现代煤化工公用工程基础知识,空分装置说明
煤化工空分装置工艺特点及应用发展
常 力 鹏
( 黑龙 江北大荒农业股份有 限公 司浩 良河化肥分公 司生产部 , 黑龙江 伊春 1 5 3 0 0 0 ) 摘 要: 随着我 国社会的快速进 步以及科技 的高速发展 , 我 国的工业也在不 断地进行 着创新 与完善 。我 国工业如今的发展 规模在世 界上也屈指可数 , 尤其 是 利 用 自身 资 源优 势 所 开展 的煤 化 工 更是 国 际驰 名 。 煤 化 工 虽 然 听起 来 陌生 实际 上 却 与 我 们 的 生活 息 息相 关 , 无 论是 医药业还是 日化业都 离不开煤化 工的 支持 。煤化工的快速发展也 自然会使得其配套设施也随之发展 , 在煤, I t _ r - 当中应 用范围最广的 应当是 空分装置 , 空分装置是煤化工 当中必不可少的一种设备 , 其 工艺的特点及 因应用的发展 时刻牵动 着整个煤化工行业。 关键词 : 煤化工; 空分装置; 工艺特点; 应 用 发展
1 煤 化 工 空分 装 置 的 特 点 加合理 。 煤化工 当中空分装置对 于煤 化工而言具有着极为重要的意义 , 1 . 2 . 2成套设备机组 的特点 而我们分析煤化工空 分装 置的特点也是 为了可 以对煤 化工的空分 首先来看空气过滤器系统特点 , 空气过 滤器 系统 有具 有 自动控 装置有着更多 的了解并且为了将其更好 的应用 。 对于煤化工空分装 制 系统 能够对过滤器 内的空气在一定 时间后进行反 吹减少 了清理 置的了解应 当先从其工艺流程开始 , 只有先对其工艺 流程有 了充分 难度 , 并且 空气设备过滤器本身还能对其 阻力进 行大小调整。其次 的了解才能真正地将其应用好。 是 预冷系统 , 预冷系统采用 的是 搞笑低阻散堆填 料塔 , 可 以保 证其 1 . 1空 分 装 置 工 艺 流 程 拥有 良好 的换热性能和减少阻力的效果 , 并且对 于空压机的负荷也 空分装置本身采用 了多种不 同的工 艺其 中有分 子筛吸与 预净 能够起到减轻 的效果 。接着是纯化系统 , 空分装 置的分子纯化系统 其每 一个 单独 的吸附器吸附时间都能高达 化工艺 、 增压透平膨胀机 以及液体泵压缩工艺 。空气装置 整套设备 采用 的是长期使用设计 , 由空气过 滤压缩 系统 、 空气 预冷 系统 、 分子筛 纯化 系统 、 分馏塔 系 4小 时 , 这使得分 子筛和 阀门的使用 寿命 被延长 , 而切 换损失 会减 统、 液体贮存及汽化系统 、 仪控系统 、 电控 系统等组成 。空分装 置的 小从而可 以减少再生污氮量。 组成虽然 十分复杂但是其所要达到的 目的却十分简单 , 其 主要 的工 2 空 分 装 置 的应 用发 展 作 目的就是将空气 中的各个成分分离开来从而为煤化工设备服务 。 空分装置在煤化工企业 已经被广泛 的应用 , 并且这种应用还会 下面我们来分析其工艺流程 。 越来越深入且规模也会越来越大 ,关于未来空分装置 的应 用发展 , 1 . 1 . 1空气过滤和压缩 从 如今 的发展现状就能得 以管窥 , 下面笔者就来谈一谈关 于空分装 首先 , 自洁式空气 吸入 过滤器将空气 吸人 器内部 , 然后空 气在 置 的应 用 发 展 问题 。 空气过滤器的作用下将里面 的灰尘和其他悬浮颗粒物等杂质去 除。 2 . 1空分装置 的应用发展规模越来越大 去除杂质的空气将进入主空压机 , 在主空压机的多重压缩后空气再 随着我 国煤化 工发展 的规模扩 大以及其产 能的扩 大器装置 大 进入空冷塔 , 压缩器在空气压缩 的过程 中会 产生大量的热量而这些 型化已经是一种必然趋势 。 煤化工 的装置大型化也必然会 使得 其对 热量都会被中间冷却设备 内的冷却水冷却 。 这个过程是空分装置将 氧气 的需求量也 变得更加 巨大 , 因此在这 样的情况下 , 空 分装置 的 空气吸入的第 一过程也是相对而言精密度较差 的一道工序 。 大型化也成 为了势在必行 的事情 。 1 . 1 . 2空气 的冷却和纯化 2 . 2空分装置应用从单一的制氧功能 向多元化发展 在空气进 人冷却塔 内就会被冷却塔进行 降温处理 , 空气的降温 空 分 装 置 在 以 往 其 最 主 要 的作 用 就 是 制 造 氧 气 从 而 满 足 煤 化 处理其最主要 的 目的在 于让空气 中的水分尽可 能的降低从 而 使得 工 的需求 , 而如今尤其 是在煤化工合 成氨的制取过 程中 , 其对 于其 空气在进入分子附吸器 时能够减少水分给分子 附吸器所带来 负荷 。 他种类 其他 的要求更加大 , 例如空气 中的氮气就是合成氨 生产 的主 冷冻水进入空冷塔后首先利用分馏塔 内的氮气进行冷却 , 在经历 了 要原料气之一 , 因此空分装置除 了满足于现代煤化工所需要 的氧气 冷水机冷却后才能进入空冷塔上部。 从空气预冷系统 中出来 的空气 之外 , 还需要满足更 加多样化 的例如 氮气 、 氢气 、 氦气、 氩气等不 同 再进入空气纯化系统进行水分 、 二 氧化碳与碳氢化合物的去除。 气体的供给工作 。因此未来在 空分装 置的应用发展中 , 应该会 更多 1 . 1 . 3 空 气 的精 馏 的将精力放在空分装置 , 对于其他不 同气体 的提取方 面以满足煤化 从 吸附器内出来 的空气分 为了两部分一部 分进入 了低 压主换 工生产过程中对 其他稀有气体 的需求 。 热器冷却后进人下塔 , 另一部分则瞳孔空气增压机进行进一步 的压 2 . 3 空 分 装 置 的 可 靠 性 与 安 全 性 是 未 来 其 应 用 发 展 的 另 一 主 缩工作 , 最终抽 出一步经过膨胀剂增压断的压缩机及后冷却器 的冷 要 方 向 却, 再进入 主换热器被冷却 , 经膨胀机膨胀后进入下塌 , 增压机末级 无论是 任何 的工业生产或 是装置 的发 展都需要 可靠性与安 全 空气送入冷箱经主换热器冷却后节流进入下塔 。 精馏 塔下塔 中的上 性 的支 持 , 对 于这 点而言空分装 置的发展也不会例 外 , 空分装 置作 升气体通过与回流液体接触含氮量增加。 这些其他会 流人下塔顶部 为煤化 工的空头装置其本 身的可靠性和安 全性直接 影响着煤 化工 的冷凝蒸发器。在冷凝蒸发器 中氧气会被蒸发 而氮气则 会被 冷凝 。 整个生产流程的可靠性 与安全性 , 除此之外空分装置 本身所制取的 上塔顶部产生的污氮气 ,会进入上塔顶部 的冷却器 和主换热器 , 然 各类气体是煤化工的原料 气的主要 来源之一 , 一旦这些气 体的纯净 后一部分出冷箱一 部分则进入 纯化系统进行再生气 ,一部分则进 性 不 够 那 么 很 可 能会 造成 生产 事 故 的发 生 。 入水冷塔。上塔中的液态氧则从上塔底部被抽 出 , 在液氧泵 中被压 结 束 语 缩最终送 到高压换热器 中与高压空气进行热 交换从而变 为高压氧 煤化 工空分装置 的工艺特 点与应用 发展对 于我 国工 业而 言有 气。 着极为重要的意义 , 我们必须在充分 了解 了空分装置 的各 类特点之 1 . 2空分装置 的特点 后才能在最大程度上将空 分装 置更 好的应用 , 而对于应用的发展问 空分装置其主要功 能就是对 空气进行处理 , 其 同样具有着 自身 题 , 这是一个 与时俱进 的问题 , 任何工业想 要持续性 发展就必 须与 的特点 , 这些特点从流程 、 设备两个方 面凸显出来 , 下面我们就来介 时俱进适应时代的要 求和社会 的需求 。 绍一下空分装置的特点 。 参 考 文献 1 . 2 . 1流 程 特 点 【 1 】 孙洪波. 空分 装 置 后 备 储 存 系统 的 设 计 ( 一) 『 J 1 . 石 油化 工 设 计 , 2 0 1 2 空分装置中由于有液态 氧泵 和压缩机 , 以及空气膨胀机 的存在 ( 0 2 ) . 使得其具有其他设 备所不具备 的安全性 与可靠 性。除此之外 , 其操 『 2 1 张晓亮, 李江龙. 谈变 电二次设计过程 中的细节问题『 J 1 . 科技情报 开 作也非 常方便 而且其本身 的操 作内容也易 于理解并不是 十分抽象 发 与 经 济。 2 0 0 6 ( 2 4 ) . 的, 并且 由于空分装置 目前 已经全面 国产化 因此其在价格方面也 十 【 3 】 黎洪斌. 空 分 装 置 安 全要 素 分析 『 J 1 . 通 用机 械 , 2 0 0 9 ( 1 2 ) . 分低廉对很多企业 而言其在投资方 面的成本也会 降低 , 并且 由于空 『 4 1 胡 志 强, 沈庆春. 煤 化 工 空 分 装 置 论坛 f J 1 . 通 用 机械 , 2 0 0 9 ( 9 ) . 分装置 的这 些设备都是一个 系列的缺一不可 因此在配置 方面也更
空分装置资料
空分装置的工艺流程改进及智能化
空分装置的工艺流程改进
• 采用新型精馏塔结构,提高空气的分离效率 • 采用高效冷却器,提高冷却效果,降低冷却能耗 • 采用先进控制技术,实现空分装置的自动化运行
空分装置的智能化
• 采用智能控制技术,实现空分装置的智能化运行 • 采用远程监控技术,实现对空分装置的远程管理 • 采用大数据分析技术,实现对空分装置的性能预测和优化
DOCS SMART CREATE
空分装置技术研究与应用
CREATE TOGETHER
DOCS
01
空分装置的基本原理及分类
空分装置的工作原理及其在工业中的应用
空分装置的工作原理
• 利用压缩机的压缩作用,将空气分离成不同组分的气体 • 通过精馏塔进行分离,得到高纯度的氧气、氮气等产品 • 剩余的尾气被排放或回收利用
空分装置的安全管理
• 建立完善的安全管理制度,确保空分装置的安全运行 • 对操作人员进行安全培训,提高安全意识 • 对空分装置进行定期安全检查,及时发现和处理安全隐患
空分装置的应急处理
• 制定应急预案,应对突发情况 • 对应急处理过程进行演练,提高应对能力 • 对应急处理结果进行总结,不断完善应急预案
空分装置的未来研究方向
• 研究高纯度产品的生产技术,满足市场需求 • 发展节能环保技术,降低能耗,提高经济效益 • 深化智能控制技术,提高空分装置的运行效率
03
空分装置在不同行业的应用及需求
空分装置在石油化工行业的应用及需求
石油化工行业对空分装置的需求
• 生产合成氨、甲醇等化工产品需要高纯度的氧气 • 石油化工生产过程中需要氮气作为保护气体
空分装置的市场前景及竞争格局
空分装置的市场前景
空分装置培训资料讲解
空分装置技术员工培训资料目录第一章制氧原理第一节空气的性质及分离原理一、概述二、空气的性质三、空气精馏的基本原理第二节工艺流程一、流程叙述二、工艺流程图第二章压缩第一节压缩机概述一压缩机的定义和分类二汽轮机的定义和分类第二节离心式压缩机及汽轮机的工作原理及结构一离心式压缩机工作原理及结构二汽轮机基本原理与结构第三节离心式压缩机及汽轮机运行有关概念一临界转速二旋转脱离与喘振三离心式压缩机的性能曲线、压缩机与管网联合工作第四节离心式压缩机组辅助系统一压缩机的段间冷却系统二汽轮机的凝汽系统三机组油系统四防喘振控制系统五汽轮机调速调压和保安系统六密封系统第五节离心式压缩机工况调节的几种方法一概述二几种调节方法介绍三各种调节方法比较第三章主要设备第一节净化与换热设备一、分子筛吸附器二、板翅式主换热器三、主冷凝蒸发器四、过冷器第二节精馏设备一、主精馏塔二、氩精馏塔第三节制冷设备膨胀机第四节压缩与输送设备一、空气压缩机二、增压机三、蒸汽透平四、低温泵第四章空分装置的消耗第一节原料空气第二节公用工程消耗和化学品消耗一、公用工程1、电耗2、水耗3、蒸汽消耗4、仪表空气5、解冻气二、化学品消耗液氨消耗第五章主要产品参数第一节产品规格一、一工况产品规格二、二工况产品规格第二节操作特点一、操作弹性二、操作特性第六章安全说明一、概述二、常见的安全事故三、空分区域内的危险性物质四、工作人员必须注意的安全问题第一章制氧原理第一节空气的性质及分离原理一、概述空气是一种取之不尽的天然资源,它由具有丰富用途的氧气、氮气、氩气等气体组成。
这些气体在空气中是均匀地相互混合在一起的,要将他们分离开来是比较困难的,为此近百年来,随着工业技术的发展,对空气的分离形成了三种技术方法:吸附法、膜分离法及低温法。
吸附法是一种利用分子筛对不同分子的选择吸附性能来达到最终分离目的的技术,该技术流程简单,操作方便,运行成本低,但一方面其获得高纯度产品较为困难,而且装置容量有限,所以该技术有其局限的应用范围。
空分装置基本原理和过程
空分装置基本原理和过程空分装置是一种用于分离混合气体的设备,其基本原理是利用不同气体的物理性质差异以达到分离的目的。
空分装置的过程包括压缩、冷却、脱水、除尘、分离和回收等多个步骤。
空分装置需要对混合气体进行压缩。
通过增加气体的压力,使其分子间的距离缩短,从而增加气体分子间的相互作用力。
这样可以提高分子的平均动能,使气体更容易被冷却和液化。
接下来,压缩后的混合气体需要进行冷却。
在冷却过程中,混合气体中的不同组分会因为其沸点的不同而出现液化现象。
通过控制冷却温度,可以使得混合气体中的某些组分首先液化,而其他组分仍保持气态。
在冷却后,混合气体会进一步进行脱水处理。
这是为了去除混合气体中的水分,避免对后续分离过程产生干扰。
通常采用吸附剂或者分子筛等材料来吸附水分,使混合气体中的水分含量降低。
除了脱水处理,还需要对混合气体进行除尘。
这是为了去除混合气体中的固体颗粒或者液滴等杂质,以保证后续分离过程的顺利进行。
常见的除尘方式包括过滤、电除尘和洗涤等。
接下来是最关键的分离过程。
在分离过程中,利用不同组分的物理性质差异,将混合气体中的气体分子进行分离。
常见的分离方式包括吸附、吸附剂脱附、膜分离和凝聚等。
其中,吸附是一种常用的分离方式,通过选择合适的吸附剂,使得混合气体中的某些组分在吸附剂上被吸附,从而实现分离。
经过分离后的气体可以进行回收利用。
通过控制温度和压力等条件,将已分离的气体重新转化为气态,以便于储存和使用。
对于一些高纯度气体的需求,还需要进行进一步的提纯处理,以满足不同的应用需求。
空分装置的基本原理是利用不同气体的物理性质差异进行分离,通过压缩、冷却、脱水、除尘、分离和回收等多个步骤,实现对混合气体的有效分离和利用。
空分装置在化工、石油、制药等领域具有广泛的应用,为各行各业提供了重要的气体资源和工艺支持。
通过不断的技术创新和装置优化,空分装置的分离效率和能源利用效率将得到进一步提高,为可持续发展做出更大的贡献。
空分设备在煤化工中的应用
我 国的工业 发展 在逐 步增 速 ,而作 为曾经 是 工业龙 头 代表 的煤 化 特点 。 工也不甘落后持续发力继续引领着我国的工业领域 。我国的能源消耗 2 . 1 空分设备随着煤化工的扩大而大型化。目前随着煤化工行业的 结构中煤炭资源的消耗占所有能源消耗 的 7 0 %左右 ,如此之大的消耗 快速发展其产能在不断提高 ,对于能源的消耗也不断增强其设备的体 比重造成我国的煤化工行业一直是我国的工业 的发动机。煤化工行业 积与在生产过程中所需要的供氧及其他气体 的输入也变得越来越多 , 随着我国工业的进步也在逐步扩大的规模而在这样 的前提下 ,在煤化 因此空分设备为了适应煤化工发展的这一特点其本身也在 向大型化迈 工行业内应用最为广泛 的空分设备也在被更加广泛的应用 。空分设备 进。在 目前的煤化工生产中仅以一种 4 0 0 万 煤制油装置为例 , 其一 在煤化 工行业 的内的应用越来越广泛就使得越来越多 的目光为之聚 小时所需要消耗 的氧气量就高达 6 0 3 0 0立方米,这样可怕的消耗如果 焦。 近年来对于空分设备在煤化工的应用一直是—个较为热 门的话题。 是传统的小型空分设备是根本无法满足的因此,目前空分设备正向大 今天笔者就通过本文为大家分析空分设备在煤化工 中的应用。 型化迈进 , 其也具有了大型化的特点。 1空分设备在煤化工空分工业气体的应用 2 . 2 空分装置的供给物在呈现多样化 。空分装置在以往其最主要的 1 . 1 空分设备在煤制油过程中的应用。 空分设备在煤制油生产系统 作用就是制造氧气从而满足煤化工的需求 ,而如今尤其是在煤化工合 中的应用主要表现在其提供氧气从而保证成品油的出产 。煤制油装置 成氨的制取过程 中, 其对于其他种类其他的要求更加大 , 例如空气 中的 基本 由空分装置 、 煤气化装置 、 油品合成装置 、 尾气制氢装置和产品加 氮 气就 是 合成氨 生产 的 主要原 料气 之一 ,因此 空分 装置 除 了满 足于 现 工 装置 构成 。来 自界 区外 的原 料 煤与来 自空分 装置 的氧 气进 人煤 气 化 代 煤 化工 所 需要 的氧气 之外 ,还需 要 满足 更 加 多样 化 的例 如 氮 气 、 氢 装置 , 经气化_ [ 艺生产粗合成气 , 然后送往一氧化碳变换装置采用高水 气 、 氦气 、 氩气等不同气体的供给工作。因此未来在空分装置的应用发 气 比部分变换工艺调节粗合成气中的一氧化碳和氢气 比例 ,经过合 展中应该会更多 的将精力放在空分装置对于其他不同气体的提取方面 成、 制氢生产出成品油。空分装置为煤气化装置 、 硫 回收装置和尾气制 以满足煤化工生产过程中对其他稀有气体的需求 。 氢装置提供所需的氧气 , 副产的氮气主要供煤气化装置使用。在煤制油 2 3空分设备具有的可靠 『 生 正在不断提高。由于目前我国的煤, f - L  ̄ 的流程内空分设备得 以多次应用 ,其从开始将空气通过分子筛进行净 的生产量在不断提高,其在每一次的生产过程 中所需要生产的产品数 化去除杂质到最终提纯出氧气参与煤制油的合成过程这一系列的动作 量也在不断提高, 而煤化工在此期间所需要的供氧量也在成倍增加。 空 都与空分设备有着极大的关系。 分装备是保证煤化工供氧量 的最大前提 ,如果空分设备的可靠性无法 1 . 2 空分设备在煤制气过程中的应用。 空分装置在煤制气领域的应 得到保证那么很可能造成空分设备在煤化工生产的过程中停止运转或 用就显得 比煤制油领域要直接一些但也相对的比较复杂一些。首先煤 者运转的速度变慢从而无法保证煤化工生产所需要的供氧量从而使得 制气的过程中空分装置的最大作用还是为其提供足够的氧气来作为供 煤化工的生产无法正常进行 。因此 目前我国的空分设备在应用方面较 应煤制气系统的需要 。统煤制气工艺装置主要有 : 空分装置 、 煤气化装 为注重其可靠性即稳定 性, 因为这是保证煤化工产品生产的必要前提。 置、 粗煤气耐油耐硫变换 、 冷却 、 低温 甲醇洗净化 、 低压蒸汽吸收制冷 、 2 . 4 空分设备具有的安全『 生 在不断加强。空分设备在煤化工生产中 C l a u s -S c o t 硫回收工艺及 甲烷化等。在整个煤制气的过程中空分设备 必须具有绝对的安全 陛,否则其极可能引起破坏力极 为巨大的化工爆 除了为系统提供足够的氧气之外 ,其提纯出的其他气体例如氮气和仪 炸。空分设备的主要作用是供氧和对空气进行必要的提纯和输送 , 一旦 表空气还可以用于低温甲醇洗涤工艺等等 ,并且还能够对整个煤制气 这些环节任何一个环节出现错误 ,例如其他气体进入了供养通道里就 系统 的稳定 『 生以及 连续 I 生 提 供必 要 的支持 作用 。 很可能造成锅炉爆炸的可能 , 除此之外 , 空分设备还影响着煤化工生产 1 . 3 空分设备应用于煤制烯烃系统。 烯烃在植物精油、 香料 、 橡胶制 产品的质量 ,尤其是在合成氨的生产过程 中如果空分设备将过多的硫 品中被广泛的应用而其生产的过程也离不开空分设备的支持 。烯烃工 化物保留在了合成氨的原料气 当中很可能造成硫化物中毒严重威胁生 艺装置主要包括空分装置 、 气化装置 、 净化装置、 甲醇合成及精馏装置 、 命安全。 M T O装置 、 烯烃 回收 、 聚丙烯装置和聚乙烯装置等。空分设备在煤制烯 结束语 空分设备在煤化工的应用已经朝着范围越来越广功能越来越多样 烃系统中的主要应用还是供氧作用 , 还能够提供一定的氢气、 甲烷以及 硫化物。 高压氧气出空分装置后连 同空分送来 的高压氧进人气化炉, 气 化的趋势发展 , 这样的发展本身是一个我们乐见其成的事情, 但是空分 化反 应在 6 . 5 MP a( G ) 、 1 3 5 0 ~1 4 0 0  ̄ C 下进行 ,反 应生 成 C O、 C O 、 H: 、 设备如果想在煤化工领域的应用更加普遍还必须加强其本身的工艺和 H 2 【 】 及少量 C H 、 H : S等气体; 送到甲醇合成系统 ; 经甲醇洗脱硫脱碳净 适用性。 我们相信在不久的将来空分设备与煤化工的结合会更加契合 , 化后的合成气经甲醇合成气压缩机增压与来 自甲醇合成回路的循环气 为我 国的工业 发展带 来更 大 的贡献 号 晾喜 。 参 考文献 被压缩至合成需要的压力 ,送人甲醇合成 回路进行 甲醇合成, C O 、 C O 和H 在c u —z n 催化剂作用下 , 合成粗甲醇。MT O装置包括甲醇转化 『 1 1 樊志伟 , 陈薇薇. 碎煤加压气化炉床层控制叨. 氮肥技术, 2 0 1 3 ( 3 ) . 和烯烃 回收两部分 , 丙烯 、 乙烯等产品送至聚丙烯 、 聚乙烯系统进行 聚 王文富,程更新.壳牌炉化工工艺技术的应用情况 叽.氮肥技术, 合反应。 在神华包头煤化工生产系统中空分采用杭氧的 4 套6 0 0 0 0 m , 2 0 1 0 , 3 1 ( 5 ) . / l 1 空分装置,副产氮气主要供全系统吹扫置换 、 保护气体 , 空分增压机 『 3 1 孙洪波. 空分装置后备储存 系统的设计( 一) 啊石 油化工设计 , 2 0 1 2 ( 2 ) . 后空气供全厂仪表空气和工厂空气使用 。 『 4 ] 张晓亮, 李江龙. 谈 变电二次设计过程中的细节问题[ J 1 . 科技情报 开发 2 空分设 备在 煤化 工 中的应 用特点 与经 济. 随着空分设备在煤化 工中的不断应用 ,其应用特点也随着煤化工 的发展而在变化 ,下面我们就来看看空分设备 目前在煤化工
煤化工空分系统介绍
为了保证连续供气,需要两个以上的吸附塔 交替工作。再生的方法可采用加热提高温度 的方法(TSA),或降低压力的方法(P SA)。这种方法流程简单,操作方便,运 行成本较低,但不能获得高纯度的产品,氧 纯度通常在93% 左右,适合配套于氧气用量 不大,产品纯度要求不高的装置。
。
3 、膜分离法。利用有机物聚合膜的渗透选择性, 当空气通过薄膜或中空纤维膜时,氧分子穿透薄 膜的速度约为氮分子的4-5倍,从而实现氧氮 的分离。这种方法装置简单,操作方便,启动快, 投资少,氮富氧浓度一般适宜在35% 左右,规模 也只适宜于小型装置,用于富氧燃烧和医疗保健 等方面。
3.氮气广泛用于冶金、电子与石油工业、化工、食品、 医疗、高科技行业,在本项目主要作为保护气、置 换气、汽提气,用在全厂各工段。 4、氩气用于金属冶炼、机械、电子、照明等行业,在 本项目中没有使用。 5、空气分离,简称空分。 空分作为公用工程的一部分,主要任务是为气化工 段提供纯氧。并为全厂各个工段提供符合标准的仪 表空气、工艺空气和不同压力规格的氮气。副产品 为液氧、液氮、液氩,可作为产品出售,提高投资 收益。生产过程中排放的冷凝液送到脱盐水站,回 收利用。
要将空气液化,就需要将空气冷却到 -173 ℃以下,这种制取高纯度产品的方法 叫做深度冷冻法,而利用沸点差将液空分离的 过程就是精馏过程。由于提取产品纯度高,装 置可以大型化,普遍应用于空分行业。
2 、变压吸附法。利用分子筛对不同的分子具有选 择吸附的特点,有的分子筛对氮具有较强的吸附性 能,让氧分子通过,因而获得纯度较高的氧气;有 的分子筛对氧据有较强的吸附性能,让氮分子通过, 因而获得纯度较高的氮气。由于吸附剂的吸附量有 限,当吸附某种分子达到饱和时,就没有继续吸附 的能力,需要将被吸附的物质赶掉,才能恢复吸附 能力,这一过程叫再生。
空分装置
0.7MPa (G)
去全厂仪表空气系统
2.7MPa (G) 去空分装置增压膨胀机 7.0MPa (G) 去装置高压板式换热器
高压蒸汽 8.82MPa
齿 轮 箱 空压 机
汽轮机
来自过滤系统
增压机
去 脱 盐 水
266000 Nm3/h
0.62MPa (A)
去空气预冷系统
来自纯化器
3、空压机系统
含尘空气经过自洁式空气过滤(F171A001),滤掉
• 2、汽封系统
• 为防止汽缸前汽封处高温蒸汽漏入轴承箱造成轴
承温度升高及润滑油中带水:防止后汽封处空气 漏入排缸而使真空恶化,汽轮机采用了封闭式汽 封系统,主要由气动汽封压力调节器(7200)以 及管道、阀门等组成,正常运行时封汽压力 0.108MPa。
4000Nm3/h 54000Nm3/h 70000Nm3/h
• 1) 来自增压压缩机三级冷却器后的压力为 2.7MP(G)、温度40℃的空气在增压透平膨胀机增 压侧进一步增压至4.15MPa,再经增压后冷却器 冷却,进入高压板式换热器被返流气体、液体冷 却,去膨胀机制冷。
• 2) 4.10MPa、-108℃的空气在膨胀机膨胀做功, 压力降为0.485MPa、温度为-172℃,进入下塔参 与下塔精馏。
主润滑油泵
辅助油泵 事故油泵 油箱
1
1 1 1
凝汽器
1
杭汽
冲洗水箱 联轴器1
1 1
MAN MAN
联轴器2
盘车油泵用电机 盘车油泵 顶轴油泵 顶轴油泵用电机 疏水膨胀箱 凝结水泵 凝结水泵用电机 两级射汽抽气装置 总放空消音器 暖管消音器
1
1 1 1 1 1 2 2 1 1 1
MAN
空分技术要点及操作入门一文掌握!
空分技术要点及操作入门一文掌握!空分作为化工生产中重要的一个环节,其产生的工业气体用途广泛,作用重大。
今天小编为大家重点介绍空分工艺,以及技术重点和操作要领,希望对大家有所帮助。
煤化工空分装置基本术语1、空气存在于地球表面的气体混合物。
接近于地面的空气在标准状态下的密度为1.29kg/m3。
主要成分是氧、氮和氩;以体积含量计,氧约占20.95%,氮约占78.09%,氩约占0.932%,此外还含有微量的氢及氖、氦、氪、氙等稀有气体。
根据地区条件不同,还含有不定量的二氧化碳、水蒸气及乙炔等碳氢化合物。
2、加工空气指用来分离气体和制取液体的原料空气。
3、氧气分子式O2,分子量31.9988(按1979年国际原子量),无色、无臭的气体。
在标准状态下的密度为1.429kg/m3,熔点为54.75K,在101.325kPa压力下的沸点为90.17K。
化学性质极活泼,是强氧化剂。
不能燃烧,能助燃。
4、工业用工艺氧用空气分离设备制取的工业用工艺氧,其含氧量一般小于98%。
(体积比)5、工业用气态氧用空气分离设备制取的工业用气态氧,其氧含量大于或等于99.2%。
(体积比)6、高纯氧用空气分离设备制取的氧气,其氧含量大于或等于99.995%(体积比)。
7、氮气分子式N2,分子量28.0134(按1979年国际原子量),无色、无臭、的惰性气体。
在标准状态下的密度为1.251kg/m3,熔点为63.29K,在101.325kPa压力下的沸点为77.35K。
化学性质不活泼,不能燃烧,是一种窒息性气体。
8、工业用气态氮用空气分离设备制取的工业用气态氮,其氮含量大于或等于98.5%(体积比)。
9、纯氮用空气分离设备制取的氮气,其氮含量大于或等于99.995%(体积比)。
10、高纯氮用空气分离设备制取的氮气,其氮含量(体积比)大于或等于99.9995%。
11、液氧(液态氧)液体状态的氧,为天蓝色、透明、易流动的液体。
在101.325kPa 压力下的沸点为90.17K,密度为1140kg/m3。
空分装置讲解课件
• 空分:简单的说就是把空气分 离的过程
空分装置的作用
• 空气是一种取之不尽的天然资源,它由具有 丰富用途的氧气、氮气、氩气等气体组成。这些 气体在空气中是均匀地相互混合在一起的,要将 他们分离开来是比较困难的,为此近百年来,随 着工业技术的发展,对空气的分离形成了三种技 术方法:吸附法、膜分离法及低温法。
空气分离技术简介
• 吸附法是一种利用分子筛对不同分子的 选择吸附性能来达到最终分离目的的技术, 该技术流程简单,操作方便,运行成本低, 但获得高纯度产品较为困难,而且装置容 量有限,所以该技术有其局限的应用范围。
•
空气
氧气 氮气
空分装置的作用
• 在以煤及油为原料的化工行业,如:化肥、 甲醇、煤制油等生产企业以及炼钢厂,都需要空 分装置,设置空分装置的主要作用是生产合格的 氧、氮及氩产品。氧的作用是助燃,如气化炉就 是煤和氧气进行燃烧反应,得到需要的水煤气 (CO+H2);氮是惰性气体,主要作用是用于 对工厂的设备、管线进行吹扫置换、充氮保护以 及合成氨配氮(N2+3H2=2NH3)等;氩是空分 装置的副产品,可作为合金焊接的保护气,在灯 泡照明、电子工业及其它方面都得到了广泛的应 用。也有的空分装置不提取氩。
空气液化
要使空气液化首先要获得低温,工业上常 用的方法有二种,即空气通过节流阀和膨胀机 的膨胀制冷获得低温,甚至液化。这二种方法 是以气体的膨胀为基础,已应用在气体的分离 和液化技术以及气体制冷机中。
空分操作基础知识培训1
热力学能——工质是由分子组成,其内部分子不停的运动而具有动能,
分子之间相互存在作用力因而具有位能,分子动能和位能之和叫热力学
能(内能);
焓——工质在流动过程中,后面的气体对前面的气体有推动的功,因而
具有流动能,焓是气体内能与流动能之和;
熵——一块炽热的铁会自然冷却,水会自然从高处流向低处,它们的逆
过程均不会自发进行(自发过程),这种有方向性的过程叫“不可逆过
✓ 标准大气压(atm):温度为0度时,纬度45度海平面上大气的平均压力。
✓ 工程大气压(at):工程技术上常用的压力单位,指1cm2面积上作用1kg 力而产生的压力;kg.f/cm2;
✓ 国际单位:1m2的面积上1N的力而产生的压力,记作Pa(帕)
✓ 换算关系:1atm=1.013*105Pa
1at=0.981*105Pa
✓ 热力学温标(K)——又称绝对温标,分度的方法规定在标准大气压下水的三 相点为273.16度,沸点与三相点间分为100格,每格代表1度,把-273.16度定 为绝对零度。
; ✓ 仪表所显示的温度均为摄氏温度,而工程计算必须采用绝对温标
✓ 两者换算关系: t=K-273.16
K=t+273.16
压力——单位面积上的作用力,压力的方向总是垂直于容器的器壁;--- 常 用单位介绍;
电子工业:大规模集成电路、彩电显像管、电视机和收录机元件及半导体元 件处理的氮气源。
金属加工:光亮淬火、光亮退火、渗氮等热处理的氮气源;焊接及粉末冶金 烧结过程中的保护气等。
化肥工业:氮肥原料;置换、密封、洗涤、保护触媒等用气。 食品保鲜:粮食、水果等充氮贮藏与保鲜;肉类、乳酪保鲜包装;
化学工业:置换、清洗、密封、检漏、干法熄焦中的保护气;催化剂再生、 石油分馏、化纤生产等用气。
空分装置
压缩系统 预冷系统
纯化系统 换热系统
产品送出系统
精馏系统
液体储存后备系统
空气压缩系统包括空气入口过滤器,空压机,空压机级间冷却器,空压机放空消音器等等
空气预冷系统包括水冷塔,空冷塔,水泵,冷冻机等等
分子筛纯化系统包括分子筛吸附器,氮气放空消音器等等
空分换热系统包括主换热器,过冷器等等
空分精馏系统包括精馏塔,冷凝蒸发器等等
其它空气分离方法,如膜分离法、变压吸附法(PSA)和真空变压吸附法(VPSA)等,主要是应用于从空气 中分离单一组分。而用于半导体器件制造的高纯氧、氮和氩需要低温精馏法。同样,稀有气体氖、氪和氙的可行 来源是也使用低温精馏法。
因此低温精馏法是最重要的空气分离方法。
原理
低温精馏法
其它空气分 离方法
膜技术可以为空气分离提供替代的、低能耗的方法。例如,在环境或温暖温度下操作的聚合膜可以产生富氧 空气(25-50%氧气)。陶瓷膜可以提供高纯度的氧气(90%或更多),但需要更高的温度(800-900℃)才能工作。 这些陶瓷膜包括离子传输膜(ITM)和氧传输膜(OTM)。膜气体分离是用来提供贫氧和富氮气体,而不是空气, 以填补燃料箱的喷气式客机,从而大大减少了意外火灾和爆炸的机会。相反,膜气体分离。
变压吸附提供从空气中分离氧或氮而不液化。该工艺在环境温度下运行;沸石(分子海绵)暴露于高压空气 中,然后释放空气并释放所需气体的吸附膜。压缩机的尺寸比液化装置小得多,便携式制氧机就是这样制造的, 为医疗目的提供富氧空气。真空变幅吸附也是一个类似的过程;产品气体是在亚大气压下从沸石中析出的。
组成部分
低温精馏法方法是先将空气冷却至液化,然后在不同的沸腾温度下选择性地蒸馏成分。该工艺可以生产高纯 度气体,能耗高。低温分离过程要求热交换器和分离塔紧密结合,以获得良好的效率,所有制冷能量都由装置入 口的空气压缩机提供。
空分装置基本原理和过程
空分装置基本原理和过程
空分装置是一种常用于化学工业和石油化工领域中的设备,用于将气体混合物中的不同成分分离出来。
其基本原理是利用各组分在固体吸附剂表面上的物理吸附能力差异,使它们在一定条件下的温度、压力和流速的控制下逐步分离。
下面将详细描述空分装置的分离过程。
首先,气体混合物进入空分装置的进料口,然后通过管道进入装置内部。
在空分装置内部,气体混合物首先进入吸附器。
吸附器中装有一种或多种吸附剂,根据不同物质的吸附性能选择合适的吸附剂。
吸附器内的吸附剂具有大量的微孔和大表面积,可以提供充足的吸附位置。
气体混合物进入吸附器后,其中的一部分组分会与吸附剂发生物理吸附作用。
不同成分的吸附性能差异导致它们在吸附剂中停留的时间不同,从而实现了分离。
在一段时间后,吸附器内的吸附剂逐渐饱和,无法再吸附新的气体。
此时需进行脱附操作,以释放吸附剂上的已吸附成分。
为了进行脱附,需要降低吸附剂的温度或增加脱附剂的压力。
吸附剂上的已吸附成分会随着脱附剂的流动而被带走,从而从吸附剂中解吸出来。
脱附操作完成后,吸附剂就恢复了吸附能力,可以再次进行吸附过程。
而已解吸出的成分则被收集或进一步处理。
这样,通过重复吸附-脱附的过程,气体混合物中的不同成分可以逐步分别被吸附和解吸出来。
最终,我们可以得到分离后纯度较高的各个成分。
总结来说,空分装置的基本原理是通过控制吸附剂的吸附和脱附过程,利用不同成分在吸附剂上的吸附能力差异,实现气体混合物的分离。
探究煤化工空分装置安全运行要点
探究煤化工空分装置安全运行要点身份证******************摘要:煤化工空分装置可以使空气中不同成分的气体按照相应的物理性质进行分离,从而收集如氨气、氩气等比较稀有的气体。
但在装置运行过程中,可能会出现一些安全事故,影响对稀有气体的收集。
这要求煤化企业必须重视煤化工空分装置的运行稳定,确保运行过程中不会出现安全事故。
本文将对煤化工空分装置安全运行要点进行探究,仅供读者参考。
关键词:煤化工;空分装置;安全;运行要点一、煤化工空分装置运行概述煤化工空分装置主要是将空气进行分离,使空气中不同成分的气体能按照相应的物理性质进行分离,其主要采用的方法为薄膜渗透法、低温蒸馏法以及变压吸附法,由于方法不同,所采用的工艺也存在一定的差异。
比如:薄膜渗透法是采用一种薄型有机膜根据不同气体的渗透能力差异对空气进行过滤,从而将空气中不同物质的气体进行分离。
这种工艺主要原理是让空气引入膜分离器,之后在两侧膜的压力下实现空气中不同物质气体的分离,其中的氮气在渗透方面速度较慢,最后会富集于膜内,从而实现空气中不同气体分离。
低温蒸馏法的原理是将空气压缩、膨胀降温,使空气液化,空气中不同物质的气体会根据环境温度出现不同的表征,从而实现空气分离。
变压吸附法是将空气作为原料,让不同分子进行吸附,通过压力作用将空气中不同物质进行分离。
煤化工空分装置作为煤化工非常重要的设备,其能稳定安全地运行已经成为煤化工项目的关键。
因此,必须重视煤化工空分装置的运行稳定,确保运行过程中不会出现安全事故[1]。
二、煤化工空分装置运行要点(一)确定不同气体的能力和规格煤化工项目中,氧气是反应原料,这也会消耗大量氧气。
在煤化工空分装置运行过程中,必须考虑用氧装置用量以及用氧装置的实际符合,从而确定好氧气在煤化工空分装置运行的实际用量。
同时,在煤化工空分装置运行过程中,也应确定好氮气的规格,可以根据氮气的实际压力等级合理调配氮气的实际用量,确保氮气的使用符合要求。
空分装置_精品文档
空分装置第六章空分装置(010#)1、概述空分装置的功能是将空气通过深冷分离的方法制取氧气、氮气供各工艺装置使用,并向全厂提供仪表空气和工厂空气,同时副产液氧、液氮、液氩。
空分装置制氧能力:~32000Nm3、h,采用“离心式空气压缩+分子筛空气净化+两级空气精馏+液氧泵+液氮泵内压缩”的工艺技术,由空气压缩(018#)、空气预冷(011#)、空气净化(012#)、空气分离(013#)、液体贮存及汽化(016#)、公用系统(019#)6个工序构成。
2、工艺说明2、1空气过滤和压缩空气首先进入自洁式空气吸入过滤器,在空气吸入过滤器中除去灰尘和其它颗粒杂质,然后进入主空压机,经过多级压缩、级间冷却器冷却后进入空冷塔。
3、2流程空气经自洁式过滤器,除去机械杂质、灰尘后由入口导叶进入空气压缩机,经三段四级压缩后,输出0。
55MPa、185000Nm3、h(干)的空气到后序系统,空压机出口管线设有防喘振流量控制阀FV01122A和压力控制阀HV01122B,从而控制机组出口压力和流量。
由纯化系统来的洁净空气(105000Nm3、h)进入增压机,经三段七级压缩,使空气的压力增高,增压空气分成三股:一股从增压机一段水冷器后抽出【1、1MPa7000Nm3、h】一股从增压机二段水冷器后抽出【2、7MPa40900Nm3、h】去增压膨胀机系统;另一股【6。
5MPa57100Nm3、h】从增压压缩机末级引出,经冷却后进入空分装置,流程中设有两个防喘振阀,分别为FV01123和FV01128,目的是防止进入增压机一段和三段的气量过小引起喘振。
蒸汽经速关阀(2301),高压调节汽阀(0801)进入汽轮机通流部分。
蒸汽在第一膨胀段(0001)做功后,一部分从外缸下部的抽汽口引出,输至装置中压蒸汽管网,未抽出的蒸汽经中压调节汽阀(0802)进入第二膨胀段(0002)继续做功,做功后,在压力降至排汽压力后进入凝汽器(6000)。
空分装置培训课件
制作单位:生产技术部
0
目
• • • • • •
录
一、概述 1、空分的含义 2、空气分离的方法 二、空分装置的流程和特点 1、装置的流程 2、按流程的顺序分别介绍各个系统 三、空分设备的安全规定及一些事故案例
1
一、概述
2
空分的含义
• 空分的含义:空分,顾名思义即空气的分 离,是利用不同的方法将空气中的各组分 分离开来,从而获得所需要的氧气、氮气 及一些稀有气体的过程。
20
增压空气压缩机
型式: 整体齿轮式 进入空气增压机的空气经增压机 第一段增压后分为两股:一股直接出 增压机,经后冷却器冷却后进入膨胀 机的增压风机中增压,然后被冷却器 冷却至常温后进入高压板式换热器, 再从高压板式换热器中部抽出进入膨 胀机去膨胀。膨胀后的空气直接送入 下塔。另一股空气在增压机的第二段 继续增压并经后冷却器冷却至常温后 进入高压板式换热器,与高压液氧及 返流污氮气进行换热。这部分高压空 气从换热器底部抽出经节流进入下塔。
原理:它是利用一些有机聚合膜的渗透选择性,当空气通过 薄膜或中空纤维膜时,氧气穿透过薄膜的速度约为氮的4-5倍,从 而实现氧、氮的分离 。膜分离的富氧浓度只能达到28~35%O2 。 目前应用较多的是低温法(又叫深度冷冻法)。它的优点: 生产量大,产品纯度高,电耗低且可得到液态产品,故应用广泛。
• 3、膜分离法:
21
3、预冷系统
• 空气冷却塔 • 作用:把空压机出来的 高温气体(<116℃)冷 却到17℃ • 结构:填料塔 • 使用方式:空气从空冷 塔下部进入,在填料表 面与自上而下流过的冷 却水和常温水进行热质 交换,使空气冷却并洗 除空气中的一些有害杂 质,冷却水来自水冷塔。
现代空分装置在煤化工领域的应用
现代空分装置在煤化工领域的应用摘要:本文首先简要阐述了煤基化工生产系统中空分装置的应用情况,进而分别从流化床技术、气流床技术、固定床间歇气化技术几个方面分析现代空分装置在气化装置设备的具体应用情况,旨在充分借助空分装置的应用优势,推动煤化工行业的高质量可持续发展。
关键词:现代空分装置;煤化工领域;煤制油生产系统引言:伴随着现代信息技术的应用和普及,社会生活出现了方方面面的变化,煤化工行业也开始进入快速发展时期。
空分装置作为一种应用较为广泛的设备类别,无论是产能,还是规模都处于不断增强状态。
我国煤炭资源丰富,加大煤炭资源的利用和开发,也能够在一定程度上保障国家能源安全。
1.现代空分装置在不同的煤化工生产系统1.煤制油生产系统在煤化工行业不断发展的今天,空分装置的应用范围更加广泛,应用功能更加全面,不仅能够将其应用于各种型号气化炉氧气,还可以实现不同装置、不同生产系统工业气体的综合使用。
对于煤制油生产系统,整个系统装置不仅包含油品合成装置、空分装置,而且还会应用到尾气制氢装置、产品加工装置、煤气化装置。
对于处于界区外的原料煤,能够将其一同放置到煤气化装置当中,促使原料煤能够和空分装置中的氧气进行充分反应,最终制备形成粗合成气。
完成上述处理工序后,便能够将产物直接运送到一氧化碳变换装置,合理调节一氧化碳和氢气的成分配比,经过一系列操作,最终生产制备形成成品油[1]。
需要注意的是,对于煤制油生产系统,应用到的空分装置则为三个装置共同形成,借助硫回收装置、煤气化装置、尾气制氢装置的共同作用,实现氧气供给,与此同时,借助煤气化装置实现氮气供给。
1.煤制气生产系统在我国,煤炭资源丰富、煤炭能源消耗也相对较大,为了强化煤炭资源的重视程度,通过应用现代空分装置,能够起到良好的应用效果。
对于煤制气生产系统,整个系统装置不仅包含低压蒸汽吸收式制冷装置、空分装置,而且还会应用到原油和耐硫转化装置、煤气化装置。
事实上,对于空气分离装置,整个工艺生产流程将会应用到大量气体,而氮气将会直接应用到低温甲醇洗的工艺生产流程,能够促使整个工艺生产更加稳定和顺利,也能够切实推动煤化工行业的建设和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 空分装置
3.1 工艺设计基础
3.1.1装置生产能力
空分装置制氧能力:30000Nm3/h
3.1.2 装置组成
空分装置由如下4工序组成:
(1)空气压缩工序;
(2)空气净化工序;
(3)空气分离工序;
(4)液氧液氮液氩贮存工序。
空分装置、工序、主项编码如下表。
3.1.3 原料、产品和催化剂等规格
(1)原料
本装置原料为空气。
原料空气质量规格(杂质含量)如下表:
(2)产品规格
(3)化学品规格
3.1.4 原料、催化剂和化学品消耗量
3.1.5 公用工程物料规格及消耗
3.2 工艺说明
3.2.1 生产方法及工艺特点
空分装置以空气为原料,通过离心式空气压缩、分子筛空气净化、两级空气精馏的方法将空气分离为氧气和氮气,供煤气化装置、备煤装置及公用工程系统使用。
空分装置副产的仪表空气供全厂装置正常生产时使用,副产的液氧液氮液氩外售。
空分装置采用“离心式空气压缩+分子筛空气净化+两级空气精馏+液氧泵内压缩”工艺技术,此技术是成熟的工艺技术,有以下主要特点:
●用高效的两级精馏制取高纯度的氧气和氮气;
●用增压透平膨胀机,利用气体膨胀的输出功直接带动增压风机以节
省能耗,提高制冷量;
●热交换器采用高效的铝板翅式换热器,使结构紧凑,传热效率高;
●采用分子筛净化空气,具有流程简单、操作简便、运行稳定、安全
可靠等优点,大大延长装置的连续运转周期;
●采用液氧泵内增压流程,使空分装置操作运行更加安全;
采用DCS控制,使空分装置始终在最佳经济点运行。
3.2.2 工艺流程简述
从大气吸入的空气经空气过滤器(S01101)滤去灰尘杂质后,入空气压缩机
(K01101)加压至0.5MPa(G),然后进入空气冷却塔(C01201)。
空气在空冷塔下段,与循环冷却水逆流接触而降温。
然后通过上段与经冷水
机组冷却的冷冻水逆流接触,降温后入分子筛吸附器(C02103A/B),清除空气
中的水份、二氧化碳和碳氢化合物。
已净化的空气一部分作为仪表空气供全厂用户使用,剩余部分进入冷箱
(Z01301)进行深冷分离。
出冷箱的产品氧气供煤气化装置使用。
出冷箱的氮气经氮气压缩机(K01102)压缩至0.5MPa(G),送全厂低压氮
气用户。
出冷箱的氮气经氮气鼓风机(K01103)压缩至0.03MPa(G),送煤气化装
置用于开车。
从冷箱抽出部分液氧液氮液氩,送入液氧贮罐(T01402)、液氮贮罐(T01401)、
液氩贮罐(T01403)储存待售。
3.3 节能措施及效益
(1)空压机及空气增压机为离心式压缩机,采用同一台蒸汽透平驱动,节省投资并提高能量转换效率。
(2)空冷系统通过水冷塔来充分利用污氮气的不饱和吸湿性,降低冷却水温度,从而可以降低冷水机组的制冷量,节省运行费用。
(3)分子筛吸附器采用双层床结构(活性氧化铝+分子筛)底层活性氧化铝床层可有效地保护分子筛,延长分子筛使用寿命,同时采用双层床也使吸附器再生阻力下降,再生温度降低,节约再生能耗。
(4)采用增压透平膨胀机,利用气体膨胀的输出功直接带动增压风机以节省能耗,
提高制冷量。
(5)精馏塔采用规整填料,降低阻力降,减少了空压机的出口压力,降低了能耗。
3.4 装置定员
空分装置操作制度为:年连续运转时间8000小时,每天操作24小时.采取五班三运转制。
定员表
3.5 装置危险性物料及特性
(1)火灾及爆炸性危害
本工程所用原料为空气,产品为氧气、氮气、液氮和液氧,原料和产品氧气、氮气均不燃不爆,但氧气对可燃材料和通常认为相对不燃材料具有快速的助燃作用。
另外,氧气、氮气和原料空气在压力状态下若操作和管理不当存在超压爆炸危险;液氧和液氮在非正常情况下易产生液体气化而引起超压爆炸。
(2)有毒有害性危害
原料和产品均无毒。
若氮气泄漏,会降低泄漏区域大气中氧含量,使人呼吸困难,如果人体吸入纯氮,很可能突然窒息,甚至死亡。
氮分子量为28.0,沸点-196℃,在正常空气中含量约为78.93%,是无色、无味既不燃烧,也不助燃的惰性气体。
吸入高浓度氮气即产生缺氧状态,人体对于缺氧有相当的代谢能力,但缺氧严重,延髓活动受到明显抑制,心血管和呼吸中枢反应迟钝,呼吸和循环系统失调,先发生呼吸停止,随之心脏停止跳动。
(3)低温危害
液化的氧气、氮气均为低温液体,如果皮肤直接接触,就可能被冻伤。
若皮肤与很冷的固体表面接触,两者会很快粘结在一起,强行撕开可能造成皮肤的伤害。
3.6 生产安全与卫生
3.6.1 生产过程中职业危险、危害因素分析
(1)火灾及爆炸性危害
本装置所用原料为空气,产品为氧气、氮气和液氧、液氮、液氩。
原料和产品氧气、氮气均不燃、不爆,但氧气对可燃材料和通常认为相对不燃材料具有快速的助燃作用。
另外,氧气、氮气和原料空气在压力状态下若操作管理不当存在超压爆炸危险;液氧和液氮在非正常情况下易产生液体气化而引起超压爆炸。
(2)有毒有害性危害
原料和产品均无毒。
若氮气泄漏,会降低泄漏区域大气中氧含量,使人呼吸困难,如果人体吸入纯氮,有可能突然窒息甚至死亡。
氮分子量为28.0,沸点-196℃,在正常空气中含量占78.93%,是无色、无味、不燃也不助燃的惰性气体。
吸入高浓度氮气即产生缺氧状态,人体对于缺氧有相当的代偿能力,但缺氧严重,延髓活动受到明显抑制,心血管和呼吸中枢反应迟钝,呼吸和循环系统失调,先发生呼吸停止,随之心脏停止跳动。
(3)低温危害
液化的氧气、氮气、氩气均为低温液体,如果皮肤直接接触,就可能被冻伤。
若皮肤与很冷的固体表面接触,两者会很快粘结在一起,强行撕开可能把皮肤撕下来。
(4)噪声危害
本装置主要噪声源为:离心压缩机、电机、液氧泵、增压膨胀机、气体放空等,噪声值在85~120Db(A)之间。
噪声对人体的危害,除听力减退外,尚有耳鸣或耳痛的症状或兼有明显的神经衰弱综合症(头痛、头晕、多梦、乏力、失眠、记忆力减退、心悸等),严重时能引起中枢神经系统功能状态的改变
(5)主要污染源和污染物见3.6三废排放量及处理措施
3.6.2 设计中采用的安全卫生防范措施
本装置将在设计中认真贯彻“安全第一,预防为主”的方针,确保建设项目(工程)符合国家规定的劳动安全卫生标准,保障劳动者在生产过程中的安全和健康.各专业在工程设计中严格按规定、规范采取各种预防及保护措施。
(1)总图布置及道路设计满足运输和消防要求。
(2)仪表系统采用分散型控制系统(DCS)、机旁盘装仪表和就地仪表控制相结合的原则。
(3)对于压力容器和压力管道,在设计中设置有安全泄压阀,用于保护设备,避免操作过程中出现超压现象。
(4)各主要设备和管道采用静电接地,防止静电累积引起火灾。
(5)对装置区、罐区采取防雷电措施。
(6)设置全厂水消防措施。
(7)严格监测空分装置主冷凝液氧中乙炔及烃类物质的聚积,并及时排出处理。
(8)在封闭的厂房加强通风,以便氧气、氮气泄露时能迅速稀释与扩散。
(9)液化氮气储罐采用双层结构,内层为低温液体,外层与内层之间珠光砂夹层充密封氮气进行保冷;所有输送低温液体的管道,均保冷处理,这样既满足生产需要,同时防止冻伤人体。
(10)对噪声设备采取隔声、吸声等措施,对气体放空采取消声措施等,以减少噪声危险。
(11)配备必要的劳保用品如防护衣、防护手套、防护鞋、防护眼镜及耳塞、耳罩等。
3.7 三废排放量及处理措施
(1)废气
本装置废气为空气分离后的工艺尾气,氮水塔、空气纯化器排放的污氮等,其废气排放情况见下表所示。
废气排放表
(2)废水
空分装置生产过程中不产生废水,车间地面冲洗水排水经收集后排入污水处理厂进行处理,生活污水也排入污水处理厂处理。
(3)废渣
空分纯化系统使用的吸附材料氧化铝和分子筛,按每6年更换1次考虑,每次排放氧化铝~38.6吨,分子筛~56吨。
由于氧化铝和分子筛无毒,一般采用填埋处理。
(4)噪声
本装置主要噪声源及声级值见下表:
3.8 界区数据表
见界区数据表(03010-01000-CP10)
3.9 设备一览表
见设备一览表(03010-01000-CP21)
3.10 管道命名表
见管道命名表(03010-01000-CP26)
3.11 物料和热量平衡数据表
见物料平衡表(03010-01000-CP16)。