4-_精密和超精密加工的机床设备解析
精密超精密加工技术
精密超精密加工技术精密及超精密加工对尖端技术的发展起着十分重要的作用。
当今各主要工业化国家都投入了巨大的人力物力,来发展精密及超精密加工技术,它已经成为现代制造技术的重要发展方向之一。
本节将对精密、超精密加工和细微加工的概念、基本方法、特点和应用作一般性介绍。
一、精密加工和超精密加工的界定精密和超精密加工主要是根据加工精度和表面质量两项指标来划分的。
这种划分是相对的,随着生产技术的不断发展,其划分界限也将逐渐向前推移。
1.一般加工一般加工是指加工精度在10µm左右(IT5~IT7)、表面粗糙度为R a0.2µm~0.8µm的加工方法,如车、铣、刨、磨、电解加工等。
适用于汽车制造、拖拉机制造、模具制造和机床制造等。
2.精密加工精密加工是指精度在10µm~0.1µm(IT5或IT5以上)、表面粗糙度值小于R a0.1µm的加工方法,如金刚石车削、高精密磨削、研磨、珩磨、冷压加工等。
用于精密机床、精密测量仪器等制造业中的关键零件,如精密丝杠、精密齿轮、精密导轨、微型精密轴承、宝石等的加工。
3.超精密加工超精密加工一般指工件尺寸公差为0.1µm~0.01µm数量级、表面粗糙度R a 为0.001µm数量级的加工方法。
如金刚石精密切削、超精密磨料加工、电子束加工、离子束加工等,用于精密组件、大规模和超大规模集成电路及计量标准组件制造等方面。
二、实现精密和超精密加工的条件精密和超精密加工技术是一项内容极为广泛的制造技术系统工程,它涉及到超微量切除技术、高稳定性和高净化的工作环境、设备系统、工具条件、工件状况、计量技术、工况检测及质量控制等。
其中的任一因素对精密和超精密加工的加工精度和表面质量,都将产生直接或间接的不同程度的影响。
1.加工环境精密加工和超精密加工必须具有超稳定的加工环境。
因为加工环境的极微小变化都可能影响加工精度。
精密加工超精密加工和细微加工课件
➢超精密磨床的技术要求
很高的主轴回转精度和很高的导轨直线 度,以保证工件的几何形状精度;常常 采用大理石导轨增加热稳定性
应配备有微进给机构,以保证工件尺寸 精度以及砂轮修整时的微刃性和等高性
工作台导轨低速运动的平稳性要好,不 产生爬行、振动, 以保证砂轮修整质量 和稳定的磨削过程
精密加工超精密加工和细微加工课 件
IT5以上)、Ra<0.1µm的加工方法, 如金刚石车削、高精密磨削、研磨、 珩磨、冷压加工等
精密加工超精密加工和细微加工课 件
3.超精密加工 指加工精度在0.1µm ~0.01µm、Ra
为0.01µm的加工方法,如金刚石 精密切削、超精密磨料加工、电子 束加工、离子束加工等
精密加工超精密加工和细微加工课 件
防振:机床振动对精密加工和超精密 加工有很大的危害,为了提高加工系 统的动态稳定性,除了在机床设计和 制造上采取各种措施,还必须用隔振 系统来保证机床不受或少受外界振动 的影响。应能有效地隔离频率为 6Hz~9Hz、振幅为0.1µm~0.2µm的外 来振动
精密加工超精密加工和细微加工课 件
超净:在未经净化的一般环境下,尘 埃数量极大
切削时,其ap<lm,刀具可能处于工件 晶粒内部切削状态。切削力要超过分子 或原子间巨大的结合力,从而使刀刃承 受很大的剪切应力,并产生很大热量, 造成刀刃的高应力、高温的工作状态
金刚石精密切削的关键问题是如何均匀、 稳定地切除如此微薄的金属层
精密加工超精密加工和细微加工课 件
一、精密加工和超精密加工的界定 1.一般加工
指加工精度在10µm左右(IT5~IT7)、 表面粗糙度为Ra0.2µm~0.8µm的加工方 法,如车、铣、刨、磨、电解加工等。 适用于汽车制造、拖拉机制造、模具制 造和机床制造等
超精密机床与普通机床的区别,及其关键部件的技术要求
超精密机床与普通机床的区别,及其关键部件的技术要求导语:机床加工从加工精度上分为普通加工,精密加工,高精密加工和超精密加工。
普通加工的精度一般在10~100um,精密加工精度一般在3~10um,高精密加工精度一般在0.1~3um,而精度要求高于0.1um 的属于超精密加工精度。
机床加工从加工精度上分为普通加工,精密加工,高精密加工和超精密加工。
普通加工的精度一般在10~100um,精密加工精度一般在3~10um,高精密加工精度一般在0.1~3um,而精度要求高于0.1um 的属于超精密加工精度。
超精密机床与一般机床的最主要的区别是,加工精度要求很高,因此,普通机床不引起人们重视或根本不必考虑的因素就有可能上升为重要因素,如热变形、力变形、振动、定位及材料等,就会影响超精密机床的加工精度.这些因素对机床提出了很高的精度要求,如机床的材料,主轴回转精度、主轴受力及热的变形、主轴驱动、工件夹持、导轨运动直线性及定位等。
机床的结构材料超精密机床的结构材料对机床精度的影响很大.铸铁和钢在过去曾是机床的主要结构材料,今后相当长的时间内,作为普通机床的材料,仍将发挥很大作用.但是,超精密机床结构材料必须满足性能稳定、热变形小、振动衰减性好等要求.铸铁和钢已难以满足这些要求,特别是热变形的要求.为此,国外早就代之以非金属材料,如天然花岗岩材料,它有很多优点,其膨胀系数是铸铁的2/3,已应用于很多超精密机床。
日本又开发了精密陶瓷材料,热膨胀系数约为铸铁的1/20一1/240.机床的主轴超精密加工机床的主轴在加工过程中直接支持工件或刀具的运动,故主轴的回转精度直接影响到工件的加工精度,因此可以说主轴是超精密加工机床中最重要的一个部件,通过机床主轴的精度和特性可以评价机床本身的精度。
目前研制开发的超精密加工机床的主轴粗度最高的是空气静压轴承主轴,高精度空气轴承主轴回转精度可达0.05um,最高可达0.03um。
直线导轨作为刀具和工件相对定位机构的直线导轨,是仅次于主轴的重要部件。
【精品课件】精密和超精密加工的机床设备
美国Pneumo公司的MSG-325超精密车床
采用T形布局,主轴箱下有导轨作z向运动,刀架溜 板作x向运动。机床空气主轴的径向圆跳动和轴向跳动 均≤0.05μm。床身溜板用花岗岩制造,导轨为气浮导 轨;机床用滚珠丝杠和分辨率为0.01μm的双坐标精密 数控系统驱动,用HP5501A双频激光干涉仪精密检测 位移。使用精密的圆弧刃金刚石刀具加工非球曲面的反 射镜,可达到很高的形状精度和很小的表面粗糙度。来自DTM-3大型超精密车床
1983年由美国LLL实验室联合研制。可加 工最大零件φ2100mm重量4500kg的各种金 属反射镜、红外装置零件、大型天体望远镜 等。半径方向形状精度27.9nm,圆度、平面 度12.5nm,Ra≤4.2nm。
采用精密数控伺服方式,控制部分为内装 式CNC装置和激光干涉测长仪,精确测量定 位,在DC伺服机构内装有压电微位移机构, 实现纳米级微位移。
• 空气轴承(又称为气浮轴承)指的是用气体(通常是空气,但也有可能是其 它气体)作为润滑剂的滑动轴承。空气比油粘滞性小,耐高温,无污染,因 而可用于高速机器、仪器及放射性装置中,但其负荷能力比油低。 空气轴承 分为三大类:空气静压轴承、空气动压轴承和挤压膜轴承。在一般工业中, 空气静压轴承用得较广泛。
世界公认技术水平最高、精度最高的大型 金刚石超精密车床之一。
大型光学金刚石车床LODTM
1984年由美国LLL实验室联合研制。可加工 φ1625mm×500mm 、 重 量 1360kg 的 大 型 金 属反射镜。
机床采用立式结构,采用面积较大止推轴承; 7路高分辨力双频激光测量系统;4路激光检测 横梁上溜板的运动;3路激光检测刀架上下运动 位置;使用在线测量和误差补偿;各发热部件 用大量恒温水冷却;用大的地基,地基周围有 防振沟,且整个机床用4个大空气弹簧支承。
超精密加工的机床设备
超精密加工的机床设备摘要:超精密加工技术的发展直接影响整个国家的制造业发展,影响尖端技术和国防工业的发展。
机床是实现超精密加工的重要载体,机床的制造水平和研究水平便显得非常的重要。
本文在论述目前国内外超精密加工机床的现状的同时,介绍了国内外有代表性的几种超精密加工机床,并介绍分析了超精密机床的精密主轴部件、进给驱动系统、误差建模和补偿技术和数控技术。
关键词:超精密加工机床发展关键技术1.引言制造业是一个国家或地区国民经济的重要支柱,其竞争能力最终体现在新生产的工业产品市场占有率上,而制造技术则是发展制造业并提高其产品竞争力的关键。
精密和超精密加工技术是制造业的前沿和发展方向。
精密和超精密加工技术的发展直接影响到一个国家尖端技术和国防工业的发展,世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。
随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅猛发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平面、曲面和复杂形状的加工需求日益迫切。
目前,国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。
最近几年,我国的机床制造业虽然发展很快,年产量和出口量都明显增加,成为世界机床最大消费国和第一大进口国,在精密机床设备制造方面取得不小进展,但仍和国外有较大差距。
我国还没有根本扭转大量进口昂贵的数控和精密机床、出口廉价中低档次机床的基本状况。
由于国外对我们封锁禁运一些重要的高精度机床设备和仪器,而这些精密设备仪器正是国防和尖端技术发展所迫切需要的,我们必须投入必要的人力物力,自主发展精密和超精密加工机床,使我国的国防和科技发展不会受制于人。
2.超精密机床的发展现状2.1国外超精密机床发展现状目前在国际上处于领先地位的国家有美国、英国和日本, 这3个国家的超精密加工装备不仅总体成套水平高, 而且商品化的程度也非常高。
精密和超精密加工的机床设备技术
精密和超精密加工的机床设备技术引言精密和超精密加工技术在现代制造业中扮演着重要的角色。
为了满足高质量、高精度、高效率的加工需求,机床设备技术不断得到改进和发展。
本文将介绍精密和超精密加工的机床设备技术,并探讨其在制造业中的应用。
1. 精密加工的机床设备技术精密加工是指在工程加工中,对尺寸精度和表面质量要求较高的加工方法。
精密加工的关键在于机床设备的稳定性、刚性和精度。
以下是精密加工机床设备的几个关键技术:1.1 数控技术数控技术是精密加工中最为关键的技术之一。
通过数控技术,可以实现机床的高精度和高效率加工。
数控技术的应用可以大大提高生产效率,并且减少操作人员的工作强度。
1.2 精密传动系统精密传动系统是精密加工机床设备的核心组成部分。
精密传动系统的设计与制造涉及到轴承、传动装置、伺服驱动装置等多个方面。
通过精确的传动系统,可以提高机床的精度和稳定性。
1.3 线性驱动技术线性驱动技术是现代机床设备中的重要发展方向之一。
相比传统的滚动轴承驱动,线性驱动技术能够实现更高的速度和更高的精度。
线性驱动技术可以用于各种类型的机床设备,包括数控机床和超精密加工机床。
2. 超精密加工的机床设备技术超精密加工是指在微米甚至纳米级别下进行加工的技术。
超精密加工在光学、光电子、半导体等领域具有重要的应用。
以下是超精密加工机床设备技术的几个关键技术:2.1 超精密控制系统超精密控制系统是实现超精密加工的关键技术之一。
通过超精密控制系统,可以实现对微小位移和应力的精确控制。
超精密控制系统需要具备高精度、高灵敏度和高稳定性的特点。
2.2 超精密磨削技术超精密磨削技术是超精密加工的核心技术之一。
超精密磨削技术可以实现对工件表面的精确修整和光洁度的提高。
超精密磨削技术需要借助特殊材料和磨削工具,并配合高精度的机床设备。
2.3 超精密检测技术超精密加工过程中,对工件的检测和测量要求非常高。
超精密检测技术可以实现对工件尺寸、形状和表面质量的高精度测量。
精密和超精密加工的机床设备
高精度、高效率、高表面质量、 低误差、低能耗等。
应用领域
01
02
03
04
航空航天
制造飞机发动机叶片、涡轮盘 等关键部件。
汽车制造
加工发动机缸体、曲轴等精密 零部件。
能源领域
制造核聚变反应堆中的超导线 圈、太阳能电池板等。
医疗器械
制造人工关节、牙科种植体等 医疗器件。
发展历程与趋势
发展历程
从20世纪50年代开始,精密和超精密加工技术经历了从简单磨削 到复杂切削,再到超精密切削的发展过程。
航空航天领域的应用案例
案例一
某航空发动机制造企业使用超精密加 工机床,对涡轮叶片进行高精度磨削 和抛光,提高了发动机性能和可靠性 。
案例二
某飞机制造企业采用精密加工机床, 对机身结构件进行高精度切割和加工 ,确保飞机整体装配精度和质量。
汽车工业领域的应用案例
案例一
某汽车零部件制造企业使用精密加工 机床,对发动机缸体进行高精度加工, 提高缸体质量和性能,降低发动机故 障率。
柔性化
为了满足多品种、小批量生产的需求,未来精密和超精密加工机床将采用模块化设计、可 重构制造系统等技术,提高机床的加工范围和适应能力。
新材料、新工艺的应用
新材料
随着新材料技术的发展,未来精密和超精密加工机床将采用新型高强度、高硬 度、轻质材料,提高加工效率和加工质量。
ห้องสมุดไป่ตู้新工艺
为了满足复杂形状和特殊材料的加工需求,未来精密和超精密加工机床将采用 新的切削工艺、光整加工工艺和复合加工工艺等,提高加工精度和表面质量。
伺服驱动技术
采用先进的伺服驱动技术, 实现高精度的位置控制和 速度控制。
插补算法
第3章 超精密加工机床与设备
缺点: 缺点: 1)液体静压轴承的温升 很高,难以控制, 很高,难以控制,造成热 变形,影响主轴精度。 变形,影响主轴精度。 2)静压油回油时将空气 带入油源, 带入油源,形成微小气泡 悬浮在油中,不易排出, 悬浮在油中,不易排出, 降低轴承的刚度和动特性。 降低轴承的刚度和动特性。
解决措施: 解决措施: 提高静压油的压力到6 8MPa,使油中微小气泡的影响减小, 1)提高静压油的压力到6~8MPa,使油中微小气泡的影响减小,提高静压轴承 的刚度和动特性。 的刚度和动特性。 静压轴承用油经温度控制,基本达到恒温,减少轴承的温升。 2)静压轴承用油经温度控制,基本达到恒温,减少轴承的温升。 轴承用恒温水冷却,减小轴承的温升。 3)轴承用恒温水冷却,减小轴承的温升。
AHNIO型高效专用车削、 AHNIO型高效专用车削、 型高效专用车削 磨削超精密机床
3.2 超精密加工刀具与刃磨技术
超精密切削刀具的要求
1)极高的硬度、极高的耐磨性和极高的弹 极高的硬度、 性模量。 性模量。 刃口能磨得极其锋锐,刃口半径值极小, 2)刃口能磨得极其锋锐,刃口半径值极小, 能实现超薄切削厚度。 能实现超薄切削厚度。 刀刃无缺陷, 3)刀刃无缺陷,切削时刃形将复制在被加 工表面上,从而得到超光滑的镜面。 工表面上,从而得到超光滑的镜面。 与工件材料的抗粘性好、化学亲和性小、 4)与工件材料的抗粘性好、化学亲和性小、 摩擦系数低, 摩擦系数低,以得到极好的加工表面完 整性。 整性。 不可替代的超精密切削刀具材料: 不可替代的超精密切削刀具材料:单晶金 刚石。 刚石。
超精密机床的基础元部件及其关键技术
导轨和床身的材料
超精密机床的基础元部件及其关键技术
驱动系统
主轴的驱动方式: 主轴的驱动方式: 1)电动机通过带轮驱动 2)电动机通过柔性联轴 器驱动 3)采用内装式同轴电动 机驱动
简述精密机床硬件构成,及各组件部件常用的形式和特点。
简述精密机床硬件构成,及各组件部件常用
的形式和特点。
精密机床的硬件构成通常包括主机、辅助装置、数控装置和驱动装置等部分。
1. 主机:主机是精密机床的主体,包括机床本体、立柱、主轴、进给机构等机械部件。
它是用于完成各种切割过程的机械零件。
2. 辅助装置:辅助装置是保证机床运行所必需的一些配套部件,如冷却、排屑、润滑、照明、监控等,包括液压和气动装置、排屑装置、交换工作台、数控转台、数控分度头等,以及刀具和监控检测设备。
3. 数控装置:数控装置是机床的核心,包括硬件(如印刷电路板、CRT显示器、钥匙盒、纸带读取器等)及相应的软件。
用于输入数字零件程序,完成输入信息存储、数据转换、插补运算,实现各种控制功能。
4. 驱动装置:驱动装置是精密机床执行机构的驱动部分,包括主轴驱动单元、进给单元、主轴电机和进给电机。
在数控装置的控制下,通过电液伺服系统实现主轴和进给驱动。
当多个进给连接时,可完成定位、直线、平面曲线和空间曲线的加工。
此外,编程和其他辅助设备可用于在机器外部编程和存
储零件。
精密机床各组件部件常用的形式和特点可以根据具体机床的设计和功能有所不同,具体的部件形式和特点需要根据具体的机床类型和使用情境来进行详细描述和分析。
精密和超精密加工的机床设备
单击此处添加小标题
单击此处添加小标题
缺点:电机发热,容易使主轴产生热变形。
单击此处添加小标题
措施:电动机采用强制通气冷却,或通过恒温油(水)冷却。
单击此处添加小标题
将机床主轴与电机轴合二为一,即将电机的定子、转子直接装入主轴组件的内部,期间不再使用皮带或齿轮传动副,也称电主轴。
单击此处添加大标题内容
轴承内圆柱面上,等间隙地开有几个油腔(通常为4个)。 各油腔之间开有回油槽。 用过的油一部分从这些回油槽流回油箱(径向回油),另一部分则由两端流回油箱(轴向回油)。 油腔四周形成适当宽度的轴向封油面和周向封油面,它们和轴颈之间的间隙一般为0.02~0.04mm。 油泵供油压力为ps,油液经节流器T进入各油腔,将轴颈推向中央,油液最后经封油面流回油箱,压力降低为零。 当主轴不受载荷且忽略自重时,则各油腔的油压相同,保持平衡,轴在轴承正中心,这时轴颈表面与各腔封油面之间的间隙相等,均为h0。 当主轴受径向载荷(包括自重)F作用后,轴颈向下移动产生偏心量e。
立式空气轴承
特点: 下止推面大于上止推面,平衡主轴重量; 圆弧面径向轴承,自动调心、提高精度。
三、超精密机床主轴和轴承的材料
要求:不易磨损,不易生锈腐蚀,热膨胀系数小,且主轴和轴套的热膨胀系数要接近,材料的稳定性好。 主要材料:轴和轴套均采用38CrMoAl氮化钢,经表面氮化和低温稳定处理;不锈钢、多孔石墨和轴承钢;此外还有铟钢、花岗岩、线膨胀系数接近零的微晶玻璃、陶瓷等。
缺点:
圆柱径向轴承和端面止推空气静压轴承
结构与液体静压轴承主轴结构基本相同,只是节流孔和气腔大小形状不同。要求有很高的同轴度和垂直度。 1号车床的径向轴承的轴套制成外面鼓形,能自动调整定心。轴套的外表面做凸形球面,与轴承盖及轴承座上的凹形球面相配合。当轴变形时,轴套可以自动调整位置,从而保证轴颈与轴鼓为面接触。用多孔石墨的轴衬代替小节流孔。
精密和超精密加工的机床设备技术(PPT 88页)
液体摩擦轴承
液体动压润滑轴承 液体静压润滑轴承
非液体摩擦轴承
• 按滑动轴承承受载荷的方向可分为:
径向滑动轴承(向心) 推力滑动轴承(止推)
2022/3/23
根据润滑膜的形成原理不同分为:
动压润滑轴承
静压润滑轴承
利用相对运动副表面的相对运动 和几何形状,借助流体粘性,把润滑 剂带进摩擦面之间,依靠自然建立的 流体压力膜,将运动副表面分开的润 滑方法为流体动压润滑。
类型:普通(各种精密超精密车、铣等)、专 用(磁盘超精密车床) 按工艺方法:超精密车床、超精密铣床、超精 密磨床、超精密研磨机、超精密抛光机床、超 精密特种加工机床、精密和超精密加工中心等
精度指标:目前,主轴回转精度为0.025um, 导轨直线度为1000000:0.025,定位精度为 0.013um/1000um,进给分辨率为
2022/3/23
在滑动轴承与轴颈表面之间输入 高压润滑剂以承受外载荷,使运动副 表面分离的润滑方法成为流体静压润 滑。
止推轴承(推力轴承)
轴承座
Fa
径向轴瓦 止推轴瓦
径向轴承(向心轴承) Fr
止推轴承受力Fa与 轴的中心线平行
2022/3/23
径向轴承的受力Fr 与轴的中心线垂直
2022/3/23
二、典型机床简介
Pneumo 公司的MSG-325超精密车床 采用T形布局,机床空气主轴的径向圆跳动和轴向
跳动均小于等于0.05μm。床身溜板用花岗岩制造,导 轨为气浮导轨;机床用滚珠丝杠和分辨率为0.01μm的 双坐标精密数控系统驱动,用HP5501A双频激光干涉仪 精密检测位移。
Precision and ultraprecision machining
《精密和超精密加工技术(第3版)》第4章精密和超精密加工的机床设备
第1节 精密和超精密机床发展概况
二、超精密机床进一步发展的规划
3.中国精密机床和超精密机床的发展情况 1987年北京机床研究所研制成功加工球面的JSC027型超精密车床。后来又研制成功JSC-035型数控 超精密车床。1998年,北京机床研究所制成的加工直 径800mm的NAM-800型CNC超精密金刚石车床(图 4-1)和SQUARE-200型等超精密铣床,哈尔滨工业大 学研制成加工直径300mm的CNC超精密车床, 2006 年,哈尔滨工业大学研制成加工KDP晶体的大平面超 精密飞刀切削机床(图4-2)。
第4章 精密和超精密加工的机床设备
4.1 精密和超精密机床发展概况及 4.2 典型超精密机床的简介 4.3 精密主轴部件
4.4 床身和精密导轨部件 4.5 进给驱动系统 4.6 微量进给装置
4.7 机床运动部件位移的激光在线检测系统 4.8 机床的稳定性和减振隔振
4.9 减少变形和恒温控制
2020/12/29
第1节 精密和超精密机床发展概况
二、超精密机床进一步发展的规划
2.日本提出的“超超精密机床”规划 日本也在原来超精密机床的基础上,再进一步 规划更高精度的机床。按日本的提法,也就是 研制“超超精密机床”。表4-2是日本提出 的该规划的各项指标。 该规划主要围绕提高超精密机床精度性能而 提出的设想,共有13个子课题,并已在20世纪 内完成。该规划是以纳米级精度作为目标的。
2020/12/29
第1节 精密和超精密机床发展概况
二、超精密机床进一步发展的规划
表4-1是POMA规划对精度的具体要求,该规 划已经实现。例如,美国Moore公司现在生产 的Nanotech-500FG五轴数控超精密机床的 主要精度指标都已达到上述要求。
精密和超精密加工技术
《精密和超精密加工技术》学习总结11机械1班 2011411011070. 引言精密和超精密加工技术不仅直接影响尖端技术和国防工业的发展,还影响着国家的机械制造业的国际竞争力,因此,全球各国对此十分重视!本文就从超精密切削、精密和超精密磨削、精密研磨与抛光、精密加工的机床设备和外部支撑环境、微纳加工技术等相关的超精密加工技术进行研究与总结。
1. 超精密切削超精密切削是国防和尖端技术中的重要部分,受到了各国的重视和发展。
一、超精密切削的切削速度选择超精密切削所使用的刀具是天然单晶金刚石刀具,它是目前自然界硬度最高的物质,具有耐磨性好、热传导系数高和有色金属间摩擦系数小。
因此,在加工有色金属时,切削温度低,刀具寿命很高,亦可使用1000-2000m/min的高速切削。
而这一点(切削速度并不受刀具寿命的制约)是和普通切削规律不同的。
超精密切削的速度选择是根据所使用的超精密机床的动特性和切削系统的动特性所决定的,即选择振动最小的转速。
换而言之,要高效地切削出高质量的加工表面,就应该选择动特性好,振动小条件下最高转速的超精密机床。
例如沈阳第一机厂圣工场的SI-255液体静压主轴的超精密车床在700-800r/min时振动最大,故要避开该转速范围,选择低于或者高于该速度范围进行切削,则可得到较好的加工表面。
二、超精密切削时刀具的磨损和寿命天然单晶金刚石刀具超精密切削应用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料,比如激光反射镜、雷达的波导管内腔、计算机磁盘等。
判断金刚石刀具是否破损或磨损而不能继续使用的标准是根据工件加工的表面粗糙度有无超过规定值。
而金刚石刀具的切削路程的长度则是其寿命长短的标志。
倘若切削条件正常,刀具的耐用度可达数百千米。
但是在实际使用中,金刚石刀具常是达不到这个耐用度,因为加工过程中切削刃会产生微小崩刃而不能继续使用,而这主要是由于切削时的振动或切削刃的碰撞引起的。
因此,金刚石刀具只能使用在机床主轴转动非常平稳的高精度机床上,而刀具的维护对机床的要求亦是如此。
精密和超精密加工的机床设备技术
精密和超精密加工的机床设备技术1. 简介精密和超精密加工技术在现代制造业中起着至关重要的作用。
为了实现高精度和高表面质量的加工需求,针对性的机床设备技术得到了广泛的应用。
本文将介绍精密和超精密加工所需的机床设备技术。
2. 精密加工的机床设备技术精密加工是指在加工过程中,控制加工误差在较小范围内的一种加工方式。
想要实现精密加工,需要借助一系列的机床设备技术。
2.1 高精度机床高精度机床是实现精密加工的基础设备。
在高精度机床中,采用了高刚性的机床结构,以及高精度的导轨和滚珠丝杠等传动装置。
此外,还需要使用高精度的测量系统来监测加工过程中的误差,从而实现对加工精度的控制。
2.2 高精度传动系统在精密加工中,传动系统的精度直接影响到加工结果的质量。
传统的机床传动系统中常使用链式传动、皮带传动等方式,但这些方式的精度较低。
为了实现高精度传动,现代机床采用了蜗轮蜗杆传动、滚珠丝杠传动等方式,这些传动方式具有较高的传动精度和刚性。
2.3 高精度数控系统数控系统在精密加工中起到了重要的作用,它能够实现对加工过程中各个工艺参数的准确控制。
高精度的数控系统可以提供更精确的位置控制,从而保证加工结果的高精度。
3. 超精密加工的机床设备技术超精密加工是指在纳米尺度下进行的精密加工,其加工精度要求更高。
超精密加工需要采用更为先进的机床设备技术。
3.1 纳米机床纳米机床是实现超精密加工的关键设备。
它具有更高的刚性和稳定性,以及更高的位置精度和热稳定性。
纳米机床采用了新的材料和结构设计,以满足超精密加工的要求。
3.2 纳米传感器和测量技术在超精密加工中,需要更加精确的测量和控制技术。
纳米传感器和测量技术可以实时测量加工过程中的各种参数,包括加工力、温度、振动等,从而实现对加工过程的准确控制。
3.3 纳米控制系统超精密加工中的控制系统需要具备更高的精度和快速响应能力。
纳米控制系统采用了更高精度的位置控制算法,并配备了更先进的控制器,能够实现对加工过程中微小误差的实时调整。
江苏自考精密加工与特种加工教材大纲---精品模板
江苏:自考精密加工与特种加工教材大纲(发布时间:2006-11—16 9:38 来自:模考网)02213 精密加工与特种加工扬州大学编(高纲号 0627)一、课程性质及其设置目的与要求(一)课程性质和特点《精密加工与特种加工》课程是我省高等教育自学考试机械设计制造及其自动化专业(独立本科段)的一门重要的专业课程.其任务是使应考者获得精密和超精密加工技术的基本理论、基本知识和方法;初步掌握各种精密和超精密加工方法在生产中的应用.获得特种加工工艺的基本原理、常用工艺设备及应用的系统知识,初步具备分析、选择和使用各种常用特种加工工艺的能力.(二)本课程的基本要求通过对本课程的学习,应考者应达到以下具体要求:1、获得精密和超精密加工技术的基本原理和技术,包括超精密切削和金刚石刀具、精密和超精密磨削、研磨与抛光、精密和超精密机床设备、精密加工中的测量技术,在线测量和误差补偿技术、微细加工技术、精密加工的支撑环境等.2、初步具备精密和超精密加工工艺参数的选择及其对加工质量的影响.3、了解精密和超精密加工技术的现状和发展趋势。
4、掌握特种加工的基本理论和一般知识,包括常用加工工艺的加工原理、设备特点和有关应用。
5、在对各种常用特种加工工艺综合理解、比较的基础上,具有选择加工工艺、分析加工工艺过程及解决实际工艺问题的能力.6、了解特种加工技术应用现状和发展趋势.(三)本课程与相关课程的联系本课程的先修课程为电工电子学、大学物理、工程力学、机械设计、机械工程材料、数控技术、机械制造技术;其后续课程有其它专业课程、课程设计、毕业设计.二、课程内容与考核目标精密和超精密加工技术部分第一章精密和超精密加工技术及其发展展望(一)课程内容本章主要介绍了发展精密和超精密加工技术的重要性以及超精密加工的现状。
(二)考核知识点和考核要求1、识记:精密加工和超精密加工概念、领域,金刚石刀具两个重要问题,超精密加工中检测内容。
第二章超精密切削与金刚石刀具(一)课程内容本章主要介绍了超精密切削的切削速度选择;超精密切削时刀具的磨损和耐用度;超精密切削时积屑瘤的生成规律;切削参数变化对加工表面质量的影响;刀刃锋锐度对切削变形和表面质量的影响;超精密切削时最小切削厚度;金刚石刀具晶面选择对切削变形和加工表面质量的影响;超精密切削对刀具的要求及金刚石的性能和晶体结构;金刚石晶体各晶面的耐磨性和好磨难磨方向;单晶金刚石刀具的破损机理;金刚石晶体的定向;金刚石刀具的设计与制造。
精密和超精密加工的机床设备技术
精密和超精密加工的机床设备技术引言机床技术在现代制造业中起着至关重要的作用。
随着科学技术的发展,精密和超精密加工已成为现代制造业中的重要环节。
本文将着重介绍与精密和超精密加工相关的机床设备技术,包括其定义、分类、特点、应用场景等内容。
定义精密加工是指通过机床设备对工件进行高度精确的加工过程。
而超精密加工则是相对于精密加工而言,更加高精确度的加工过程。
精密和超精密加工的出现,极大地推动了现代制造业的发展,使得产品的质量和精度得到了极大的提高。
分类精密加工精密加工可以分为多个子类,主要包括: - 数控机床 - 高速加工机床 - 超精密加工机床数控机床数控机床采用计算机控制系统,可以实现对工件进行高度准确的加工。
它的主要特点包括: - 加工精度高:数控机床可以实现微米级的加工,大大提高了产品的精度。
- 生产效率高:数控机床的自动化程度高,加工速度快,从而提高了生产效率。
- 多功能性强:数控机床可以通过调整其控制系统,实现不同种类产品的加工。
高速加工机床高速加工机床是指能够实现高速切削加工的机床设备。
其主要特点包括: - 加工速度快:高速加工机床的切削速度可以达到一定的高速,从而提高了加工效率。
- 表面质量高:切削速度快、负荷小,使得加工表面的质量得到了保证。
- 刀具寿命长:高速加工机床在切削时产生的热量较少,可以降低刀具的磨损,从而延长刀具的使用寿命。
超精密加工机床超精密加工机床是指能够实现亚微米级精度的加工机床。
其主要特点包括: -高精密度:超精密加工机床的加工精度可以达到亚微米级别,满足对于高精度产品的需求。
- 低热变形:超精密加工机床可以有效降低加工过程中产生的热量,从而减少工件因热膨胀而引起的变形。
- 光滑表面:超精密加工机床可以实现对工件表面的高度光滑加工,满足对于高光洁度产品的需求。
超精密加工•超精密加工器械•超精密切削特点精密和超精密加工的机床设备具有以下特点:1.高精度:机床设备的设计和制造严格遵循高精度要求,以确保加工过程的精确性和稳定性。
精密和超精密加工的机床设备
精密和超精密加工的机床设备简介精密加工和超精密加工是现代制造业中非常重要的工艺,为了实现高精度和高质量的产品制造,需要使用精密和超精密加工的机床设备。
本文将介绍精密和超精密加工的定义、应用领域、常见机床设备及其特点。
精密加工与超精密加工的定义精密加工是指在小尺寸范围内实现高精度、高表面质量的加工过程。
超精密加工则是在精密加工的基础上,进一步提高加工精度和表面质量,通常使用的是非常细小的工具进行加工。
精密加工与超精密加工的应用领域精密加工和超精密加工广泛应用于各个领域,特别是需要高精度和高质量的产品制造领域。
以下是一些典型的应用领域:1.光学器件加工:如镜片、棱镜、透镜等光学组件的加工需要极高的精度和表面质量。
2.高精密模具加工:精密模具通常用于制造电子产品、汽车零部件等需要高精度的零件。
3.精密五金零部件加工:如手表零部件、医疗设备零部件等,需要高精度和高质量的加工。
4.微电子器件加工:微电子器件通常要求极高的精度和表面质量,用于生产集成电路、传感器等。
常见的精密和超精密加工机床设备下面介绍一些常见的精密和超精密加工机床设备及其特点:CNC铣床CNC铣床是一种通过计算机控制的自动化机床,能够在三个轴向上进行加工。
精密加工中常用的是数控铣床,而超精密加工则需要使用高速铣床。
CNC铣床具有高精度、高刚性、高自动化程度等特点。
高精度车床高精度车床是一种用来加工圆柱形工件的机床。
它能够在工件上进行精确的车削、镗削、钻削等操作。
高精度车床具有高工作精度、高生产效率和良好的刚性。
光学加工机光学加工机是用激光或电子束等光学器件进行加工的机床设备。
它能够实现非常高的加工精度和表面质量,常用于光学器件加工和微电子器件加工。
超精密磨床超精密磨床是一种用磨粒对工件进行加工的机床设备。
它能够实现非常高的加工精度和表面质量,常用于精密模具加工和高精度五金零部件加工。
EDM电火花机床EDM电火花机床是一种利用电火花腐蚀的原理进行加工的机床设备,能够实现非常高的加工精度和表面质量。
高精密和超精密机床卫汉华
高精密和超精密机床卫汉华高精密加工随着航空航天、汽车等工业的技术发展和环保要求的不断提高,对零件的加工精度和工艺要求也越来越高。
以满足欧盟Ⅴ尾气排放要求的柴油发动机为例,燃油喷射阀门(图1)需要在每一冲程内快速开闭5~8次,而阀门往复行程仅20μm,对阀门的气密性和动态特性的要求很高,从而对其加工精度的要求也大大提高。
图1 高精度燃油喷射阀门为了满足上述要求,对这些零件的加工精度要求很高,超出了一般精密加工机床可能达到的要求。
尽管超精密加工机床可以达到所需的精度,但由于超精密加工对机床的床身、导轨、主轴的特殊结构,使该类机床不仅价格高昂,也有行程偏小、切削效率低、装夹时间长等缺点,难以满足尺寸较大工件的大批量生产需要。
高精度加工机床是对应上述加工要求的机床。
高精密加工的精密度级别介乎精密加工与超精密加工之间,如表1所示。
高精度加工在定义上的一个特点是除了公差范围以外,也同时考虑零件尺寸大小和批量。
加工大批量零件时保持5μm的公差,加工相互配合的两个零件时保持2μm的公差,或用小直径的立在定位精度为0.3μm的机床上进行加工等,都属于高精密加工的范畴。
也就是说,零件尺寸和工件批量决定了某些特定公差实现的难度。
高精度机床的结构特点为了实现较高精度的切削运动,高精密加工机床的运动控制普遍采用较高级别的功能部件。
在导轨和轴承方面,由于高精度加工需要实现高精度和平稳的定位运动、轨迹运动和微小距离运动,因此高精度加工机床采用静压丝杠和静压导轨较为常见。
此外,高精密加工机床的电主轴也可采取动压或静压轴承的方案,以同时实现支承和冷却功能,并提高主轴的刚度和阻尼性能。
在位置控制方面,由于精密测量是控制高精度加工的前提,要保证机床的运动达到需要的精度级别,其电子尺的测量精度须要高1~2个数量级。
目前高精度加工机床一般采用分辨率达0.05~0.1μm的玻璃光栅。
机床的加工精度、光洁度和寿命与机床的刚性成正比,因此高精度加工机床尤其重视床身的设计和材料选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在滑动轴承与轴颈表面之间输入 高压润滑剂以承受外载荷,使运动副 表面分离的润滑方法成为流体静压润 滑。
止推轴承(推力轴承)
轴承座
Fa
径向轴瓦 止推轴瓦
径向轴承(向心轴承) Fr
止推轴承受力Fa与 轴的中心线平行
有一个x和y向调整的刀 架及作B轴转动的高精度 转台,借助三轴精密数 控,加工平面、球面和 非球曲面。 采用空气轴承,刀架设 计滑板结构,直线移动 分辨力0.01μm,激光测 量反馈,定位精度全行 程0.03μm。 加工模具形状精度0.05 μm,表面粗糙度0.025μm
2020/11/16
三、精密超精密机床类型和精度指标
Precision and ultraprecision machining
精密和超精密加工技术
第4章 精密和超精密加工的机床设备
2020/11/16
3.1 精密和超精密机床发展概况及典型机床 简介
3.2 精密主轴部件 3.3 床身和精密导轨部件 3.4 进给驱动系统 3.5 微量进给装置 3.6 机床运动部件位移的激光在线检测系 3.7 机床的稳定性和减振隔振 3.8 减少变形和恒温控制
影响回转精度的因素 (1)轴承精度和间隙的影响。 (2)主轴、支承座等零件中精度的影响。 关键在于精密轴承。
2020/11/16
主轴轴承
➢ 高精度滚动轴承 ➢ 液体滑动轴承 ➢ 空气滑动轴承 ➢ 陶瓷轴承 ➢ 磁悬浮轴承
(一)、滑动轴承的分类
• 按滑动轴承工作时轴瓦和轴颈表面间呈现的摩擦 状态,滑动轴承可分为:
2020/11/16
二、典型机床简介
DTM-3大型超精密车床 采用精密数控伺服方
式,控制部分为内装式 CNC装置和激光干涉测长 仪,精确测量定位,在 DC伺服机构内装有压电 微位移机构,实现纳米 级微位移。
2020/11/16
2020/11/16
二、典型机床简介
大型光学金刚石车床LODTM
机床采用立式结构,采用止 推轴承,7路高分辨力双频激光 测量系统,4路激光检测横梁上 溜板的运动,3路激光检测刀架 上下运动位置,使用在线测量 和误差补偿,各发热部件用大 量恒温水冷却,用大的地基, 地基周围有防振沟,且整个机 床用4个大空气弹簧支承。
0.005um,加工表面粗糙度Ra0.003um,温 控精度为20± 0.0005℃。
四、精密超精密机床结构特点
➢ 高精度:静态和动态精度,主要部件的材料,轴 承,工作台和刀架,微进给(电致伸缩、磁致伸 缩,弹性元件等),闭环控制系统
➢ 高刚度:受力变形对加工精度影响 ➢ 高稳定性:热导率低,热膨胀系数小的材料做工
2020/11/16
2020/11/16
第1节 精密和超精密机床发展概况 及典型机床简介
二、典型机床简介
Union Carbide 公司 的半球机床
能加工直径100mm的半球,达到尺寸精
度正负0.6μm,表面粗糙度0.025μm。
精密空气轴承主轴采用多孔石墨制成 轴衬,径向空气轴承的外套可以调整 自动定心,可提高前后轴承的同心度, 以提高主轴的回转精度。
类型:普通(各种精密超精密车、铣等)、专 用(磁盘超精密车床) 按工艺方法:超精密车床、超精密铣床、超精 密磨床、超精密研磨机、超精密抛光机床、超 精密特种加工机床、精密和超精密加工中心等
精度指标:目前,主轴回转精度为0.025um, 导轨直线度为1000000:0.025,定位精度为 0.013um/1000um,进给分辨率为
2020/11/16
二、典型机床简介
Moore 车床
由Moore 3型坐标测量机改 造而成。采用卧式主轴, 三坐标精密数控,消振和 防振措施,加强恒温控制等。 M-18AG型超精密非球面车床, 基本结构同Moore 3,采用空 气静压轴承主轴、气浮导轨、 双坐标双频激光测量系统、 优质铸铁床身,有恒温油浇 淋机和空气隔振垫支承。
2020/11/16
二、典型机床简介
Pneumo 公司的MSG-325超精密车床 采用T形布局,机床空气主轴的径向圆跳动和轴向
跳动均小于等于0.05μm。床身溜板用花岗岩制造,导 轨为气浮导轨;机床用滚珠丝杠和分辨率为0.01μm的 双坐标精密数控系统驱动,用HP5501A双频激光干涉仪 精密检测位移。
2020/11/16
2020/11/16
二、典型机床简介
OAGM 2500大型超精密机床 机床的x和y向导轨采用液 体静压,z向的磨轴头和 测量头采用空气轴承。床 身采用型钢焊接结构,用 精密数控驱动,双频激光 测量系统检测运动位置。
2020/11/16
二、典型机床简介
AHNIO型高效专用车削、磨削超精密机床
作台、床身等基础零件,液体淋浴或空气淋浴控 制温度 ➢ 抗振性:材料,隔离振源,缩短传动链或改用柔 性连接 ➢ 控制性能好:数控 ➢ 模块化设计
第2节 精密主轴部件
一、主轴轴承 主轴回转精度
回转精度——在主轴空载手动或机动低速旋转情况下, 在主轴前端安装工件或刀具的基面上所测得的径向跳动、 端面跳动和轴向窜动的大小。
2020/11/16
第1节 精密和超精密机床发展概况 及典型机床简介
一、发展概况
精密机床是实现精密加工的首要基础条件。 1)美国:50年代首先发展了金刚石刀具的超精密切 削技术,并发展了相应的空气轴承主轴的超精密机 床;1983~1984研制成功大型超精密金刚石车床 DTM-3型和LODTM大型超精密车床。 2)英国:1991粘研制成功大型超精密机床 OAGM2ቤተ መጻሕፍቲ ባይዱ00。 3)日本:现在在中小型超精密机床生产上已经具有 一定的优势,甚至超过了美国。 4)中国:JCS-027超精密车床、JCS-031超精密 铣床、JCS-035超精密车床等。
液体摩擦轴承
液体动压润滑轴承 液体静压润滑轴承
非液体摩擦轴承
• 按滑动轴承承受载荷的方向可分为:
径向滑动轴承(向心) 推力滑动轴承(止推)
2020/11/16
根据润滑膜的形成原理不同分为:
动压润滑轴承
静压润滑轴承
利用相对运动副表面的相对运动 和几何形状,借助流体粘性,把润滑 剂带进摩擦面之间,依靠自然建立的 流体压力膜,将运动副表面分开的润 滑方法为流体动压润滑。