通信原理第六版第6章PPT课件
通信原理PPT课件
– 载波同步、位同步、群同步和网同步
• 数字复接就是依据时分复用基本原理把若干个 低速数字信号合并成一个高速的数字信号,以 扩大传输容量和提高传输效率。
2024/6/20
CP 第一章 绪论
28
2. 数字通信系统模型
• 如在某些有线信道中,若传输距离不太 远且通信容量不太大时, 数字基带信号 无需调制,可以直接传送,称之为数字 信号的基带传输,其模型中就不包括调 制与解调环节
信息源
发送设备
信息
接收设备
受信者
发送端
噪声源
接收端
2024/6/20
CP 第一章 绪论
5
1.2.1 通信系统模型-信源
• 信源是消息的产生地, 其作用是把各种消 息转换成原始电信号,称之为消息信号或 基带信号。
• 电话机、电视摄像机和电传机、计算机等 各种数字终端设备就是信源。
• 模拟信源,输出的是模拟信号; • 数字信源,输出离散的数字信号。
• 作用二: 是当信息源给出的是模拟语音信号时, 信源编码器将其转换成数字信号,以实现模拟 信号的数字化传输。
• 信源编码方法:PCM、ADPAM、DM等 • 信源译码是信源编码的逆过程。
2024/6/20
CP 第一章 绪论
24
2) 信道编码与译码
• 数字信号在信道传输时,由于噪声、衰落以及 人为干扰等,将会引起差错。为了减少差错, 信道编码器对传输的信息码元按一定的规则加 入保护成分(监督元),组成所谓“抗干扰编 码”。
• 对这些信号可以采用相干解调或非相干解调还 原为数字基带信号。
• 对高斯噪声下的信号检测,一般用相关器接收 机或匹配滤波器实现。
2024/6/20
数据通信原理第6章
码型的频域特性 抗噪声能力 提取位定时信息 简单二元码 1B2B码 AMI码 HDB3码 2B1Q码
2. 二元码
每个码元上传送一位二进制信息
3. 三元码
4. 多元码
每个码元上传送一位多进制信息
28
2.简单二元码的功率谱
花瓣形状:主瓣,旁瓣 主瓣带宽:信号的近似带宽-----谱零点带宽
数字信息--------------->码型---------->数字信息
5
数字基带信号的码型设计原则
⑴ 码型应不含有直流,且低频成分小,尽量减少高频分量以节约 频率资源减少串音;
(2)码型中应含有定时信息,便于提取定时信息;
(3)码型变换设备要简单; (4)编码应具有一定的检错能力; (5)编码方案应对信息类型没有任何限制; (6)低误码率繁殖;
H ( ) GT ( )C( )GR ( )
假定输入基带信号的基本脉冲为单位冲击δ(t),这样发送 滤波器的输入信号可以表示为
d (t )
k
a (t kT )
k b
图 6 – 6 基带传输系统简化图
38
其中ak 是第k个码元,对于二进制数字信号,ak 的取值为0、 1(单极性信号)或-1、+1(双极性信号)。
(7) 高的编码效率;
6
7
8
1.单极性非归零(NRZ)码 单极性:1---高电平;0---0电平,码元持续期间电平不变 非归零:NRZ (nor-return to zero) 有直流且有固定0电平,多用于终端设备或近距离传输 (线路板内或线路板间);
特点:发送能量大,有利于提高收端信噪比;信道上占 用频带窄;有直流分量,导致信号失真;不能直接提取 位同步信息;判决门限不能稳定在最佳电平上,抗噪声 性能差;需一端接地。
通信原理(第六章 数字基带传输系统)图片公式
七、什么是眼图?眼图模型、说明什么问题?
八、时域均衡:基本原理、解决什么问题?如何衡量均 衡效果?
一、数字基带系统和频带系统结构
一、数字基带信号(电波形)及其频谱特性(1)
二元码:幅度取值只有两种“1”、“0”或“1”、 “-1”
单极性非归零码:用高低电平分别表示“1”和“0”, 如图6-1(a) 。一般用于近距离之间的信号传输 双极性非归零码:用正负电平分别表示“1”和“0”, 如图6-1(b)。应用广泛,适应于在有线和电缆信道中 传输。 单极性归零码:有电脉冲宽度比码元宽度窄,每个脉 冲都回到零电位。如图6-1(c)。利于减小码元间波形 的干扰和同步时钟提取。但码元能量小,匹配接收时 输出信噪比低些
二、基带传输码的常用码型(4)
HDB3特点:保持AMI码的优点,三元码,无直流分量,主 要功率集中在码速率fb的1/2出附近(如图)。 位定时频率分量为零,通过极性交替规律得到检错能力。 增加了使连0串减少到 至多3个的优点,而不管 信息源的统计特性如何。
对于定时信号的恢复 是十分有利的。广泛应 用于基带传输与接口码。
Pv (w) = 2p å
¥ m =-
Cn d (w - mws )
2
Pv ( f ) = å
2
Cn d ( f - mf s )
2
故稳态波的双边功率谱密度
Pv ( f ) = å
¥ m =-
f s [ PG1 (mf s ) + (1 - P)G2 (mf s )] ? d ( f
mf s )..(6.1 - 14)
代入(6.1-26)得单极性非归零波形的双边功率谱密度
Ps (w) = Ts 2 1 Sa (p fTs ) + d ( f )..(6.1 - 30) 4 4
移动通信(第六版)(章坚武)课件章 (6)
第6章 CDMA数字蜂窝移动通信系统
8 . 保密性强, 通话不会被窃听 CDMA信号的扰频方式提供了高度的保密性,要窃听通
第6章 CDMA数字蜂窝移动通信系统
第6章 CDMA数字蜂窝移动通信系统
6.1 引言 6.2 CDMA空中接口协议层 6.3 CDMA前向信道 6.4 CDMA反向信道 6.5 功率控制 6.6 Rake接收机 6.7 CDMA 系统的容量 6.8 CDMA登记 6.9 CDMA切换过程
第6章 CDMA数字蜂窝移动通信系统
第6章 CDMA数字蜂窝移动通信系统 图6-5和图6-6分别给出了速率1和速率2的前向/反向
业务信道帧结构。
图6-5 速率1的前向/反向业务信道帧结构
第6章 CDMA数字蜂窝移动通信系统 图6-6 速率2的前向/反向业务信道帧结构
第6章 CDMA数字蜂窝移动通信系统
从声码器得到的信息为每帧20ms。速率1声码器的全速 (9600b/s)输出速率为8.6kb/s, 每20ms编码为172bit。帧质量 指示F(循环冗余码校验,CRC)与编码尾比特 T(8bit)加在 声码 器输出的信息比特之后。帧质量指示的作用有两个:一是允许 接收机在所有172bit上计 算了CRC后,确定是否有帧发生错误; 二是帮助确定接收帧的数据速率。9600b/s帧是每20 ms有 192bit(即172+12+8bit)被传输而产生的。其中,12bit为帧质 量指示,8bit为编 码尾比特。同样的过程产生在4800b/s帧上。 2400b/s和1200b/s帧没有帧质量指示的比 特字段,这是因为这 些帧的相对抗误码性能较强,且发送的大多数信息是背景噪声。
通信原理与技术第6 章模拟信号的数字化
第6 章模拟信号的数字化本章教学要求:1、掌握低通型抽样定理、PCM 基本工作原理。
掌握均匀量化原理、非均匀量化原理(A 律13折线)和编码理论。
2、理解时分复用和多路数字电话系统原理。
3、了解PCM 抗噪声性能、DM 和DPCM 系统原理。
§6.1 引言一、什么是模拟信号数字化?就是把模拟信号变换为数字信号的过程,即模数转化。
这是本章欲解决的中心问题。
二、为什么要进行模数转换?由于数字通信的诸多优点,数字通信系统日臻完善。
致使许多模拟信源的信号也想搭乘数字通信的快车;先将模拟信号转化为数字信号,借数字通信方式(基带或频带传输系统)得到高效可靠的传输,然后再变回模拟信号。
三、怎样进行数字化?就目前通信中使用最多的模数转换方法—脉冲编码调制(PCM)为典型,它包含三大步骤:1.抽样(§2 和§3);2.量化(§4);3.编码(§5)1.抽样:每隔一个相等的时间间隙,采集连续信号的一个样值。
2.量化:将量值连续分布的样值,归并到有限个取值范围内。
3.编码:用二进制数字代码,表达这有限个值域(量化区)。
2、解调3、抽样定理从频谱图清楚地看到,能用低通滤波器完整地分割出一个F(ω)的关键条件是ωs≥2ωm,或f s≥2f m。
这里2f m 是基带信号最大频率,2f m 叫做奈奎斯特抽样频率。
抽样定理告诉我们,只要抽样频率不小于2f m,从理想抽样序列就可无失真地恢复原信号。
二、带通抽样带通信号的带宽B=f H-f L,且B<<f H,抽样频率f s 应满足f s=2B(1+K/N)=2f H/N 式中,K=f H/B-N,N 为不超过f H/B 的最大整数。
由于0≤K<1,所以f s在2B~4B 之间。
当f H >> B 即N >>1 时f S =2B。
当f S > 2B(1+R/N) 时可能出现频谱混叠现象(这一点是与基带信号不同的)例:f H= 5MHz,f L = 4MHz,f S =2MHz 或3MHz 时,求M S(f)§6.3 脉冲幅度调制(PAM)理想抽样采用的单位冲击序列,实际中是不存在的,实际抽样时采用的是具有一定脉宽和有限高度的窄脉冲序列来近似。
通信原理第6章 模拟信号的数字传输
可见:量化电平增加一倍,即编码位数每增加一位, 量化信噪比提高6分贝。
2020/1/25
第6章 模拟信号的数字传输
11
6.1.2 量化
对于正弦信号,大信号出现概率大,故量化信噪比近
似为
Sq Nq
dB
6k
2
(dB)
对于语音信号,小信号出现概率大,故量化信噪比近 似为
取样定理描述:一个频带限制在 0 ~ f H内的连续信
号
m(t ) ,如果取样速率
fs
2
f
,则可以由离散样值
H
序列ms (t)无失真地重建原模拟信号 m(t) 。
取样定理证明:
ms (t) m(t) Ts (t)
M s ( f ) M ( f ) Ts ( f )
Ts ( f )
第6章 模拟信号的数字传输
1、数字通信有许多优点:
抗干扰能力强,远距离传输时可消除噪声积累 差错可控,利用信道编码可使误码率降低。 易于和各种数字终端接口中; 易于集成化,使通信设备小型化和微型化 易于加密处理等。
2、实际中有待传输的许多信号是模拟信号
语音信号; 图像信号; 温度、压力等传感器的输出信号。
于前一个时刻的值上升一个台阶;每收到一个代码 “0”就下降一个台阶。 编码和译码器
2020/1/25
第6章 模拟信号的数字传输
25
6.2.2 △M系统中的噪声
采用△M实现模拟信号数字传输的系统称为△M系统
△M系统中引起输出与输入不同的主要原因是:量化 误差和数字通信系统误码引起的误码噪声。
2020/1/25
第6章 模拟信号的数字传输
通信原理第六章ppt课件
§6.2 抽样定理
• 如果想把时间连续的模拟信号变成0/1数字 串,必须先抽样
• 但是,很显然,抽样以后
• 的信号,与原来的信号是
• 不同的
• 能否从抽样信号中恢复原
t
• 信号呢?如果能,有什么条件?
:
§6.2.1 低通信号抽样定理
可以看作下面两 个信号的乘积
t
1
t
t
:
m(t)
t
T (t)
t
➢ 对 Y 的均匀量化,等效为对 X 的非均匀量化。
EY
0 EX
:
三. 编码
➢ 编码就是将量化后的多进制数字信号变换成 二进制数字代码〔逆过程为译码),这是一 种一一对应的变换关系,实为 M 进制与二 进制的转换。
➢ 要求:M ≤ 2N 或N ≥ log2M〔取整数) ➢ N 为二进制码组的码位数。
Hale Waihona Puke 2048 x1 1 8 1 16 1
32 16 8
4
11
128 64
1
第7段的
2
量化间隔 32
1
第 8段的量 2化 0 4 1间 8 0 2隔 64 4 16
16 32
第1、 2段的量化间隔
64
128
1 128
1 第3段的
1
64 量化间隔 232
1
第4段的量化间隔 4
16
可见最小11 1分 6 28辨 210:率 ,4计 8为 1为 个
m(t) 样 ms(t) 化 msq(t) 码 {an} 信道 {an} 码 msq(t) 通 m0(t)
A/D
D/A
➢ 编码——译码为一对变换关系;
➢ 抽样——低通为一对变换关系;
138_(精选)通信原理及System View仿真测试第6章 数字基带传输系统课件
第6章 数字基带传输系统
(1) 码型中应不含直流分量, 且低频分量尽量少。 (2) 码型中高频分量尽量少, 以便节省传输频带和减小串 扰。 所谓串扰, 是指同一电缆内不同线对之间的相互干扰。 基带信号的高频分量越大, 对邻近线产生的干扰越严重。 (3) 信号的抗噪声能力要强。 产生误码时, 在译码中产 生误码扩散的影响越小越好。 (4) 码型中应包含定时信息, 这样有利于提取位同步信 号。 (5) 编码方案要能适用于信源变化, 与信源的统计特性 无关。
第6章 数字基带传输系统
图6-3 双极性和单极性波形的SystemView仿真模型
第6章 数字基带传输系统
图6-4 双极性不归零和归零信号的波形
第6章 数字基带传输系统
图6-5 单极性不归零和归零信号的波形
第6章 数字基带传输系统
6.2 基带传输的常用码型
6.2.1 传输码的码型选择原则
传输码又称为线路码, 它的结构将取决于实际信道的 特性和系统工作的条件。 由于不同的码型具有不同的特性, 因此在设计适合于给定信道传输特性的码型时, 通常需要 遵循以下原则:
则
同理, 可以分析出RZ的功率谱为
第6章 数字基带传输系统
第6章 数字基带传输系统
例6-2 求双极性波形矩形脉冲序列的功率谱。 解: 对BNRZ, 设 则由式(6-5)和式(6-8)知, 其功率谱密度为
第6章 数字基带传输系统
当P=0.5时 Ps(f)=fs|G(f)|2 其中, G(f)是g(t)的傅里叶变换, 经计算
第6章 数字基带传输系统
图6-6 AMI码图形
第6章 数字基带传输系统
AMI码为三元码, 伪三进制。 其优点有: (1) “0”、 “1”不等概率出现时也无直流。 (2) 零频附近的低频分量小。 因此, 对具有变压器或 者其他交流耦合的传输信道来说, 不易受隔直特性的影响。 (3) 整流后即为RZ码。 (4) 若接收端收到的码元极性与发送端的完全相反, 也 能正确判决。 AMI码的缺点是, 连0码多时, AMI整流后的RZ码连0 也多, 不利于提取位同步信号。
通信原理第六版
3. 试用语言描述单位冲击函数的定义。
答单位冲击函数是宽度趋于零幅度趋于无穷大积分面积为 1 的理想信号。
4. 试描述信号的四种频率特性分别适用于何种信号。
答功率信号的频谱适合于功率有限的周期信号能量信号的频谱密度适合于能量信号
能量信号的能谱密度适合于能量信号功率信号的功率频谱适合于功率信号。 5. 频谱密度 Sf和频谱 Cjnw。的量纲分别是什么。
散射传播分为电离层散射、对流散射和流星余迹散射。电离层散射发 生在
3OMHZ60MHZ 对流层散射发生在 100MHZ4000MHZ 流星余迹散射发生在
30MHZ100MHZ
4.6 何为多径效应
多径传播对信号的影响称为多径效应
4.7 什么事快衰落 设么是慢衰落
者信道中包括的具体内容分别是载有声音和影像的无线电波
1.2 何谓数字信号何谓模拟信号两者的根本区别是什么
数字信号指电信号的参量仅可能取有限个值模拟信号指电信号的参量可以取连续值。他们
的区别在于电信号参量的取值是连续的还是离散可数的
1.3 何谓数字通信数字通信有哪些优缺点
而且中心平率偏离零频很远则称之为窄带高斯噪声。其波形上的特点是包络和相
位都像一个缓慢变化的正弦波。其包络的一维分布服从瑞利分布其相位的一维分
布服从均匀分布。
6. 何为高斯白噪声它的概率密度函数、功率频谱密度如何表示
答如果白噪声取值的概率密度分布服从高斯分布则称之为高斯白噪声其概率
便于构成综合数字网和综合业务数字网。采用数字传输方式可以通过程控数字交换设备进
行数字交换以实现传输和交换的综合。另外电话业务和各种非话务业务都可以实现数字
通信原理 第六章 数字基带传输系统
来源: 来源: 计算机输出的二进制数据 模拟信号→ A/D →PCM码组 上述信号所占据的频谱是从直流或低频开始的,故称数 数 字基带信号。 字基带信号
2008.8 copyright 信息科学与技术学院通信原理教研组 3
基本概念
2、数字信号的传输
1)基带传输 基带传输——数字基带信号不加调制在某些 基带传输 具有低通特性的有线信道中传输,特别是传输距离 不太远的情况下; 2)频带传输 频带传输——数字基带信号对载波进行调制 频带传输 后再进入带通型信道中传输。
2008.8 copyright 信息科学与技术学院通信原理教研组 19
传输码结构设计的要求
码型变换或成形是数字信息转换为数字信号的过程, 码型变换或成形是数字信息转换为数字信号的过程,不 数字信息转换为数字信号的过程 同的码型将有不同的频谱结构,对信道有着不同的要求。 同的码型将有不同的频谱结构,对信道有着不同的要求。
1 2 3 4 5
引言 数字基带信号码波形 基带传输的常用码型 基带脉冲传输和码间干扰 无码间干扰的基带传输特性
2008.8
copyright 信息科学与技术学院通信原理教研组
18
6.3基带传输的常用码型 3
在实际的基带传输系统中, 在实际的基带传输系统中,并不是所有类 型的基带电波形都能在信道中传输。 型的基带电波形都能在信道中传输。 对传输用的基带信号有两个方面的要求: 对传输用的基带信号有两个方面的要求: ( 1 ) 对代码的要求 , 原始消息代码必须编 对代码的要求, 成适合于传输用的码型; 传输码型的选择) 成适合于传输用的码型;(传输码型的选择) 对所选码型的电波形要求, (2) 对所选码型的电波形要求,电波形应 适合于基带系统的传输。(基带脉冲的选择) 。(基带脉冲的选择 适合于基带系统的传输。(基带脉冲的选择)
《通信原理》第六版课件(全)
通常广泛使用的单位为比特,这时有
I
log2
1 P(x)
log2
P(x)
(b)
【例】 设一个二进制离散信源,以相等的概率发送数字
“0”或“1”,则信源每个输出的信息含量为
I (0)
I (1)
log 2
1 1/ 2
log 2
2
1
(b)
在工程应用中,习惯把一个二进制码元称作1比特
2021/8/18
I - 消息中所含的信息量, 则 P(x) 和 I 之间应该有如下关系:
➢ I 是 P(x) 的函数: I =I [P(x)] ➢ P(x) ,I ; P(x) ,I ;
P(x) = 1时,I = 0; P(x) = 0时,I = ;
➢
满足I[上P(述x1)3P条(x件2 )的]关 I系[P式(x如1)]下 I:[P(x2 )]
……………
后面讲述中,“通信”这一术语是指“电通信”, 包括光通信,因为光也是一种电磁波。
在电通信系统中,消息的传递是通过电信号来实 现的。
2021/8/18
第1章 绪论
1.2 通信系统的组成
1.2.1 通信系统的一般模型
信息源(简称信源):把各种消息转换成原始电信 号,如麦克风。信源可分为模拟信源和数字信源。
(1.4 6)
2021/8/由18 于H(x)同热力学中的熵形式相似,故称它为信息源的熵
第1章 绪论
【例1】 一离散信源由“0”,“1”,“2”,“3”四个符 号组成,它们出现的概率分别为3/8,1/4,1/4,1/8, 且每个符号的出现都是独立的。试求某消息
2010201302130 01203210100321010023102002010312032100120210的 信息量。
通信原理第6章第5节
而PCM的每一个误码会造成较大的误差。
由此可见,M 允许用于误码率较高的信道条件,这是 M 与 PCM比较起来最为重要的优势。
5. 设备复杂度
PCM系统的特点是多路信号统一编码,一般采用8位编码(对语音 信号),编码设备复杂,但质量较好。PCM一般用于大容量的干线(多 路)通信。
△M系统的特点是单路信号独用一个编码器,设备简单,单路应用 时,不需要收发同步设备。但在多路应用时,每路独用一套编译码器, 所以路数增多时设备成倍增加。△M一般适用于小容量支线通信,话 路上、下方便灵活。
因此一般来说: BM BPCM
3. 量化信噪比
比较两者曲线可看出,若PCM系统的编码 位数N<4(码率较低)时,ΔM的量化信噪 比高于PCM系统。
PCM
S0 dB Nq 40
30
****
20 *
△M
10
4. 信道误码的影响
1 2 34 5 6 N
在M 系统中, 每一个误码代表造成一个量阶的误差,所以它对 误码不太敏感。故对误码率的要求较低。
同时考虑量化噪声和信道加性噪声时,PCM系统输出端的 总信噪功率比为:
S0 S0 N0 Nq Ne
S0 SO / Nq 22N N0 1 Ne / Nq 1 4Pe 22N
由上可知:
Nq Ne , SO SO NO Nq
Nq Nc , SO SO NO Ne
应当指出,以上公式是在自然码、均匀量化以及输入信号为均匀 分布的前提下得到的。
原理图
本地译码器由积分器和脉冲产生器组成, 它的作用是根据c(t), 形成预测信号m1(t),并送到相减器与m(t)进行幅度比较。
接收端译码电路由译码器和低通滤波器组成。其中,译码器的电
通信原理(第六版)第6章 教程
即可得到随机序列s(t)的功率谱密度,即
Ps ( f ) = Pu ( f ) + Pv ( f ) = f S P (1 − P ) G1 ( f ) − G2 ( f )
+
m = −∞
2
∑
∞
f S [ PG1 (mf S ) + (1 − P )G2 (mf S )] δ ( f − mf S )
设一个二进制的随机脉冲序列如下图所示:
9
第6章 数字基带传输系统
图中 Ts - 码元宽度 g1(t)和g2(t) - 分别表示消息码“0”和“1”,为任意波形。 设序列中任一码元时间Ts内g1(t)和g2(t)出现的概率分别为P和 (1-P),且认为它们的出现是统计独立的,则该序列可表示为
s (t ) =
−∞
N
=
n=− N
∑a∫
n
∞
−∞
[ g1 (t − nTS ) − g 2 (t − nTS )]e − j 2π f t dt
=
其中
G1 ( f ) =
n=− N
a n e − j 2 π f nTs [G1 ( f ) − G 2 ( f )] ∑
∞
N
∫
−∞ ∞
g1 (t ) e − j 2πft dt
N
的统计平均值仅在m = n时存在,故有
E[ U T ( f ) ] =
2 n =− N
∑
N
E[a ] G1 ( f ) − G2 ( f ) = (2 N + 1) P (1 − P ) G1 ( f ) − G2 ( f )
2 n 2
2
18
第6章 数字基带传输系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v ( t)[P 1 ( tg ns)T ( 1 P )g 2 ( t ns)T ] v n ( t)
n
n
由于v(t)在每个码元内的统计平均波形相同,故v(t)是以Ts为 周期的周期信号。
.
11
第6章 数字基带传输系统
交变波u(t).
6
第6章 数字基带传输系统
差分波形:用相邻码元的电平的跳变和不变来表示消息代码 , 图中,以电平跳变表示“1”,以电平不变表示“0”。它也称 相对码波形。用差分波形传送代码可以消除设备初始状态的 影响。
多电平波形:可以提高频带利用率。图中给出了一个四电平 波形2B1Q。
.
7
第6章 数字基带传输系统
.
4
第6章 数字基带传输系统
单极性波形:该波形的特点是电脉冲之间无间隔,极性单一, 易于用TTL、CMOS电路产生;缺点是有直流分量,要求传 输线路具有直流传输能力,因而不适应有交流耦合的远距离 传输,只适用于计算机内部或极近距离的传输。
双极性波形:当“1”和“0”等概率出现时无直流分量,有利 于在信道中传输,并且在接收端恢复信号的判决电平为零值, 因而不受信道特性变化的影响,抗干扰能力也较强。
.
5
第6章 数字基带传输系统
单极性归零(RZ)波形:信号电压在一个码元终止时刻前总要 回到零电平。通常,归零波形使用半占空码,即占空比为 50%。从单极性RZ波形可以直接提取定时信息 。
与归零波形相对应,上面的单极性波形和双极性波形属 于非归零(NRZ)波形,其占空比等于100%。
双极性归零波形:兼有双极性和归零波形的特点。使得接收 端很容易识别出每个码元的起止时刻,便于同步。
随机脉冲序列的表示式
设一个二进制的随机脉冲序列如下图所示:
.
9
第6章 数字基带传输系统
图中
Ts - 码元宽度
g1(t)和g2(t) - 分别表示消息码“0”和“1”,为任意波形。
设序列中任一码元时间Ts内g1(t)和g2(t)出现的概率分别为P和 (1-P),且认为它们的出现是统计独立的,则该序列可表示为
于是,根据周期信号的功率谱密度与傅里叶系数的关系式得
到的功率谱密度为
P vf fS [P G 1 ( m fS ) ( 1 P ) G 2 ( m fS ) ]2(f m fs )
m
.
14
第6章 数字基带传输系统
u(t)的功率谱密度Pu(f)
由于是一个功率型的随机脉冲序列,它的功率谱密度
又由于 P1(g t)(1P )g2(t)
只存在于(-Ts/2,Ts/2)范围内,所以上式的积分限可以改 为从 - 到 ,因此
其中 C mT 1 s [P1(g t)(1P )g2(t)e]j2 m fStdt
G 1(ms)f g1(t)ej2mStfdt
G 2(ms)f g2(t)ej2mStfd t
于是
u(t) un(t) n
式中,
g1(tnTs)P1g(tnTs)(1P)g2(tnTs)
un(t)
(1P)[g1(tn Ts)g2(tn Ts)], 以概P率 g2(tnTs)P1g(tnTs)(1P)g2(tnTs)
或写成
P[g1(tn Ts)g2(tn Ts)], 以概(1率 P)
u n ( t) a n [g 1 ( t ns) T g 2 ( t ns)T ]
m
式中
Cm
1 Ts
Ts
2 Ts
v(t)ej2mfStdt
2
由于在(-Ts/2,Ts/2)范围内, v (t) P 1 (t) g ( 1 P )g 2 (t)
所以
C mT 1 s T 2 T s2 s[P1(g t)(1P )g2(t)e]j2m fStdt
.
13
第6章 数字基带传输系统
s(t) sn(t) n
式中
sn(t) g ( 2 g1t(t nn T T S) S), ,以 以 概 概 率 率 (1 P P 出 )出 现 现
.
10
第6章 数字基带传输系统
为了使频谱分析的物理概念清楚,推导过程简化,我们可以 把s(t)分解成稳态波v(t)和交变波u(t) 。所谓稳态波,即随机 序列s(t)的统计平均分量,它取决于每个码元内出现g1(t)和 g2(t) 的概率加权平均,因此可表示成
数字基带信号的表示式:表示信息码元的单个脉冲 的波形并非一定是矩形的。
若表示各码元的波形相同而电平取值不同,则 数字基带信号可表示为:
s(t) ang(tnTs) n
式中,an - 第n个码元所对应的电平值 Ts - 码元持续时间
g(t) -某种脉冲波形
一般情况下,数字基带信号可表示为一随机脉冲序
列:
s(t) sn(t) n
式中,sn(t)可以有N种不. 同的脉冲波形。
8
第6章 数字基带传输系统
6.1.2 基带信号的频谱特性
本小节讨论的问题
由于数字基带信号是一个随机脉冲序列,没有确定的 频谱函数,所以只能用功率谱来描述它的频谱特性。
这里将从随机过程功率谱的原始定义出发,求出数字 随机序列的功率谱公式。
其中
1P, 以概P率 an P, 以概(1率 P)
显然, u(t)是一个随机脉冲序列. 。
12
第6章 数字基带传输系统
v(t)的功率谱密度Pv(f)
由于v(t)是以为Ts周期的周期信号,故 v(t) [P1(g tns)T (1P )g2(tns)T] n
可以展成傅里叶级数
v(t)
C ej2mfSt m
研究数字基带传输系统的原因:
近程数据通信系统中广泛采用
基带传输方式也有迅速发展的趋势
基带传输中包含带通传输的许多基本问题
任何一个采用线性调制的带通传输系统,可以等效 为一个基带传输系统来研究。
.
3
第6章 数字基带传输系统
6.1 数字基带信号及其频谱特性
6.1.1 数字基带信号
几种基本的基带信号波形
通信原理
.
1
通信原理
第6章 数字基带传输系统
.
2
第6章 数字基带传输系统
概述
数字基带信号 - 未经调制的数字信号,它所占据的频 谱是从零频或很低频率开始的。
数字基带传输系统 -不经载波调制而直接传输数字基 带信号的系统,常用于传输距离不太远的情况下。
数字带通传输系统 -包括调制和解调过程的传输系统