立体化学专一性24页PPT
合集下载
2024版《有机化学》课件立体化学
![2024版《有机化学》课件立体化学](https://img.taocdn.com/s3/m/b41c8aa3e109581b6bd97f19227916888486b9f4.png)
药物活性
优化药物分子的立体构型,以提高其与靶标的结合能力和选择性。
药物代谢
考虑药物在体内的代谢过程,避免产生有害的立体异构体。
生物大分子中立体化学问题
蛋白质折叠
蛋白质的空间构象对其功能至关重要,错误的折 叠可能导致疾病。
DNA结构
DNA的双螺旋结构中的碱基对具有特定的空间排 列,影响遗传信息的传递和表达。
周环反应
羰基化合物的反应
如醛酮的亲核加成反应、缩合反应等,涉及 手性传递和立体选择性。
如电环化反应、环加成反应等,探讨其立体 化学过程和产物构型。
02
01
不对称合成
通过手性辅助剂、手性催化剂等实现不对称 合成,获得单一构型产物。
04
03
生物活性物质中立体化学问题
05
探讨
生物活性物质中手性现象及其意义
命名规则及实例解析
命名规则
在立体化学中,化合物的命名需遵循一定的规则,包括确定手性碳原子的构型、指定取代基的位置和编号 等。例如,对于含有手性碳原子的化合物,需在名称中注明其R或S构型。
实例解析
以乳酸为例,其Fischer投影式中,羧基位于上方,羟基位于下方,手性碳原子上的甲基位于右侧。根据 R/S标记法,该化合物为R构型。因此,其系统命名为(R)-2-羟基丙酸。
解析复杂结构
对于复杂分子或难以通过其他手段解析的结构,X射线晶体衍射技术 可以提供精确的结构信息。
核磁共振波谱法在结构鉴定中作用
1 2
确定分子骨架 通过核磁共振波谱法中的一维和二维谱图,可以 解析出分子的骨架结构,包括碳链的长度、支链 的位置等。
识别官能团 核磁共振波谱法可以识别分子中的官能团,如羟 基、羰基、氨基等,从而推断出分子的可能性质。
优化药物分子的立体构型,以提高其与靶标的结合能力和选择性。
药物代谢
考虑药物在体内的代谢过程,避免产生有害的立体异构体。
生物大分子中立体化学问题
蛋白质折叠
蛋白质的空间构象对其功能至关重要,错误的折 叠可能导致疾病。
DNA结构
DNA的双螺旋结构中的碱基对具有特定的空间排 列,影响遗传信息的传递和表达。
周环反应
羰基化合物的反应
如醛酮的亲核加成反应、缩合反应等,涉及 手性传递和立体选择性。
如电环化反应、环加成反应等,探讨其立体 化学过程和产物构型。
02
01
不对称合成
通过手性辅助剂、手性催化剂等实现不对称 合成,获得单一构型产物。
04
03
生物活性物质中立体化学问题
05
探讨
生物活性物质中手性现象及其意义
命名规则及实例解析
命名规则
在立体化学中,化合物的命名需遵循一定的规则,包括确定手性碳原子的构型、指定取代基的位置和编号 等。例如,对于含有手性碳原子的化合物,需在名称中注明其R或S构型。
实例解析
以乳酸为例,其Fischer投影式中,羧基位于上方,羟基位于下方,手性碳原子上的甲基位于右侧。根据 R/S标记法,该化合物为R构型。因此,其系统命名为(R)-2-羟基丙酸。
解析复杂结构
对于复杂分子或难以通过其他手段解析的结构,X射线晶体衍射技术 可以提供精确的结构信息。
核磁共振波谱法在结构鉴定中作用
1 2
确定分子骨架 通过核磁共振波谱法中的一维和二维谱图,可以 解析出分子的骨架结构,包括碳链的长度、支链 的位置等。
识别官能团 核磁共振波谱法可以识别分子中的官能团,如羟 基、羰基、氨基等,从而推断出分子的可能性质。
《立体化学》课件
![《立体化学》课件](https://img.taocdn.com/s3/m/960c270bc950ad02de80d4d8d15abe23482f03bf.png)
化学是研究物质的组成、性质和变化的科 学领域。
了解原子、分子、元素、化合物等基础概 念,以及化学反应和化学方程式的表示方 法。
立体化学的基本原理
1 空间取向
探讨原子和键在空间中 的相互关系,以及分子 空间构型的影响。
2 手性性质
3 立体异构体
认识手性分子和对映体, 以及手性的重要性。
了解不同类型的立体异 构体,如构象异构体和 对映异构体,并研究它 们的性质和特点。
《立体化学》PPT课件
欢迎来到《立体化学》PPT课件!在本课程中,我们将从化学的基础概念开 始,探讨立体化学的基本原理,并深入研究分子结构、手性分子、立体异构 体以及立体对反应机理的影响。最后,我们还将探讨立体化学在药物设计和 天然产物 基础概念
以及它们在化学反应中的影响。
3
构象异构体
分析构象异构体的形成原理和常见示 例,如顺式和反式异构体。
光学异构体
讨论光学异构体的旋光性质,包括D和L-系列化合物。
反应机理中的立体影响
反应路径
探究反应路径中立体构型对反应速率和产物选择 性的影响。
过渡态理论
了解过渡态理论以及过渡态的构象和立体要求。
应用:药物设计和天然产物的活性成分
药物设计
介绍立体化学在药物设计中的重要性,以及 立体异构体对药效的影响。
天然产物
研究天然产物中的活性成分,如碳水化合物 和天然产物的手性性质。
分子结构和键的构型
分子结构
探索分子的结构和形状,以及化学键的构型和键 长。
球棍模型
使用球棍模型来可视化分子结构和化学键的空间 排列。
手性分子和对映体
手性分子
解释什么是手性分子,以及手性分子的定义和性质。
第五章-立体化学PPT课件
![第五章-立体化学PPT课件](https://img.taocdn.com/s3/m/b1d0f8548762caaedc33d42e.png)
10
Polarization of light
Rotation of plane-polarized light
Nicol prism
.
11
1 平面偏振光
普通光通过尼可尔棱镜后产生只能在一个平面振动 的光。这种只能在一个平面振动的光为平面偏振光。
2 旋光性
能使偏振光的振动面发生偏转的物质具旋光性, 叫做旋光性物质
OH bp 99.5℃ d 0.8063 旋光性 右旋
C
HO
H
CH2CH3
右旋-2-丁醇
C
H
OH
CH2CH3
左旋-2-丁醇
OH CH3CH2-C-CH3
H 99.5℃ 0.8063 左旋
.
13
5.2 手性的意义
.
14
手性的定义 ---(以乳酸CH3C*HOHCOOH为例来讨论)
镜子
COOH
透视式
凡在一个反应中,一个构型异构体的产生超过(一般 是大大地超过)另外其它可能的构型异构体,就叫做 立体选择反应。利用立体选择性的反应合成过量的两 个对映体其中之一的,叫做不对称合成。
通过化学反应可以在非手性分子中形成手性碳原子。
.
37
潜手性碳原子(prochiral carbon atoms)
一个连有四个完全不同原子或原子团的碳原子叫 做手性碳原子。当一个碳原子连有两个相同和两 个不相同的原子或原子团如Caabe时,这个碳原 子就叫做潜手性碳原子(prochiral carbon)或 潜手性中心。假如其中两个相同的原子或原子团 之一(a,多为氢原子)被一个不同于a、b、e 的原子或原子团d所取代,就得到一个新的手性 碳原子Cabed。
非对映体(diastereomers)---具有相同化学组成,但不是镜像。
有机化学课件立体化学ppt课件
![有机化学课件立体化学ppt课件](https://img.taocdn.com/s3/m/352a18516ad97f192279168884868762caaebb3f.png)
量子化学计算
基于量子力学原理计算分子的电子结构和性质,可深入揭示有机 物的立体化学本质和反应机理。
人工智能与机器学习
结合大数据和机器学习算法,可加速新有机物的设计和合成,为 立体化学研究提供新的思路和方法。
06
总结与展望:立体化学发展趋势和挑 战
当前存在问题和挑战
01
立体化学合成方法有限
目前立体化学合成方法仍然相对有限,对于复杂分子的合成仍面临较大
05
立体化学分析方法与技术进展
传统分析方法回顾(如:极谱法、色谱法等)
极谱法
利用物质在电解过程中的电极电位与浓度之间的关系进行分析,主要用于无机物和有机物的定性和定量分析。
色谱法
基于物质在固定相和流动相之间的分配平衡,通过流动相的洗脱将不同物质分离,常用于复杂样品的分离和纯化。
现代波谱技术在立体化学中应用(如
立体选择性合成是获得具有特定立体构型药物分子的关键步骤,对于提高药物疗效和降低副 作用具有重要意义。
面临的挑战
立体选择性合成面临着反应条件苛刻、合成步骤繁琐、产物纯度难以控制等挑战。
机遇与发展
随着有机合成化学、计算化学等学科的不断发展,立体选择性合成的方法和技术也在不断改 进和完善,为药物研发提供了更多的机遇和可能性。例如,利用不对称催化、新型手性配体 等策略,可以实现高效、高选择性的立体选择性合成。
对称性与手性判断
对称性判断
通过观察分子是否具有对称轴、对称 面等对称因素来判断。
手性判断
通过判断分子是否具有手性碳原子或其 他不对称因素来判断。具有手性碳原子 的分子一定是手性分子,但手性分子不 一定具有手性碳原子。
立体化学原理ห้องสมุดไป่ตู้应用
立体化学原理
基于量子力学原理计算分子的电子结构和性质,可深入揭示有机 物的立体化学本质和反应机理。
人工智能与机器学习
结合大数据和机器学习算法,可加速新有机物的设计和合成,为 立体化学研究提供新的思路和方法。
06
总结与展望:立体化学发展趋势和挑 战
当前存在问题和挑战
01
立体化学合成方法有限
目前立体化学合成方法仍然相对有限,对于复杂分子的合成仍面临较大
05
立体化学分析方法与技术进展
传统分析方法回顾(如:极谱法、色谱法等)
极谱法
利用物质在电解过程中的电极电位与浓度之间的关系进行分析,主要用于无机物和有机物的定性和定量分析。
色谱法
基于物质在固定相和流动相之间的分配平衡,通过流动相的洗脱将不同物质分离,常用于复杂样品的分离和纯化。
现代波谱技术在立体化学中应用(如
立体选择性合成是获得具有特定立体构型药物分子的关键步骤,对于提高药物疗效和降低副 作用具有重要意义。
面临的挑战
立体选择性合成面临着反应条件苛刻、合成步骤繁琐、产物纯度难以控制等挑战。
机遇与发展
随着有机合成化学、计算化学等学科的不断发展,立体选择性合成的方法和技术也在不断改 进和完善,为药物研发提供了更多的机遇和可能性。例如,利用不对称催化、新型手性配体 等策略,可以实现高效、高选择性的立体选择性合成。
对称性与手性判断
对称性判断
通过观察分子是否具有对称轴、对称 面等对称因素来判断。
手性判断
通过判断分子是否具有手性碳原子或其 他不对称因素来判断。具有手性碳原子 的分子一定是手性分子,但手性分子不 一定具有手性碳原子。
立体化学原理ห้องสมุดไป่ตู้应用
立体化学原理
有机化学立体化学PPT课件
![有机化学立体化学PPT课件](https://img.taocdn.com/s3/m/35e8b8217f21af45b307e87101f69e314332faa8.png)
官能团对分子极性和溶解性的影响
03
官能团的电性和极性会影响分子的极性和溶解性,从而影响分
子在溶液中的行为。
官能团间相互作用和转化规律
官能团间的相互作用
不同官能团之间可能存在相互作用,如共轭效应、诱导效应 等,这些相互作用会影响分子的性质和反应。
官能团的转化规律
在一定条件下,官能团可以发生转化,如醇氧化成醛、醛还 原成醇等,这些转化规律是有机化学中的重要内容。
不对称烷基化反应
通过手性辅剂或催化剂的作用,实现烷基化反应的不对称诱导, 生成具有手性中心的产物。
不对称氧化反应
利用手性氧化剂或催化剂对底物进行不对称氧化,生成具有手性 中心的产物。
立体选择性反应在药物合成中应用
手性药物合成
手性药物具有特定的生理活性和药效,其合成过程中常涉及立体选择性反应。例如,通过 不对称催化氢化合成治疗心血管疾病的L-多巴等手性药物。
异构体间相互转化机理
包括化学键的断裂和形成、原子或基团的迁移等过程。
异构体间相互转化实例
如顺反异构体之间可以通过光照或加热等条件进行相互转 化;对映异构体之间可以通过手性试剂进行拆分或外消旋 化等过程进行相互转化。
05 立体选择性反应 原理及应用
立体选择性反应概念及分类
立体选择性反应定义
指在一定条件下,反应物分子中某一特定立体构型的原子或基团优先发生反应,生成具有特定立体构型的产物的 化学反应。
碳-碳单键旋转自由度受限情况
碳-碳单键 旋转自由度受限,导致有机分子具有特定构象。
环状化合物中碳原子构型判断
环状化合物中碳原子构型判断方法
通过比较环上相邻碳原子的相对构型,可以确定整个环状化合物的立体构型。
环状化合物中碳原子构型与性质关系
第七章立体化学PPT课件
![第七章立体化学PPT课件](https://img.taocdn.com/s3/m/7cec7ede647d27284a735158.png)
二、对称因素
1. 对称轴Cn
以设想直线为轴旋转360。/n,得到与原分子相同的
分子,该直线称为n重对称轴(又称n阶对称轴)。
Cl
H
CC
H
Cl
第7页/共49页
2. 对称面 σ
某一平面将分子分为两半,两个部分互为镜像关系,则该 平面称为对称面。
CH3CH2COOH
COOH
COOH
COOH
180 O
CH3 H
C2H5
CH3 H Br H Br Br H
C2H5
C-2差向异构体
差向异构体:含多个手性碳的两个光活异构体,仅有一 个手性碳原子的构型相反,其余的手性碳构型相同,这两个 光活异构体称为差向异构体。
C-2差向异构:由C-2引起的差向异构。(C-2构型相反)
(3)、对调任意两个基团的位置,对调偶数次构型不变,对调 奇数次则为原构型的对映体。例如:
第25页/共49页
二、构型的确定
绝对构型与相对构型
绝对构型 —— 一种手性化合物的实际的三维结构
绝对构型的测定 —— X-射线单晶衍射(1950年)
相对构型
—— 相对于另外的化合物的构型的一种化合物的结构
CHO
4. 旋光度—— 旋光活性物质使偏振光振动平面旋转的角度,
用“a ”表示。 它不仅是由物质的旋光性(与物质的结构
有关)决定的,也与测定的条件有关。
旋光度大小的影响因素:1、温度, 2、波长, 3、溶剂 的性质, 4、旋光管的长度, 5、旋光管中物质浓度。
第15页/共49页
旋光仪(polarimeter)
分子的手性是对映体存在的必要和充分条件。
第12页/共49页
三、旋光度与比旋光度
有机化学ppt课件第八章立体化学
![有机化学ppt课件第八章立体化学](https://img.taocdn.com/s3/m/4ea6e905f6ec4afe04a1b0717fd5360cba1a8dfd.png)
05
立体选择性合成策略与方 法
不对称合成策略简介
不对称合成定义
利用非手性原料合成具有特定构型手性化合物的 方法。
不对称合成意义
获得单一手性化合物,避免消旋体的产生,提高 药物疗效和降低副作用。
不对称合成策略
手性源合成法、手性辅剂诱导合成法、动力学拆 分和热力学拆分方法等。
手性源合成法
手性源概念
农业科学
立体化学在农业科学中也有潜在 的应用价值,例如通过研究农药 和化肥的立体结构来提高其效果 和降低对环境的负面影响。
THANKS
感谢观看
构型对化合物性质的影响
不同构型的碳原子在化合物中具有不 同的化学和物理性质,如旋光性、反 应活性等。
Fisher
Fisher投影式是一种表示有机化合物立体结构的方法,通过横线
和竖线表示碳原子的键合关系。
Fisher投影式的书写规则
02
在Fisher投影式中,横线代表伸向纸面前方的键,竖线代表伸向
具有手性的起始原料, 可提供手性中心。
手性源合成法原理
以手性源为原料,通过 保留或转化其手性中心 ,合成目标手性化合物 。
手性源合成法应用
天然产物全合成、药物 合成等。
手性辅剂诱导合成法
01
手性辅剂概念
在反应中能与底物形成非对映异构体,从而控制反应立体选择性的添加
剂。
02
手性辅剂诱导合成法原理
手性辅剂与底物形成非对映异构体,利用非对映异构体之间的性质差异
判断手性碳原子构 型
根据旋光度的正负及大小,结合其他信息判断手性碳原子 的构型。
注意事项
旋光法只能判断化合物是否具有旋光性,不能确定其绝对 构型。
X射线衍射法确定绝对构型
第八章立体化学 PPT资料共177页
![第八章立体化学 PPT资料共177页](https://img.taocdn.com/s3/m/1ffd154a7375a417876f8f36.png)
由于光波与电子振动之间的相互影响,光波前进 的速度就被减慢,从而产生折射现象。
物质的折射率愈大,表明光在前进中受到的阻碍 俞大,其速度就愈小,也就是物质分子中电子振动愈 强。如果物质分子的极化度愈大,物质与光的相互作 用也就愈强,折射率也就愈大。
2019/11/4
13
平面偏振光也是电磁波,它可以看作是由两种圆偏 振光合并组成的。它们都围绕着光前进方向的轴呈螺旋 形向前传播,其中一种圆偏振光呈右螺旋形,称为右旋 圆偏光如图(a)。而另一种是左螺旋形称为左旋圆偏光 如图(b)o
d
d
a
c
c
a
b
b
两个四面体之间的虚线表示镜子所在的平面 。
2019/11/4
31
①不对称碳原子
连有四个不同基团的碳原子
F
手性碳(chiral carbon)
H
C Br
Cl
手性中心 (Chiral center)
手性分子
例: CH3C* HC*HCH3
F
手性碳标记
Cl Cl
H C* C l Br
2019/11/4
4
本章教学内容
第一节 第二节 第三节 第四节 第五节 第六节 第七节
物质的旋光性 化合物的旋光性与其结构的关系 对映异构体的构型 含手性碳原子化合物 的对映异构 手性物的制备与外消旋体的拆分 异构体的分类 立体化学在研究反应历程中的应用
习题答案
2019/11/4
5
第一节 物质的旋光性
2019/11/4
23
人的左手与其镜像(右手)不能完全重合将手性 的概念运用于描述分子结构,则是当一个化合物的分 子与其镜像不能相互重叠时,这种分子就具有手性。
物质的折射率愈大,表明光在前进中受到的阻碍 俞大,其速度就愈小,也就是物质分子中电子振动愈 强。如果物质分子的极化度愈大,物质与光的相互作 用也就愈强,折射率也就愈大。
2019/11/4
13
平面偏振光也是电磁波,它可以看作是由两种圆偏 振光合并组成的。它们都围绕着光前进方向的轴呈螺旋 形向前传播,其中一种圆偏振光呈右螺旋形,称为右旋 圆偏光如图(a)。而另一种是左螺旋形称为左旋圆偏光 如图(b)o
d
d
a
c
c
a
b
b
两个四面体之间的虚线表示镜子所在的平面 。
2019/11/4
31
①不对称碳原子
连有四个不同基团的碳原子
F
手性碳(chiral carbon)
H
C Br
Cl
手性中心 (Chiral center)
手性分子
例: CH3C* HC*HCH3
F
手性碳标记
Cl Cl
H C* C l Br
2019/11/4
4
本章教学内容
第一节 第二节 第三节 第四节 第五节 第六节 第七节
物质的旋光性 化合物的旋光性与其结构的关系 对映异构体的构型 含手性碳原子化合物 的对映异构 手性物的制备与外消旋体的拆分 异构体的分类 立体化学在研究反应历程中的应用
习题答案
2019/11/4
5
第一节 物质的旋光性
2019/11/4
23
人的左手与其镜像(右手)不能完全重合将手性 的概念运用于描述分子结构,则是当一个化合物的分 子与其镜像不能相互重叠时,这种分子就具有手性。
《立体化学》课件
![《立体化学》课件](https://img.taocdn.com/s3/m/8603f7516ad97f192279168884868762caaebb04.png)
2023 WORK SUMMARY
《立体化学》课件
REPORTING
目录
• 立体化学简介 • 立体化学基本概念 • 立体化学中的反应 • 立体选择性反应 • 立体化学的应用 • 立体化学的未来发展与挑战
PART 01
立体化学简介
定义与特点
定义
立体化学是研究分子在三维空间中结 构的科学,主要关注分子的几何构型 、构象和旋转轴对称性等。
方式的分子。
顺反异构体的性质
顺反异构体在化学性质上存在差异 ,但在物理性质方面相似。
顺反异构体的合成
顺反异构体的合成是立体化学研究 的重要内容之一,通常采用烯烃的 加成反应进行合成。
PART 03
立体化学中的反应
亲核反应
总结词
亲核反应是试剂向反应物的负电性中心进攻 的反应,通常是由具有孤对电子的中性分子 或负离子进攻正电性较弱的碳原子。
对映异构体
对映异构体的定义
对映异构体是指具有相同 化学组成但旋光方向不同 的分子。
对映异构体的性质
对映异构体在物理性质上 几乎相同,但在旋光性和 生物活性方面存在差异。
对映异构体的分离
对映异构体的分离是立体 化学研究的重要内容之一 ,通常采用化学或物理方 法进行分离。
非对映异构体
非对映异构体的定义
生物学中的立体化学对 于理解生物大分子的结 构和功能至关重要。例 如,蛋白质的结构和折 叠方式决定了其生物活 性,而核酸的结构则与 其遗传信息的传递和表 达密切相关。
生物学中的立体化学有 助于深入了解生物大分 子的相互作用和调控机 制。
通过研究生物大分子的 立体结构和相互作用, 可以揭示其复杂的调控 机制,为疾病诊断和治 疗提供新的思路和方法 。
《立体化学》课件
REPORTING
目录
• 立体化学简介 • 立体化学基本概念 • 立体化学中的反应 • 立体选择性反应 • 立体化学的应用 • 立体化学的未来发展与挑战
PART 01
立体化学简介
定义与特点
定义
立体化学是研究分子在三维空间中结 构的科学,主要关注分子的几何构型 、构象和旋转轴对称性等。
方式的分子。
顺反异构体的性质
顺反异构体在化学性质上存在差异 ,但在物理性质方面相似。
顺反异构体的合成
顺反异构体的合成是立体化学研究 的重要内容之一,通常采用烯烃的 加成反应进行合成。
PART 03
立体化学中的反应
亲核反应
总结词
亲核反应是试剂向反应物的负电性中心进攻 的反应,通常是由具有孤对电子的中性分子 或负离子进攻正电性较弱的碳原子。
对映异构体
对映异构体的定义
对映异构体是指具有相同 化学组成但旋光方向不同 的分子。
对映异构体的性质
对映异构体在物理性质上 几乎相同,但在旋光性和 生物活性方面存在差异。
对映异构体的分离
对映异构体的分离是立体 化学研究的重要内容之一 ,通常采用化学或物理方 法进行分离。
非对映异构体
非对映异构体的定义
生物学中的立体化学对 于理解生物大分子的结 构和功能至关重要。例 如,蛋白质的结构和折 叠方式决定了其生物活 性,而核酸的结构则与 其遗传信息的传递和表 达密切相关。
生物学中的立体化学有 助于深入了解生物大分 子的相互作用和调控机 制。
通过研究生物大分子的 立体结构和相互作用, 可以揭示其复杂的调控 机制,为疾病诊断和治 疗提供新的思路和方法 。
有机化学第八章立体化学PPT课件
![有机化学第八章立体化学PPT课件](https://img.taocdn.com/s3/m/d49335672bf90242a8956bec0975f46527d3a7b9.png)
配体设计
手性催化剂的配体设计是关键, 通过选择合适的配体,可以实现
对反应的立体选择性控制。
反应机理
手性催化剂的选择性合成通常涉 及特定的反应机理,如协同反应 或逐步反应,这些机理决定了催
化剂对立体异构体的选择性。
手性拆分技术
手性拆分技术
手性拆分技术是利用化学或物理方法将外消旋混合物分离成各自 的立体异构体的过程。
非对映异构体的性质
非对映异构体的物理性质通常不同,如沸点、熔点和折射率等。它 们的旋光性和比旋光度也可能不同,但通常比对映异构体的差异更 小。
非对映异构体的合成
非对映异构体的合成是有机化学中的重要研究内容,需要采用特定的 合成策略和技巧来制备。
顺反异构体
顺反异构体定义
顺反异构体是指由于双键的存在导致取代基在空间中不能处于同一侧的分子。这种排列方 式使得分子具有不同的物理性质和化学反应特性。
越来越多的手性药物被发现和开发。
手性药物的发展阶段
02
手性药物的研发经历了三个阶段,包括手性源药物、手性拆分
药物和手性合成药物。
手性药物的现状与未来
03
目前,手性药物已经成为药物研发的重要组成部分,未来随着
手性技术的不断进步,将会有更多的手性药物问世。
手性药物的药理作用
手性药物的药效
手性药物的药效与其手性构型密切相关,不同构型的手性药物可 能具有不同的药理作用。
手性药物的作用机制
手性药物的作用机制涉及多个方面,包括与靶点的选择性结合、影 响细胞信号转导等。
手性药物的疗效与副作用
手性药物在临床应用中具有疗效高、副作用小的优势,但也存在一 定的个体差异和不良反应。
手性药物的合成与制备
手性药物的合成方法
有机化学 立体化学PPT课件
![有机化学 立体化学PPT课件](https://img.taocdn.com/s3/m/c6f2ccee0740be1e640e9ae5.png)
在有机化学中,凡是手性分子都具有旋光性;而非手性 分子则没有旋光性.
对映体是一对相互对映的手性分子,它们都有旋光性, 两者的旋光方向相反,但旋光度(能力)相同.
第15页/共69页
8.2.2 比旋光度
• 由旋光仪测得的旋光度,甚至旋光方向,不仅与物 质结构有关,而且与测定的条件(样品浓度,盛放样 品管的长度,偏正光的波长及测定温度等)有关.
乳酸的分子模型和投影式
菲舍尔投影式:
牢记
两个竖立的键—表示向纸面背后伸去的键;
两个横在两边的键—表示向纸面前方伸出的键.
在纸面上旋转180º—构型不变;旋转90º或270º或翻身—镜象
第21页/共69页
总结: Fischer投影式的转换规则
1. 不能离开纸面翻转。翻转180。,变成其对映体。 2. 在纸面上转动90。, 270 。,变成其对映体。 3. 在纸面上转动180。构型不变。 4. 保持1个基团固定,而把其它三个基团顺时针或
有2重对称轴的分子(C2)
第7页/共69页
σ (2) 对称面(镜面)--
——设想分子中有一平面,它可以把分子分成互 为镜象的两半,这个平面就是对称面.
例:氯乙烷
有对称面的分子
第8页/共69页
(3) 对称中心--i
——设想分子中有一个点,从分子中任何一个原子 出发,向这个点作一直线,再从这个点将直线延长出 去,在与该点前一线段等距离处,可以遇到一个同样 的原子,这个点就是对称中心.
手性分子—既没有对称面,又没有对称中心,也没 有4重交替对称轴的分子,都不能与其镜象叠合,都是 手性分子.
非手性分子—凡具有对称面、对称中心或交替对 称轴的分子.
在有机化学中,绝大多数非手性分子都具有对称面或对称中心,或者同时还具有4重
对映体是一对相互对映的手性分子,它们都有旋光性, 两者的旋光方向相反,但旋光度(能力)相同.
第15页/共69页
8.2.2 比旋光度
• 由旋光仪测得的旋光度,甚至旋光方向,不仅与物 质结构有关,而且与测定的条件(样品浓度,盛放样 品管的长度,偏正光的波长及测定温度等)有关.
乳酸的分子模型和投影式
菲舍尔投影式:
牢记
两个竖立的键—表示向纸面背后伸去的键;
两个横在两边的键—表示向纸面前方伸出的键.
在纸面上旋转180º—构型不变;旋转90º或270º或翻身—镜象
第21页/共69页
总结: Fischer投影式的转换规则
1. 不能离开纸面翻转。翻转180。,变成其对映体。 2. 在纸面上转动90。, 270 。,变成其对映体。 3. 在纸面上转动180。构型不变。 4. 保持1个基团固定,而把其它三个基团顺时针或
有2重对称轴的分子(C2)
第7页/共69页
σ (2) 对称面(镜面)--
——设想分子中有一平面,它可以把分子分成互 为镜象的两半,这个平面就是对称面.
例:氯乙烷
有对称面的分子
第8页/共69页
(3) 对称中心--i
——设想分子中有一个点,从分子中任何一个原子 出发,向这个点作一直线,再从这个点将直线延长出 去,在与该点前一线段等距离处,可以遇到一个同样 的原子,这个点就是对称中心.
手性分子—既没有对称面,又没有对称中心,也没 有4重交替对称轴的分子,都不能与其镜象叠合,都是 手性分子.
非手性分子—凡具有对称面、对称中心或交替对 称轴的分子.
在有机化学中,绝大多数非手性分子都具有对称面或对称中心,或者同时还具有4重
06-立体化学PPT课件
![06-立体化学PPT课件](https://img.taocdn.com/s3/m/bbca7f0ba58da0116d1749b2.png)
旋光仪(polarimeter)
.
23
影响旋光度的因素:
✓由物质的旋光性(与物质的结构有关)决定;
✓影响旋光度的因素:
旋光物质的分子数, 浓度 c 管长 l
表示不方便 没有可比性
温度、波长、溶剂等
4. 比旋光度(specific rotation)
为了便于比较,用比旋光度[α]来表示:在一定温度和波长
第六章 立体化学
.
1
6.1 异构体的分类
表示分子结构的概念?同分异构现象?
碳架异构体
构造异构体
位置异构体 官能团异构体
同 分 异 构 体
立体异构体
互变异构体
价键异构体 交叉式构象
构象异构体 重叠式构象
几何异构体
构型异构体
空间的排列
旋光异构体?
状况
.
2
6.2 手性和对称性
手性(chirality):是自然界的基本属性之一,不同异构体表现 出极不相同的生理效能。
手性分子是不对称分子,不含以上两种对称因素,分子 与其镜象不能重合,有一对对映体。
.
19
分子与其镜象不能重合,有一对对映体
(+)–乳酸 (+)-Lactic acid
(-)–乳酸 (-)-Lactic acid
1,2–环氧丙烷
.
20
6.3 光学活性(旋光性)
一些基本概念:
1. 偏振光
光是一种电磁波,光波的振动方向与光的前进方向垂直。
.
26
6.4 具有一个手性中心的对映异构 6.4.1 对映体和外消旋体的性质
*
*
2–溴丁烷
*
*
乳酸
*
*
.
23
影响旋光度的因素:
✓由物质的旋光性(与物质的结构有关)决定;
✓影响旋光度的因素:
旋光物质的分子数, 浓度 c 管长 l
表示不方便 没有可比性
温度、波长、溶剂等
4. 比旋光度(specific rotation)
为了便于比较,用比旋光度[α]来表示:在一定温度和波长
第六章 立体化学
.
1
6.1 异构体的分类
表示分子结构的概念?同分异构现象?
碳架异构体
构造异构体
位置异构体 官能团异构体
同 分 异 构 体
立体异构体
互变异构体
价键异构体 交叉式构象
构象异构体 重叠式构象
几何异构体
构型异构体
空间的排列
旋光异构体?
状况
.
2
6.2 手性和对称性
手性(chirality):是自然界的基本属性之一,不同异构体表现 出极不相同的生理效能。
手性分子是不对称分子,不含以上两种对称因素,分子 与其镜象不能重合,有一对对映体。
.
19
分子与其镜象不能重合,有一对对映体
(+)–乳酸 (+)-Lactic acid
(-)–乳酸 (-)-Lactic acid
1,2–环氧丙烷
.
20
6.3 光学活性(旋光性)
一些基本概念:
1. 偏振光
光是一种电磁波,光波的振动方向与光的前进方向垂直。
.
26
6.4 具有一个手性中心的对映异构 6.4.1 对映体和外消旋体的性质
*
*
2–溴丁烷
*
*
乳酸
*
*
立体化学专一性共26页
![立体化学专一性共26页](https://img.taocdn.com/s3/m/ed5f5309d15abe23492f4db5.png)
Fra bibliotekEND
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
立体化学专一性
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
立体化学专一性
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。