1)x xf x a a-=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( ) A 、1个 B 、2个 C 、3个 D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 9、函数121x y =-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 11、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]na b - D 、(1%)na b -二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若103,104xy==,则10x y-= 。
指数函数知识点归纳
指数函数知识点归纳指数函数是数学中的一种常见函数形式,具有广泛的应用领域。
它的形式为f(x) = a^x,其中a为常数且大于0且不等于1,x为自变量。
一、指数函数的特点指数函数与其他类型的函数相比,具有以下几个特点:1. 必过点(0,1):指数函数在x=0时,其函数值为1,即f(0) = 1,这是指数函数的一个重要特点。
2. 函数值的单调性:当a>1时,指数函数是递增函数;当0 < a < 1时,指数函数是递减函数。
3. 趋向于正无穷或负无穷:当x趋向于正无穷时,指数函数f(x)也会趋向于正无穷;当x趋向于负无穷时,指数函数f(x)会趋向于0。
二、指数函数的图像指数函数的图像呈现出与其他类型函数不同的特点:1. 当a>1时,指数函数的图像在y轴右侧逐渐升高,呈指数增长的趋势。
2. 当0 < a < 1时,指数函数的图像在y轴右侧逐渐下降,呈指数衰减的趋势。
3. 当a=1时,指数函数变为常数函数,图像平行于x轴,函数值恒为1。
三、指数函数的性质与运算指数函数具有一系列的性质和运算法则,常见的有:1. 指数函数的性质:指数函数满足指数与对数的互逆性质,即a^log_a(x) = x,以及log_a(a^x) = x。
2. 指数函数的运算法则:当a和b为正数且不等于1时,有以下运算法则:a^m * a^n = a^(m+n)(a^m)^n = a^(m*n)a^m / a^n = a^(m-n)四、指数函数的应用指数函数在科学、工程和经济学等领域中有着广泛的应用。
以下是一些常见的应用:1. 天文学领域:指数函数常用于描述物体的衰减和增长过程,例如射电活动的衰减、星体的亮度变化等。
2. 经济学领域:经济增长模型中,GDP的增长通常符合指数函数的模型,利用指数函数可以对经济发展进行预测和研究。
3. 生物学领域:生物体的遗传DNA的复制、细胞数量的增长等也可使用指数函数进行描述。
指数函数知识点归纳总结(精华版)
2 ar s ars a 0, r, s Q
3abr arbr a 0, b 0, r Q
说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;
(2)0 的正分数指数幂等于 0,0 的负分数指数幂没意义。
二、指数函数 1.指数函数定义: 一般地,函数 y ax ( a 0 且 a 1)叫做指数函数,其中x 是自变量, 函数定义域是R .
指数函数知识点归纳总结
一、指数的性质
(一)整数指数幂
1.整数指数幂概念:
a0 1a 0
an 1 a 0, n N an
2. 整数指数幂的运算性质:(1) am an amn m, n Z
பைடு நூலகம்
2 am n amn m, n Z
3
abn an bn n Z
其中am an am a n amn ,
a n b
a b1
n
an
bn
an bn
.
3.a 的 n 次方根的概念
一般地,如果一个数的n 次方等于a n 1,n N ,那么这个数叫
做 a 的 n 次方根,
即: 若 xn a ,则 x 叫做a 的 n 次方根, n 1,n N
说明:①若 n 是奇数,则 a 的 n 次方根记作n a ; 若 a 0 则 n a 0 , 若ao则na 0; ②若 n 是偶数,且 a 0 则 a 的正的n 次方根记作n a , a 的 负的n 次方根,记作: n a ;(例如:8 的平方根
数幂的形式。
规定:
m
正数的正分数指数幂的意义是a n n am a 0,m, n N, n 1 ;
正数的负分数指数幂的意义
m
是 a n
指数函数与对数函数知识点总结
指数函数与对数函数知识点总结一、指数函数的定义与性质1. 定义指数函数是以底数a(a>0且a≠1)为底的函数,一般表示为y=a^x,其中a是底数,x是指数,y是函数值。
2. 性质⑴当a>1时,指数函数是递增函数,图像上开;当0<a<1时,指数函数是递减函数,图像下降。
⑵当x=0时,a^0=1。
⑶当a>1时,随着x的增大,函数值y=a^x也会增大;当0<a<1时,随着x的增大,函数值y=a^x会减小。
3. 图像当底数a>1时,指数函数的图像是递增的曲线,图像上翘;当0<a<1时,指数函数的图像是递减的曲线,图像下降。
4. 应用指数函数在科学计算、生物增长、财经复利、工程技术等领域都有着重要的应用。
例如在计算机科学中,指数函数常用于指数衰减算法、指数增长算法等;在生物学中,指数函数常用于描述生物的增长规律;在金融领域中,指数函数用以描述利息的复利增长等。
二、对数函数的定义与性质1. 定义对数函数是指数函数的逆运算,一般表示为y=log_a(x),其中a是底数,x是真数,y是对数。
2. 性质⑴对数函数的定义域为x>0,值域为实数集。
⑵对数函数的图像是单调递增的曲线,在0处没有定义。
⑶特殊情况下,当底数a=10时,我们称为常用对数函数,一般表示为y=log(x);当底数a=e时,我们称为自然对数函数,一般表示为y=ln(x)。
3. 图像对数函数的图像是单调递增的曲线,图像在x轴的右侧。
4. 应用对数函数在科学计算、信息论、统计学、工程技术等领域都有着广泛应用。
例如在信息论中,对数函数用于计算信息量、信息熵等;在统计学中,对数函数用于描述正态分布、伯努利分布等;在工程技术中,对数函数用于解决指数增长问题、指数衰减问题等。
三、指数函数与对数函数的关系1. 反函数关系指数函数与对数函数是一对反函数,它们的定义域和值域互为对方的值域和定义域。
具体而言,对数函数y=log_a(x)中,x=a^y。
高一指数函数整理知识点
高一指数函数整理知识点1. 指数函数的定义和性质- 指数函数的定义:指数函数是形如 f(x) = a^x 的函数,其中a 是一个实数且 a > 0,a ≠ 1,x 是实数变量。
- 指数函数的基本性质:- 当 a > 1 时,指数函数是递增的,图像从左下方向右上方延伸;- 当 0 < a < 1 时,指数函数是递减的,图像从左上方向右下方延伸;- 指数函数的图像都经过点 (0, 1),因为 a^0 = 1;- 指数函数在定义域内的值都是正数。
2. 指数函数的图像和特殊函数- 幂函数:指数函数中 a 为正整数时,被称为幂函数。
幂函数的图像是一条通过点 (0, 1) 的递增曲线。
- 指数函数的特殊情况:- 当 a = e (自然对数的底)时,指数函数称为自然指数函数,用符号 y = e^x 表示。
自然指数函数在数学和科学中具有重要的应用。
- 当 a = 2 时,指数函数称为二次函数,用符号 y = 2^x 表示。
二次函数是一种特殊的指数函数。
3. 指数函数的图像变化- 缩放变化:当 a > 1 时,指数函数的图像在 x 轴方向上收缩;当 0 < a < 1 时,指数函数的图像在 x 轴方向上拉伸。
- 平移变化:加入常数 d 时,指数函数的图像在 y 轴方向上平移 d 个单位,表示为 f(x) = a^x + d。
- 反转变化:若 a < 1,则指数函数的图像关于 y = 0 轴对称。
4. 指数函数的求导- 求导规则:对于指数函数 f(x) = a^x,其导数为 f'(x) = (ln a)* a^x。
- 导数性质:指数函数的导数是它自身的实数倍数,并且导数大于零,说明指数函数是递增的。
5. 指数函数的应用- 复利问题:指数函数常常用于解决与复利计算相关的问题。
复利公式为 A = P(1 + r/n)^(nt),其中 A 是最终金额,P 是本金,r是年利率,n 是计息次数,t 是时间。
指数函数与对数函数知识点总结
指数函数与对数函数知识点总结
指数函数知识点:
定义:对于任意实数x和正数a(a≠1),函数y=a^x称为指数函数。
性质:指数函数的图象总是通过点(0,1)。
指数函数在其定义域内是单调的。
当a>1时,函数是增函数;当0<a<1时,函数是减函数。
指数函数的值域是(0, +∞)。
指数函数的导数:如果y=a^x,则
y'=a^x * lna(a>0,a≠1)。
对数函数知识点:
定义:如果a^x=N(a>0,a≠1),则称x为以a为底N的对数,记作x=log_aN。
性质:对数的定义域是正数集,值域是实数集。
以a 为底的对数,a>0且a≠1。
对数的换底公式:log_bN = log_aN /
log_aA。
对数的运算性质:log_a(MN) = log_aM + log_aN;
log_a(M/N) = log_aM - log_aN;log_aM^n = n * log_aM。
对数函数的导数:如果y=log_ax,则y'=1/(x * lna)(a>0,a≠1)。
指数函数与对数函数之间的关系:
指数函数和对数函数是互为反函数的关系,即如果y=a^x,则
x=log_ay。
指数函数与对数函数之间可以通过换底公式相互转换。
这些是指数函数与对数函数的一些基本知识点,掌握这些知识点对于理解它们在数学中的应用非常有帮助。
(完整版)指数函数知识点总结
指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)ra ·sr raa += ),,0(R s r a ∈>;(2)rss r a a =)( ),,0(R s r a ∈>; (3)sr r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;指数函数·例题解析【例1】求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3练习:(1)412-=x y ; (2)||2()3x y =; (3)1241++=+x x y ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0), 则得b <a <1<d <c . 练习:指数函数① ②满足不等式,则它们的图象是( ).【例3】比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4.54.1________3.73.6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 练习: (1)1.72.5与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3与 0.93.1(4)5.31.2和7.20.2【例4】解比较大小与>且≠,>.当<<,∵>,>,aa a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>a a a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】作出下列函数的图像:(1)y (2)y 22x ==-,()121x +(3)y =2|x-1| (4)y =|1-3x |解 (1)y (264)(0)(11)y 1=的图像如图.-,过点,及-,.是把函数=的图像向左平移个单位得到的.()()1212121x x+ 解 (2)y =2x -2的图像(如图2.6-5)是把函数y =2x 的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y =2|x|的图像,再把y =2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6).解 (4)作函数y =3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y=-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x 函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且b ba a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>aB 、2<aC 、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、1(1)2x + B 、14x + C 、2x D 、2x - 6、下列2()(1)x xf x a a -=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 9、函数121x y =-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 11、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]na b - D 、(1%)na b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若103,104xy==,则10x y-= 。
指数函数知识点总结
指数函数知识点总结指数函数(一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时, 2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)·;(2);(3).(二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1 0<a<1 定义域 R 定义域 R 值域y>0 值域y>0 在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;指数函数·例题解析【例1】求下列函数的定义域与值域:解 (1)定义域为x∈R且x≠2.值域y>0且y≠1. (2)由2x+2-1≥0,得定义域{x|x≥-2},值域为y≥0. (3)由3-3x-1≥0,得定义域是{x|x≤2},∵0≤3-3x-1<3,练习:(1);(2);(3);【例2】指数函数y=ax,y=bx,y=cx,y=dx的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C. b<a<1<d<cD.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.练习:指数函数①②满足不等式 ,则它们的图象是 ( ).【例3】比较大小:(3)4.54.1________3.73.6 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y1=4.5x,y2=3.7x的图像如图2.6-3,取x=3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6.说明如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).练习:(1)1.72.5 与 1.73( 2 )与 ( 3 ) 1.70.3 与 0.93.1(4)和【例5】作出下列函数的图像:(3) y=2|x-1| (4)y=|1-3x| 解 (2)y=2x-2的图像(如图2.6-5)是把函数y=2x的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y=2|x|的图像,再把y=2|x|的图像向右平移1个单位,就得y=2|x-1|的图像(如图2.6-6).解 (4)作函数y=3x的图像关于x轴的对称图像得y=-3x的图像,再把y=-3x的图像向上平移1个单位,保留其在x轴及x轴上方部分不变,把x轴下方的图像以x轴为对称轴翻折到x轴上方而得到.(如图2.6-7) (1)判断f(x)的奇偶性;(2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R.</PGN0095A.TXT/PGN> ∴函数f(x)为奇函数.即f(x)的值域为(-1,1). (3)设任意取两个值x1、x2∈(-∞,+∞)且x1<x2.f(x1)-f(x2) 单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简,结果是()A、 B、 C、 D、 2、等于()A、 B、 C、 D、 3、若,且,则的值等于()A、 B、 C、 D、2 4、函数在R上是减函数,则的取值范围是()A、 B、 C、 D、 5、下列函数式中,满足的是( ) A、 B、 C、 D、 6、下列是()A、奇函数B、偶函数C、非奇非偶函数D、既奇且偶函数 7、已知,下列不等式(1);(2);(3);(4);(5)中恒成立的有()A、1个B、2个C、3个D、4个 8、函数是()A、奇函数B、偶函数C、既奇又偶函数D、非奇非偶函数 9、函数的值域是()A、 B、 C、 D、 10、已知,则函数的图像必定不经过()A、第一象限B、第二象限C、第三象限D、第四象限 11、是偶函数,且不恒等于零,则( ) A、是奇函数 B、可能是奇函数,也可能是偶函数 C、是偶函数 D、不是奇函数,也不是偶函数 12、一批设备价值万元,由于使用磨损,每年比上一年价值降低,则年后这批设备的价值为()A、 B、 C、 D、二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n 〉1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)ra ·sr raa += ),,0(R s r a ∈>;(2)rss r a a =)( ),,0(R s r a ∈>; (3)sr r a a ab =)(ﻩ),,0(R s r a ∈>. (二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;指数函数·例题解析【例1】求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y>0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0.(3)由3-3x —1≥0,得定义域是{x |x≤2},∵0≤3-3x-1<3,∴值域是≤<.0y 3练习:(1)412-=x y ; (2)||2()3x y =; (3)1241++=+x x y ;【例2】指数函数y=a x,y =b x ,y=c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]A.a<b<1<c <dB.a <b <1<d<c C. b<a<1<d <c D .c<d <1<a <b解 选(c),在x 轴上任取一点(x,0), 则得b <a <1<d <c. 练习:指数函数① ②满足不等式,则它们的图象是( )。
【例3】比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4.54。
1________3.73.6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()() 解 (3)借助数4。
53。
6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y1=4。
5x ,y 2=3.7x的图像如图2.6-3,取x=3。
6,得4.53.6>3.73.6 ∴ 4。
54。
1>3.73。
6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4。
54。
1同底与3。
73.6同指数的特点,即为4.53。
6(或3.74.1),如例2中的(3). 练习: (1)1。
72。
5与 1。
73( 2 )0.10.8-与0.20.8-( 3 ) 1。
70.3与 0.93.1(4)5.31.2和7.20.2【例4】解比较大小与>且≠,>.当<<,∵>,>,a a a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>a a a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】作出下列函数的图像:(1)y (2)y 22x ==-,()121x +(3)y=2|x -1| (4)y =|1-3x|解 (1)y (264)(0)(11)y 1=的图像如图.-,过点,及-,.是把函数=的图像向左平移个单位得到的.()()1212121x x+ 解 (2)y=2x -2的图像(如图2.6-5)是把函数y=2x的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y =2|x |的图像,再把y=2|x |的图像向右平移1个单位,就得y=2|x -1|的图像(如图2.6-6).解 (4)作函数y=3x 的图像关于x 轴的对称图像得y =-3x的图像,再把y=-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x轴下方的图像以x 轴为对称轴翻折到x轴上方而得到.(如图2.6-7)【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x )的奇偶性; (2)求f (x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x 函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x2.f (x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A、11321122--⎛⎫- ⎪⎝⎭B、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8aC、4aD 、2a3、若1,0a b ><,且bba a -+=则b b a a --的值等于( )A、6B 、2±C 、2- D、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>aB 、2<aC 、a <D 、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A、1(1)2x + B 、14x + C 、2x D 、2x - 6、下列2()(1)x xf x a a-=+是( )A 、奇函数 B、偶函数 C 、非奇非偶函数 D、既奇且偶函数 7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 9、函数121x y =-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B、第二象限 C、第三象限 D、第四象限 11、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A、是奇函数 B、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A、(1%)na b - B 、(1%)a nb - C 、[1(%)]na b - D、(1%)na b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若103,104xy==,则10x y-= 。
14、函数22811(31)3x x y x --+⎛⎫=- ⎪⎝⎭≤≤的值域是 .15、函数2233x y -=的单调递减区间是 。
16、若21(5)2x f x -=-,则(125)f = 。
三、解答题:(本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
) 17、设01a <<,解关于x 的不等式22232223x x xx a a -++->。
18、已知[]3,2x ∈-,求11()142x xf x =-+的最小值与最大值。
19、设a R ∈,22()()21x x a a f x x R ⋅+-=∈+,试确定a 的值,使()f x 为奇函数.20、已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间及值域。
21、若函数4323xxy =-+的值域为[]1,7,试确定x 的取值范围.22、已知函数1()(1)1x xa f x a a -=>+ (1)判断函数的奇偶性; (2)求该函数的值域;(3)证明()f x 是R 上的增函数。
指数与指数函数同步练习参考答案一、二、13、414、991,33⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,令222812(2)9U x x x =--+=-++,∵ 31,99x U -∴-≤≤≤≤,又∵13U y ⎛⎫= ⎪⎝⎭为减函数,∴99133y ⎛⎫ ⎪⎝⎭≤≤。
15、()0,+∞,令23,23Uy U x ==-, ∵3Uy =为增函数,∴2233x y -=的单调递减区间为()0,+∞.16、 0,3221(125)(5)(5)220f f f ⨯-===-=三、17、∵01a <<,∴ xy a =在(),-∞+∞上为减函数,∵ 22232223x x xx aa -++->, ∴222322231x x x x x -+<+-⇒>18、221113()142122124224x x x x x x x f x -----⎛⎫=-+=-+=-+=-+ ⎪⎝⎭,∵[]3,2x ∈-, ∴1284x -≤≤。