图像的高斯金字塔分解 matlab源程序
sift算法matlab复杂代码
一、介绍SIFT算法SIFT(Scale-Invariant Feature Transform)算法是一种用于图像处理和计算机视觉领域的特征提取算法,由David Lowe在1999年提出。
SIFT算法具有旋转、尺度、光照等方面的不变性,能够对图像进行稳健的特征点提取,被广泛应用于物体识别、图像匹配、图像拼接、三维重建等领域。
二、SIFT算法原理SIFT算法的主要原理包括尺度空间极值点检测、关键点定位、关键点方向确定、关键点描述等步骤。
其中,尺度空间极值点检测通过高斯差分金字塔来检测图像中的极值点,关键点定位则利用DoG响应函数进行关键点细化,关键点方向确定和关键点描述部分则通过梯度方向直方图和关键点周围区域的梯度幅度信息来完成。
三、使用Matlab实现SIFT算法在Matlab中实现SIFT算法,需要对SIFT算法的每个步骤进行详细的编程和调试。
需要编写代码进行图像的高斯金字塔和高斯差分金字塔的构建,计算尺度空间极值点,并进行关键点定位。
需要实现关键点的方向确定和描述子生成的算法。
将所有步骤整合在一起,完成SIFT算法的整体实现。
四、SIFT算法复杂代码的编写SIFT算法涉及到的步骤较多,需要编写复杂的代码来实现。
在编写SIFT算法的Matlab代码时,需要考虑到算法的高效性、可扩展性和稳定性。
具体来说,需要注意以下几点:1. 高斯差分金字塔和高斯金字塔的构建:在构建高斯差分金字塔时,需要编写代码实现图像的高斯滤波和图像的降采样操作,以得到不同尺度空间的图像。
还需要实现高斯差分金字塔的构建,以检测图像中的极值点。
2. 尺度空间极值点检测:在检测图像中的极值点时,需要编写代码实现对高斯差分金字塔的极值点检测算法,以找到图像中的潜在关键点。
3. 关键点的定位:关键点定位阶段需要编写代码实现对尺度空间极值点的精确定位,消除低对比度点和边缘响应点,并进行关键点的精细化操作。
4. 关键点的方向确定和描述子生成:在这一步骤中,需要编写代码实现对关键点周围区域的梯度幅度信息的计算和关键点方向的确定,以及生成关键点的描述子。
图像融合算法的分析与实现
图像融合算法的分析与实现汤丽娟;孙克争【摘要】图像融合作为多传感器信息融合的重要分支,被广泛应用于各种领域.图像融合已成为监控系统中不可分割的一部分.分析图像融合传感器的种类,图像融合算法的评价指标和图像融合算法的分类.像素级图像融合作为各级图像融合的基础,尽可能多地保留场景的原始信息,提供其他融合层次所不能提供的丰富、精确、可靠的信息,有利于图像的进一步分析与处理.研究塔式图像分解,主成分分析图像和小波图像分解融合算法,并通过MATLAB编码实现其融合算法,评价算法的性能指标.最后用小波分解算法实现一组被动红外图像和可见光图像的融合,并评价其性能.【期刊名称】《现代计算机(专业版)》【年(卷),期】2016(000)010【总页数】7页(P42-48)【关键词】图像融合;评价指标;融合算法;编码实现【作者】汤丽娟;孙克争【作者单位】江苏商贸职业学院,南通 226000;中国矿业大学信息与电气学院,徐州221116;中国矿业大学信息与电气学院,徐州 221116【正文语种】中文图像融合是从不同传感器同时获取关于同一场景的不同波长的图像,将它们合成一幅图像。
合成图像用来提高图像的内容信息,使用户更容易发现,识别和确定目标并增加用户对图像内容的情景感知。
当前的研究主要集中在研究融合算法提高合成图像的内容信息。
例如在不同的场景下,如烟雾的情况下,融合算法仍是鲁棒的。
这篇论文的结构如下:第二部分介绍了几种图像融合传感器;第三部分研究图像融合算法的性能评价,这些指标用来测试图像融合算法的有效性的并反映融合图像的一些典型特征;第四部分研究了图像融合算法,并分析每种算法的实现原理,并编码实现算法并评价融合算法的性能指标;第五部分小结及分析图像融合领域的研究热点问题。
传感器种类很多,目前常用的用于图像融合的传感器主要有电子计算机断层扫描(Computed Tomography,CT),磁共振成像(Magnetic Resonance Imaging,MRI),可见光图像传感器(Charge-Couple Device,CCD),红外热像仪,激光成像雷达,毫米波雷达,合成孔径雷达成像仪(Synthetic Aperture Radar,SAR),多光谱/超光谱成像仪等[1],每种传感器都有自身的物理原理和成像特点,对同一场景,不同传感器采集的信息内容也不尽相同。
高斯模糊图像的盲复原附带matlab源代码
东南大学硕士学位论文高斯模糊图像的盲复原姓名:顾亚芳申请学位级别:硕士专业:信号与信息处理指导教师:吴乐南20051225东南大学硕士学位论文3.3.2实验结果取噪声方差占2=O.01,则各种去噪方法所复原的图像示于图3.1。
可以看出,维纳去噪的视觉效果最好,二次均值其次,而小波变换去噪的效果对于高斯噪声而言并不是很好。
图3.1去噪图像的主观对比表3.1去噪图像均方误差的比较62=0.00162=0.Ol62=O.162=1.0含噪图像457.23581.0103e+0034.7299e+0031.3682e_卜004小波变换1.1296e+0091.1316e+0091.1201e+0091.0779e+009维纳滤波421.9284479.0220515.48232.5666e+003维纳+均值1.1098e-卜0091.1117叶0091.0894e+0091.0284e+009~次均值1.1161e+0091.1225e+0091.1250e+0091.1044e+009二次均值1.1064e+0091.1109e+0091.0999e+0091.0546e+009三次均值1.0986e+0091.1025e+0091.0878e+0091.0357e_卜009各种方法去嵘后的图像均方误差如表3.1所示。
比较来看,对于高斯噪声,无论噪声大小,维纳滤波的去噪效果总是最好的3.4小结本章通过实验比较了6种去除图像噪声的方法:一次、二次和三次均值滤波,一次维纳去噪,一次维纳组合一次均值去噪,以及基于独立自适应阈值的小波去噪。
主观评判和基于复员图像均方误差的客观比较都表明,对于高斯噪声,维纳滤波的去噪效果在这6种方法中效果最好。
东南大学硕士学位论文4.2.4实验结果取噪声方差万2=O.01,图4.2给出了预处理分别采用3.3节的6种去噪方法后所得到的点扩展函数的主观对比;而表4.1则给出其均方误差的对比。
基于高斯金字塔分解和圆谐傅里叶矩的图像复制移动检测算法
基于高斯金字塔分解和圆谐傅里叶矩的图像复制移动检测算法董美丽;张华;周亚南
【期刊名称】《郑州轻工业学院学报(自然科学版)》
【年(卷),期】2012(027)003
【摘要】针对图像子块滑窗方式的移动导致数字图像复制移动检测算法的空间复杂度和时间复杂度很高的问题,提出基于高斯金字塔分解和圆谐傅里叶矩的检测算法.该算法首先对图像进行高斯金字塔分解,提取图像的低频区域,然后计算每个图像子块的3阶圆谐矩,并对各个图像块的特征向量进行字典排序,最后根据阅值进一步找到图像的复制粘贴区域.实验结果表明,该算法对经噪声污染和重压缩后的篡改图像具有很好的检测效果,且运算量较小.
【总页数】5页(P69-73)
【作者】董美丽;张华;周亚南
【作者单位】河南财经政法大学计算机与信息工程学院,河南郑州450002;河南财经政法大学计算机与信息工程学院,河南郑州450002;河南财经政法大学计算机与信息工程学院,河南郑州450002
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于圆谐-傅里叶矩的数字水印算法 [J], 银国瑞;平子良;董佳莉
2.基于圆谐-傅里叶矩与支持向量机的癌细胞识别 [J], 刘应钦;李红梅;白尚旺
3.基于圆谐-傅里叶矩的彩色图像检索算法 [J], 孙晋
4.一种基于离散Tchebichef正交多项式和傅里叶梅林矩的局部多特征图像检索算法 [J], 陶轩;朱宏擎
5.基于圆谐-傅里叶矩结合形态学滤波的数字图像篡改检测算法 [J], 曹青媚;叶潮流因版权原因,仅展示原文概要,查看原文内容请购买。
高斯模板的实现matlab版
(一)目标生成一个(2n+1)×(2n+1)大小的高斯模板h(标准为sigma),然后用此模板对图像进行滤波。
具体要求注:这里采用了多种方法:方法一:自己编写高斯模板,并用imfilter等函数。
方法二:自己编写高斯模板,不能用imfilter等函数。
方法三:利用matlab中的 fspecial 来产生高斯模板。
(二)前言为什么要讨论上述方法呢?通过编程显示便可知道方法的不同产生的高斯函数会略有不同。
编程前,我们首先应该了解一下高斯函数及高斯滤波。
(三)相关知识1.高斯函数的定义根据一维高斯函数,可以推导得到二维高斯函数:参考博文:高斯函数以及在图像处理中的应用总结2.高斯滤波原理高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。
高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
3.高斯模板公式二维高斯模板可以通过矩阵m来实现,假设模板的大小为(2k+1, 2k+1), 其中k为模板中心,则m(i,j)的值如下所示:4.模板与图像滤波的实现(实质:卷积)其中,w表示高斯算子,a,b表示算子大小。
(四)不同方法实现高斯模板的区别这里先放结果,代码部分见方法一由于不同标准差会造成不同效果,编程代码见附录2,这里显示我以0.5:0.5:4.5的sigma来设计不同的15*15高斯低通模板显示不同高斯模板之间的区别,如下所示:下面为我根据高斯函数表达书编写的高斯模板三维显示图:matlab中自带高斯模板函数,显示如下:由上述可知,sigma越小,函数越窄越高,与前述的理论不同。
高斯模板与自己编写的区别主要是在模板中心值的不同,中心像素值的不同会导致周围的值也有所不同,运行方法一中代码你就知道了,这里我就不放了。
(五)实现过程与结果1.方法1实验结果如下所示:自己编写的滤波效果:matlab自带对比如下:(左边自己,后边matlab)实验代码:n_size =15;center_n =(n_size +1)/2;n_row = n_size;n_col = n_size;array_sigma =0.5:0.5:4.5;map_x =1:n_row; map_y =1:n_col;figure('name','不同高斯模板三维图')for k =1:9sigma =array_sigma(k);fori=1: n_rowforj=1: n_coldistance_s =double((i-center_n-1)^2+(j-center_n-1)^2);g_ry(i,j)=exp((-1)* distance_s/(2*sigma^2))/(2*pi*(sigma^2));endenddisp(num2str(sigma));disp(g_ry)subplot(3,3,k);surf(map_x,map_y,g_ry);title(num2str(sigma));endfigure('name','matlab不同高斯模板三维图')for k =1:9sigma =array_sigma(k);gausfilter =fspecial('gaussian',[n_row n_col],sigma);disp(num2str(sigma));disp(gausfilter)subplot(3,3,k);surf(map_x,map_y,g_ry);tit le(num2str(sigma));endfigure('name','不同高斯模板滤波效果(my)')srcimg =imread('pic_3_x2.jpg');subplot(3,4,1);imshow(uint8(srcimg));title('原图');grayimg =rgb2gray(srcimg);subplot(3,4,5);imshow(uint8(grayimg));title('灰度图');image_noise =imnoise(grayimg,'gaussian');subplot(3,4,9);imshow(uint8(image_noise));title('加噪图');for k =1:9sigma =array_sigma(k);fori=1: n_rowforj=1: n_coldistance_s =double((i-center_n-1)^2+(j-center_n-1)^2);g_ry(i,j)=exp((-1)* distance_s/(2*sigma^2))/(2*pi*(sigma^2));endendsubplot(3,4,k+ceil(k/3));gry_img=imfilter(image_noise,g_ry);imshow(gry_img);title(num2str(sigma));endfigure('name','不同高斯模板滤波效果(matlab)')subplot(3,4,1);imshow(uint8(srcimg));title('原图');subplot(3,4,5);imshow(uint8(grayimg));title('灰度图');subplot(3,4,9);imshow(uint8(image_noise));title('加噪图');for k =1:9sigma =array_sigma(k);gausfilter =fspecial('gaussian',[n_row n_col],sigma);subplot(3,4,k+ceil(k/3));gry_img =imfilter(image_noise,gausfilter);imshow(gry_img);title(num2str(sigma));end2.方法2实验结果如下:实验代码:srcimg=imread('pic_3_x2.jpg');grayimg=rgb2gray(uint8(srcimg));k =size(grayimg);[grayimg_row,grayimg_col]=size(grayimg);sigma =1.6;n =7;n_row =2*n+1;n_col =2*n+1;image_noise =imnoise(grayimg,'gaussian');g_ry =[];fori=1:n_rowforj=1:n_coldistance_s=double((i-n-1)^2+(j-n-1)^2);g_ry(i,j)=exp(-distance_s/(2*sigma*sigma))/(2*pi*sigma*sigma);endendg_ry=g_ry/sum(g_ry(:));dstimg_gry =zeros(grayimg_row,grayimg_col);fori=1:grayimg_rowforj=1:grayimg_coldstimg_gry(i,j)=image_noise(i,j);endendtemp=[];for ai=n+1:grayimg_row-n-1for aj=n+1:grayimg_col-n-1temp=0;for bi=1:n_rowfor bj=1:n_coltemp= temp+(dstimg_gry(ai+bi-n-1,aj+bj-n-1)*g_ry(bi,bj));endenddstimg_gry(ai,aj)=temp;endenddstimg_gry=uint8(dstimg_gry);gausfilter =fspecial('gaussian',[n_row n_col],sigma);gmf_img=imfilter(image_noise,gausfilter,'conv');figure('name','不处理边界的高斯滤波对比')subplot(2,2,1);imshow(grayimg);title('原图');subplot(2,2,2);imshow(image_noise);title('噪声图');subplot(2,2,3);imshow(dstimg_gry);title('my高斯滤波');subplot(2,2,4);imshow(gmf_img);title('matlab高斯滤波');方法2和方法3可参考matlab实现图像滤波——高斯滤波【这篇博文】3.方法3实验结果:实验代码:srcimg=imread('pic_3_x2.jpg');grayimg=rgb2gray(uint8(srcimg));[grayimg_row,grayimg_col]=size(grayimg);sigma =1.6;n =7;n_row =2*n+1;n_col =2*n+1;image_noise =imnoise(grayimg,'gaussian');g_ry =[];fori=1:n_rowforj=1:n_coldistance_s=double((i-n-1)^2+(j-n-1)^2);g_ry(i,j)=exp(-distance_s/(2*sigma*sigma))/(2*pi*sigma*sigma);endendg_ry=g_ry/sum(g_ry(:));dstimg_gry =zeros(grayimg_row,grayimg_col);midimg=zeros(grayimg_row+2*n,grayimg_col+2*n);fori=1:grayimg_rowforj=1:grayimg_colmidimg(i+n,j+n)=image_noise(i,j);endenddstimg_ry=zeros(grayimg_row,grayimg_col);temp=[];for ai=n+1:grayimg_row+nfor aj=n+1:grayimg_col+ntemp_row=ai-n;temp_col=aj-n;temp=0;for bi=1:n_rowfor bj=1:n_rowtemp= temp+(midimg(temp_row+bi-1,temp_col+bj-1)*g_ry(bi,bj));endenddstimg_ry(temp_row,temp_col)=temp;endenddstimg_ry=uint8(dstimg_ry);gausfilter =fspecial('gaussian',[n_row n_col],sigma);gmf_img=imfilter(image_noise,gausfilter,'conv');figure('name','高斯滤波对比')subplot(2,2,1);imshow(grayimg);title('原图');subplot(2,2,2);imshow(image_noise);title('噪声图');subplot(2,2,3);imshow(dstimg_ry);title('my高斯滤波');subplot(2,2,4);imshow(gmf_img);title('matlab高斯滤波');。
matlab编程实现二分法牛顿法黄金分割法最速下降matlab程序代码
用二分法求解4224min ()f t t t t =--115[,.]t ∈内的极小值点,要求准 1.function [t d]=erfenfa(a,b)k=1; %记录循环次数while abs(a-b)>0.0005c=(a+b)/2;C(k)=c; %存储每次循环中点c 的值if ff(c)<0a=c;endif ff(c)==0t1=c;break ;endif ff(c)>0b=c;endk=k+1;endt=(a+b)/2; %最终符合要求的值d=f(t); %最优解Ckfunction y=f(t)y=t^4-2*t^2-4*t;function y=ff(t)y=4*t^3-4*t-4;运行结果>> [t d]=erfenfa(1,1.5)C =Columns 1 through 91.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.32621.3252Column 101.3247k =11t =1.3250d =-5.72902.黄金分割法 f (x)=x3-2x+1 初始区间[0, 3],收敛精度0.5function [t,f]=huangjinfenge(a,b)m=1-(sqrt(5)-1)/2;t2=a+m*(b-a)f2=g(t2);t1=a+b-t2f1=g(t1);while abs(t1-t2)>0.5if f1<f2a=t2;t2=t1f2=f1;t1=a+b-t2f1=g(t1);elseb=t1;t1=t2f1=f2;t2=a+m*(b-a)f2=g(t2);endendt=(t1+t2)/2;f=g(t);function y=g(t)y=t^3-2*t+1;运行结果> [t,f]=huangjinfenge(0,3)t2 =1.1459t1 =1.8541t1 =1.1459t2 =0.7082t =0.9271f =-0.0574>>3. 用牛顿法求解291min ()sin f x x x =--初始迭代点为x 0=0.4,要求准确到小数 点后第5位小数function [t1,d]=Newton(t0)t=t0-ff(t0)/fff(t0);k=1;%记录迭代次数T(1)=t;%存储迭代点while abs(t-t0)>0.000005t0=t;t=t0-ff(t)/fff(t);k=k+1;T(k)=t;endt1=t0;d=f(t1);kTfunction y=f(x)y=9*x^2-sin(x)-1;function y=ff(x)y=18*x-cos(x);function y=fff(x)y=18+sin(x);运行结果>> [t1,d]=Newton(0.4)k =3T =0.0586 0.0555 0.0555t1 =0.0555d =-1.0277>>4. 最速下降法验证课本上的例题求解291min ()sin f x x x =--初始迭代点为x 0=0.4, 要求准确到小数点后第5位小数function [G,g,X,F]=zuisu(X0)F(1)=f(X0);%存储x 点处的值G(:,1)=h(X0); %存储梯度向量g(1)=norm(G(:,1));%存储梯度模长X(:,1)=X0; %存储x 值A=[2,0;0,8];for j=1:2X(:,j+1)=X(:,j)-(G(:,j)'*G(:,j))/(G(:,j)'*A*G(:,j))*G(:,j); F(j+1)=f(X(:,j+1));G(:,j+1)=h(X(:,j+1));g(j+1)=norm(G(:,j+1));endif (G(:,2)'*G(:,1)<1E-10& G(:,3)'*G(:,2)<1E-10)disp(['相邻两搜索方向是正交的'])endfunction y=f(X)y=X(1)^2+4*X(2)^2;function n=h(X)n=[2*X(1),8*X(2)]';运行结果>> [G,g,X,F]=zuisu(X0)相邻两搜索方向是正交的G =2.0000 1.4769 0.2215 8.0000 -0.3692 0.8862g =8.2462 1.5224 0.9134X =1.0000 0.7385 0.1108 1.0000 -0.0462 0.1108F =5.0000 0.5538 0.0613 >>。
高斯正反算及换带计算matlab源代码_附截图
高斯投影坐标正、反算及相邻带的坐标换算MATLAB源代码
L0=input('输入所用中央子午线 L0='); disp('1:克拉索夫斯基椭球 T=0; while (T<1||T>2) T=input('请根据上列选择椭球模型 T='); switch T case 1 a=6378245.0000000000; b=6356863.0187730473; B=x/6367558.4969; B=B+(50221746+(293622+(2350+22*(cos(B))^2)*(cos(B))^2)*(cos(B))^2)*10^(-10)*sin(B)*cos(B); case 2 a=6378140.0000000000; b=6356755.2881575287; B=x/6367452.1328; B=B+(50228976+(293697+(2383+22*(cos(B))^2)*(cos(B))^2)*(cos(B))^2)*10^(-10)*sin(B)*cos(B); otherwise disp('T 值无效 end end e=(sqrt(a^2-b^2))/a; e1=(sqrt(a^2-b^2))/b; V=sqrt(1+(e1^2)*(cos(B))^2); c=(a^2)/b; M=c/(V^3); N=c/V; t=tan(B); n=sqrt((e1^2)*(cos(B))^2); lp1=y/(N*cos(B)); lp2=(1+2*t^2+n^2)*(y^3)/(6*cos(B)*N^3); lp3=(5+28*t^2+24*t^4+6*n^2+8*(n^2)*(t^2))*(y^5)/(120*cos(B)*N^5); l=lp1-lp2+lp3; Bp1=B; Bp2=(t*y^2)/(2*M*N); Bp3=(t/(24*M*N^3))*(5+3*t^2+n^2-9*(n^2)*(t^2))*y^4; Bp4=(t/(720*M*N^5))*(61+90*t^2+45*(t^4))*y^6; B=Bp1-Bp2+Bp3-Bp4; r1=l*sin(B); r2=(1/3)*sin(B)*(cos(B))^2*(l^3)*(1+3*n^2+2*n^4); r3=(1/15)*sin(B)*(cos(B))^2*(l^5)*(2-t^2); r=r1+r2+r3; format long g L=HHD(l)+L0 B=HHD(B) (1-2)'); 2:1975 年国际椭球 3:WGS-84 椭球');
高斯模糊的实现(matlab)
高斯模糊实现(matlab)高斯模糊是一种图像模糊滤波器,它用正态分布计算图像中每个像素的变换。
N 维空间正态分布方程为(1)在二维空间定义为(2)其中r 是模糊半径,指模板元素到模板中心的距离。
σ 是正态分布的标准偏差,。
在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆。
分布不为零的像素组成的卷积矩阵与原始图像做变换。
每个像素的值都是周围相邻像素值的加权平均。
原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。
这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。
1. 使用给定高斯模板平滑图像维基百科的实例高斯模糊矩阵:0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067 0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292 0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117 0.00038771 0.01330373 0.11098164 0.22508352 0.11098164 0.01330373 0.00038771 0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117 0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.000022920.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067用该矩阵进行高斯模糊的结果如下:使用代码如下:guass=[0.00000067 0.00002292 0.00019117 0.00038771 0.000191 17 0.00002292 0.00000067;0.00002292 0.00078633 0.00655965 0.01330373 0.006559650.00078633 0.00002292;0.00019117 0.00655965 0.05472157 0.11098164 0.054721570.00655965 0.00019117;0.00038771 0.01330373 0.11098164 0.22508352 0.110981640.01330373 0.00038771;0.00019117 0.00655965 0.05472157 0.11098164 0.054721570.00655965 0.00019117;0.00002292 0.00078633 0.00655965 0.01330373 0.006559650.00078633 0.00002292;0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067];TestImg=imread('Lena1.jpg');FuzzyImg=conv2(TestImg,guass,'full');subplot(121);imshow(TestImg);subplot(122);imshow(FuzzyImg/256);编程注意事项:在matlab中,我们常使用imshow()函数来显示图像,而此时的图像矩阵可能经过了某种运算。
拉普拉斯金字塔与p-m模型联合去噪方法
拉普拉斯金字塔与p-m模型联合去噪方法程慧斌【摘要】阐述拉普拉斯金字塔的原理和方法,提出先用p-m模型进行消噪处理,再用拉普拉斯金字塔进行融合,与用拉普拉斯金字塔方法进行融合后再用p-m模型进行降噪处理,并且时图像质量进行分析评价,得出这两种方法的各自特点.【期刊名称】《现代电子技术》【年(卷),期】2008(031)008【总页数】3页(P68-69,72)【关键词】拉普拉斯金字塔;图像融合;图像恢复;p-m模型【作者】程慧斌【作者单位】西安电子科技大学,理学院,陕西,西安,710071【正文语种】中文【中图分类】TP391.41图像融合是近年信号处理领域的研究热点,但是在获取2个或多个元图像的过程中,由于传输中的随机脉冲或者是光学仪器由于大气衰减、天气、观测时刻等的原因,所获取的图像不可避免的要带入噪声,而这种噪声还会伴随着图像融合等处理方法融入融合图像中。
本文所做的就是对这一过程的图像进行处理,从而把去噪于融合结合起来。
本文提出的处理方法有3种,分别是先对图像进行去噪再将去噪后的图像进行融合(方法1);与先把噪声图像进行融合,而后进行去噪(方法2);以及最后的把去噪与融合结合起来做(方法3)。
图像融合所用的方法有对比度金字塔,拉普拉斯金字塔等多种本文对去噪模型和融合模型的选取具有一般性,即选取拉普拉斯金字塔与应用广泛的p-m去噪模型。
图像融合是将源于多源通道的所采集的关于同一目标或场景的图像经过一定的处理,提取每个通道的互补信息,最后综合成信息更加丰富,对同一场景或目标的描述更为准确、更为全面、更为可靠的图像。
1 图像的高斯金字塔分解设原图像为I0(m,n)(m≤M,n≤N),M,N是图像的行列数,而原图I0为高斯金字塔的最底层,即0层,第一层由下式生成:(1)而各层相应为:(2)其中 w(m,n)是生成核,其中一个典型的生成核是如下的一个5×5的子窗口:(3)而拉普拉斯金字塔的生成还要有一个与图像缩小相反的扩大过程,这个过程就是把第一级图像扩大到第l-1级同样大的过程。
matlab,生成高斯图像
cl;m=31;n=31;img=zeros(m+1,n+1); %给img赋值一个(n+1)行*2列的全零矩阵img=double(img); %gdouble 就是简单地把一个变量(这里是变量img)类型转换成double 类型,数值大小不变;比如a=6 是个unit8类型的话,double(a)的结果还是6,不过现在这个6是double类型的。
pi=3.1415926;sigma=10;for i=-(m/2):m/2 %给i依次赋值-(m/2)到(m/2)之间的数,每个值都执行for循环中的代码一次。
for j=-(n/2):n/2 %给j依次赋值-(n/2)到(n/2)之间的数,每个值都执行for循环中的代码一次。
img(i+m/2+1,j+n/2+1)=(1/(2*pi*sigma*sigma))*exp(-(i*i+j*j)/(2*sigma*sigma));img(i+m/2+1,j+n/2+1)endendimg=mat2gray(img); %将图像矩阵img归一化为图像矩阵img,归一化后矩阵中每个元素的值都在0到1范围内(包括0和1)。
其中0表示黑色,1表示白色。
imshow(img); %显示img的图像imwrite(img,'pic.bmp'); %图像输出路径是%%下面的代码是对上面的代码进行另一种方式的优化h=5;w=2;[x y]=meshgrid(-w:w,-h:h); %定义数组x,y,x的行向量相当于(-w:w.-h:h),共有n行;y的列向量相当于(-w:w.-h:h),共有n列;n相当于(-w:w.-h:h)中的值的数量。
sigma=5;img = (1/(2*pi*sigma^2))*exp(-(x.^2+y.^2)/(2*sigma^2)); %定义函数img。
高斯模糊matlab
高斯模糊matlab高斯模糊是一种常用的图像处理技术,可以用来减少图像中的噪点和细节,使图像变得更加平滑。
在Matlab中,我们可以使用内置的函数来实现高斯模糊。
首先,我们需要加载一张待处理的图像。
可以使用imread函数来读取图像文件,例如:```matlabimage = imread('image.jpg');```接下来,我们可以使用imgaussfilt函数来对图像进行高斯模糊处理。
该函数的语法如下:```matlabblurred_image = imgaussfilt(image, sigma);```其中,image是待处理的图像,sigma是高斯核的标准差。
标准差越大,模糊效果越明显。
例如,我们可以使用sigma为2的高斯核对图像进行模糊处理:```matlabblurred_image = imgaussfilt(image, 2);```最后,我们可以使用imshow函数来显示原始图像和模糊后的图像,以便比较它们的差异:```matlabsubplot(1, 2, 1);imshow(image);title('原始图像');subplot(1, 2, 2);imshow(blurred_image);title('高斯模糊后的图像');```通过运行以上代码,我们可以看到原始图像和经过高斯模糊处理后的图像在显示窗口中以子图的形式呈现。
除了使用imgaussfilt函数,Matlab还提供了其他一些函数来实现不同类型的模糊效果。
例如,imfilter函数可以用于应用自定义的滤波器,fspecial函数可以用于创建各种类型的滤波器,如平均滤波器和拉普拉斯滤波器。
总之,高斯模糊是一种常用的图像处理技术,可以通过Matlab中的imgaussfilt函数来实现。
通过调整高斯核的标准差,我们可以控制模糊效果的强度。
在实际应用中,高斯模糊常用于去除图像中的噪点和细节,使图像变得更加平滑。
拉普拉斯金字塔 matlab函数
拉普拉斯金字塔是一种图像金字塔的变种,它用于图像处理中的特征提取和目标检测。
在Matlab中,可以使用laplacian函数来创建拉普拉斯金字塔。
本文将介绍拉普拉斯金字塔的原理和Matlab函数的使用方法,帮助读者了解拉普拉斯金字塔在图像处理中的应用。
一、拉普拉斯金字塔原理1. 拉普拉斯金字塔是图像金字塔的一种,它可以通过对原始图像进行高斯平滑和下采样得到。
与高斯金字塔不同的是,拉普拉斯金字塔是通过对原始图像进行高斯平滑后的图像与原始图像的卷积差来构建的。
2. 拉普拉斯金字塔的构建过程包括先对原始图像进行高斯平滑,然后对平滑后的图像进行下采样,再对下采样后的图像进行上采样,最后得到图像的拉普拉斯金字塔。
二、Matlab中的laplacian函数在Matlab中,可以使用laplacian函数来创建拉普拉斯金字塔。
laplacian函数的语法如下:LP = laplacian(A, levels)其中,A表示输入的原始图像,levels表示金字塔的层数。
该函数将返回拉普拉斯金字塔的层数。
三、使用示例下面通过一个示例来演示如何使用Matlab中的laplacian函数来创建拉普拉斯金字塔。
```matlab读取原始图像I = imread('lena.jpg');创建拉普拉斯金字塔LP = laplacian(I, 5);显示金字塔图像figure;for i = 1:5subplot(1, 5, i);imshow(LP{i}, []);title(['Level ', num2str(i)]);end```在上面的示例中,首先读取了一张名为lena.jpg的原始图像。
然后使用laplacian函数创建了一个5层的拉普拉斯金字塔LP。
最后使用subplot和imshow函数将金字塔的每一层图像显示出来。
四、总结本文介绍了拉普拉斯金字塔的原理和在Matlab中的使用方法。
金字塔变换的图像融合Matlab源码
附录1 金字塔变换图像融合方法程序% 拉普拉斯金字塔融合函数function Y = fuse_lap(M1, M2, zt, ap, mp)% M1、M2为源图像% zt为融合层数,ap为高频子带图像选择系数,mp为低频子带图像选择系数[z1 s1] = size(M1);[z2 s2] = size(M2);if (z1 ~= z2) || (s1 ~= s2)error('输入源图像大小不一致');end;% 高斯窗口函数w = [1 4 6 4 1] / 16;E = cell(1,zt);for i1 = 1:zt[z s] = size(M1);zl(i1) = z; sl(i1) = s;% 图像尺寸为奇数还是偶数if (floor(z/2) ~= z/2), ew(1) = 1; else ew(1) = 0; end;if (floor(s/2) ~= s/2), ew(2) = 1; else ew(2) = 0; end;% 若为奇数,扩展为偶数if (any(ew))M1 = adb(M1,ew);M2 = adb(M2,ew);end;% M1与M2低通滤波G1 = conv2(conv2(es2(M1,2), w, 'valid'),w', 'valid');G2 = conv2(conv2(es2(M2,2), w, 'valid'),w', 'valid');% G1与G2下采样、上采样低通滤波后的膨胀序列M1T = conv2(conv2(es2(undec2(dec2(G1)), 2), 2*w, 'valid'),2*w', 'valid');M2T = conv2(conv2(es2(undec2(dec2(G2)), 2), 2*w, 'valid'),2*w', 'valid');% 高频子带图像系数选择E(i1) = {selg(M1-M1T, M2-M2T, ap)};% G11与G2下采样M1 = dec2(G1);M2 = dec2(G2);end;% 低频子带图像系数选择M1 = selh(M1,M2,mp);% 图像重构for i1 = zt:-1:1M1T = conv2(conv2(es2(undec2(M1), 2), 2*w, 'valid'), 2*w', 'valid');M1 = M1T + E{i1};% 选择图像有效区域M1 = M1(1:zl(i1),1:sl(i1));end;Y = M1;end;% 对比度金字塔融合函数function Y = fuse_con(M1, M2, zt, ap, mp)[z1 s1] = size(M1);[z2 s2] = size(M2);if (z1 ~= z2) | (s1 ~= s2)error('输入图像尺寸大小不一致');end;w = [1 4 6 4 1] / 16;eps = 1e-6;E = cell(1,zt);for i1 = 1:zt[z s] = size(M1);zl(i1) = z; sl(i1) = s;if (floor(z/2) ~= z/2), ew(1) = 1; else, ew(1) = 0; end;if (floor(s/2) ~= s/2), ew(2) = 1; else, ew(2) = 0; end;if (any(ew))M1 = adb(M1,ew);M2 = adb(M2,ew);end;G1 = conv2(conv2(es2(M1,2), w, 'valid'),w', 'valid');G2 = conv2(conv2(es2(M2,2), w, 'valid'),w', 'valid');M1T = conv2(conv2(es2(undec2(dec2(G1)), 2), 2*w, 'valid'),2*w', 'valid'); M2T = conv2(conv2(es2(undec2(dec2(G2)), 2), 2*w, 'valid'),2*w', 'valid'); E(i1) = {selg(M1./(M1T+eps)-1, M2./(M2T+eps)-1, ap)};M1 = dec2(G1);M2 = dec2(G2);end;M1 = selh(M1,M2,mp);for i1 = zt:-1:1M1T = conv2(conv2(es2(undec2(M1), 2), 2*w, 'valid'), 2*w', 'valid');M1 = (M1T+eps) .* (E{i1}+1);M1 = M1(1:zl(i1),1:sl(i1));end;Y = M1;end;% 梯度金字塔融合函数function Y = fuse_gra(M1, M2, zt, ap, mp)[z1 s1] = size(M1);[z2 s2] = size(M2);if (z1 ~= z2) | (s1 ~= s2)error('输入图像大小不一致');end;w = [1 4 6 4 1] / 16;v = [1 2 1] / 4;% 核函数% 梯度算子d1 = [1 -1];d2 = [0 -1; 1 0] / sqrt(2);d3 = [-1 1];d4 = [-1 0; 0 1] / sqrt(2);% 计算导数d1e = conv2(d1,d1);d1e = [zeros(1,3); d1e; zeros(1,3)];d2e = conv2(d2,d2);d3e = d1e';d4e = conv2(d4,d4);E = cell(1,zt);for i1 = 1:zt[z s] = size(M1);zl(i1) = z; sl(i1) = s;if (floor(z/2) ~= z/2), ew(1) = 1; else, ew(1) = 0; end;if (floor(s/2) ~= s/2), ew(2) = 1; else, ew(2) = 0; end;if (any(ew))M1 = adb(M1,ew);M2 = adb(M2,ew);end;% 梯度金字塔的建立G1 = conv2(conv2(es2(M1,2), w, 'valid'),w', 'valid');G2 = conv2(conv2(es2(M2,2), w, 'valid'),w', 'valid');Z1 = es2(M1+conv2(conv2(es2(M1, 1), v, 'valid'), v', 'valid'), 1); Z2 = es2(M2+conv2(conv2(es2(M2, 1), v, 'valid'), v', 'valid'), 1);B = zeros(size(M1));% 方向拉普拉斯金字塔的建立D1 = conv2(Z1, d1e, 'valid');D2 = conv2(Z2, d1e, 'valid');B = B + selg(D1, D2, ap);D1 = conv2(Z1, d2e, 'valid');D2 = conv2(Z2, d2e, 'valid');B = B + selg(D1, D2, ap);D1 = conv2(Z1, d3e, 'valid');D2 = conv2(Z2, d3e, 'valid');B = B + selg(D1, D2, ap);D1 = conv2(Z1, d4e, 'valid');D2 = conv2(Z2, d4e, 'valid');B = B + selg(D1, D2, ap);E(i1) = {-B/8};M1 = dec2(G1);M2 = dec2(G2);end;M1 = selh(M1,M2,mp);for i1 = zt:-1:1M1T = conv2(conv2(es2(undec2(M1), 2), 2*w, 'valid'), 2*w', 'valid'); M1 = M1T + E{i1};M1 = M1(1:zl(i1),1:sl(i1));end;Y = M1;end;% 图像2抽取函数function Y = dec2(X);[a b] = size(X);Y = X(1:2:a, 1:2:b);end;% 图像2插值函数function Y = undec2(X)[z s] = size(X);Y = zeros(2*z, 2*s);Y(1:2:2*z,1:2:2*s) = X;end;% 图像扩展函数function Y = adb(X, bd)[z s] = size(X);Y = zeros(z+bd(1),s+bd(2));Y(1:z,1:s) = X;if (bd(1) > 0)Y(z+1:z+bd(1),1:s) = X(z-1:-1:z-bd(1),1:s);end;if (bd(2) > 0)Y(1:z,s+1:s+bd(2)) = X(1:z,s-1:-1:s-bd(2));end;if (bd(1) > 0 & bd(2) > 0)Y(z+1:z+bd(1),s+1:s+bd(2)) = X(z-1:-1:z-bd(1),s-1:-1:s-bd(2));end;% 图像边缘像素处理函数function Y = es2(X, n)[z s] = size(X);Y = zeros(z+2*n, s+2*n);Y(n+1:n+z,n:-1:1)= X(:,2:1:n+1);Y(n+1:n+z,n+1:1:n+s)= X;Y(n+1:n+z,n+s+1:1:s+2*n)= X(:,s-1:-1:s-n);Y(n:-1:1,n+1:s+n)= X(2:1:n+1,:);Y(n+z+1:1:z+2*n,n+1:s+n)= X(z-1:-1:z-n,:);% 低频子带图像选择函数function Y = selh(M1, M2, mp)switch (mp)case 1, Y = M1;% 选择图像M1低频子带图像作为融合函数低频成分case 2, Y = M2;% 选择图像M2低频子带图像作为融合函数低频成分case 3, Y = (M1 + M2)/2;% 选择图像M1与M2加权平均低频子带图像作为融合函数低频成分otherwise, error('低频成分选择错误');end;% 高频子带图像选择函数function Y = selg(M1, M2, ap)% 判断输入图像是否大小一致[z1 s1] = size(M1);[z2 s2] = size(M2);if (z1 ~= z2) | (s1 ~= s2)error('输入图像大小不一致');end;switch(ap(1))case 1,% 绝对值最大融合准则mm = (abs(M1)) > (abs(M2));Y = (mm.*M1) + ((~mm).*M2);case 2,% 基于窗口系数加权平均融合准则um = ap(2); th = .75;% 设定阈值% 窗口区域加权平均能量S1 = conv2(es2(M1.*M1, floor(um/2)), ones(um), 'valid');S2 = conv2(es2(M2.*M2, floor(um/2)), ones(um), 'valid');% 归一化相关度MA = conv2(es2(M1.*M2, floor(um/2)), ones(um), 'valid');MA = 2 * MA ./ (S1 + S2 + eps);% s根据设定阈值选择融合系数m1 = MA > th; m2 = S1 > S2;w1 = (0.5 - 0.5*(1-MA) / (1-th));Y = (~m1) .* ((m2.*M1) + ((~m2).*M2));Y = Y + (m1 .* ((m2.*M1.*(1-w1))+((m2).*M2.*w1) + ((~m2).*M2.*(1-w1))+((~m2).*M1.*w1)));case 3,% 窗口系数绝对值选大融合准则um = ap(2);A1 = ordfilt2(abs(es2(M1, floor(um/2))), um*um, ones(um));A2 = ordfilt2(abs(es2(M2, floor(um/2))), um*um, ones(um));mm = (conv2((A1 > A2), ones(um), 'valid')) > floor(um*um/2);Y = (mm.*M1) + ((~mm).*M2);case 4,% 系数最大融合准则mm = M1 > M2;Y = (mm.*M1) + ((~mm).*M2);otherwise,error('高频成分选择错误');end;附录2 融合图像性能评价程序% 互信息函数function mui = mutinf(M1, M2, F)function mi = mutinf1(a, b)a=double(a);b=double(b);[Ma,Na] = size(a);[Mb,Nb] = size(b);M=min(Ma,Mb);N=min(Na,Nb);% 初始化直方图数组hab = zeros(256,256);ha = zeros(1,256);hb = zeros(1,256);% 归一化if max(max(a))~=min(min(a))a = (a-min(min(a)))/(max(max(a))-min(min(a)));elsea = zeros(M,N);endif max(max(b))-min(min(b))b = (b-min(min(b)))/(max(max(b))-min(min(b)));elseb = zeros(M,N);enda = double(int16(a*255))+1;b = double(int16(b*255))+1;% 统计直方图for i=1:Mfor j=1:Nindexx = a(i,j);indexy = b(i,j) ;hab(indexx,indexy) = hab(indexx,indexy)+1;% 联合直方图ha(indexx) = ha(indexx)+1;% M1直方图hb(indexy) = hb(indexy)+1;% M2直方图endend% 联合信息熵hsum = sum(sum(hab));index = find(hab~=0);p = hab/hsum;Hab = sum(sum(-p(index).*log(p(index))));% M1信息熵hsum = sum(sum(ha));index = find(ha~=0);p = ha/hsum;Ha = sum(sum(-p(index).*log(p(index))));% M2信息熵hsum = sum(sum(hb));index = find(hb~=0);p = hb/hsum;Hb = sum(sum(-p(index).*log(p(index))));% M1与M2互信息mi = Ha+Hb-Hab;% M1与M2归一化互信息mi1 = hab/(Ha+Hb);endmui=(mutinf1(M1, F)+mutinf1(M2, F));end% 均方差函数function img_var= variance(M1,M2,img)M1 = double(M1);M2 = double(M2);img = double(img);[r, c] = size(img);img_var = (sqrt(sum(sum((M1 - img).^2)) / (r * c ))+ sqrt(sum(sum((M2 - img).^2)) / (r * c )))/2;end% 峰值信噪比函数function psnr = psnr(M1,M2,img)M1 = double(M1);M2 = double(M2);img = double(img);[r, c] = size(img);psnr = 10.*(log((r * c )/sum(sum((M1 - img).^2)))+log((r * c )/sum(sum((M2 -img).^2))))/2;end% 平均梯度函数function avg_gra = avg_gradient(img)if nargin == 1 % 判断输入变量个数img = double(img);[r,c,b] = size(img);dx = 1;dy = 1;for k = 1 : bband = img(:,:,k);% 沿x与y方向差分[dzdx,dzdy] = gradient(band,dx,dy);s = sqrt((dzdx .^ 2 + dzdy .^2) ./ 2);g(k) = sum(sum(s)) / ((r - 1) * (c - 1));endavg_gra = mean(g);elseerror('Wrong number of input!');end% 边缘保持度函数function EDG_pr=edge_preservation(M1, M2, img)% 源图像与融合图像的梯度幅值与相角[GA,ALPHA_A,flag1]=SOBEL_EDGE(M1);[GB,ALPHA_B,flag2]=SOBEL_EDGE(M2);[GF,ALPHA_F,flag3]=SOBEL_EDGE(img);% 各像素边缘信息保留程度QAF=EDGE_PRE_VAL(GA,ALPHA_A,GF,ALPHA_F); QBF=EDGE_PRE_VAL(GB,ALPHA_B,GF,ALPHA_F); % 源图像与融合图像边缘保持度EDG_pr=NOR_WGT_VAL(QAF,GA,QBF,GB);endfunction [G,ALPHA,flag]=SOBEL_EDGE(img)% Sobel滤波梯度幅值与相角求取函数[row,col]=size(img);plate_H=[-1,-2,-1;0,0,0;-1,-2,-1];plate_V=[-1,0,-1;-2,0,-2;-1,0,-1];SX=conv2(img,plate_H,'same');SY=conv2(img,plate_V,'same');flag=0;G=zeros(row,col);ALPHA=zeros(row,col);for(i=1:row)for(j=1:col)if(SX(i,j)~=0)temp=SX(i,j)*SX(i,j)+SY(i,j)*SY(i,j);G(i,j)=sqrt(temp);ALPHA(i,j)=atan(SY(i,j)/SX(i,j));if(ALPHA(i,j)<0|G(i,j)==0)flag=flag+1;endendendendendfunction QAF=EDGE_PRE_VAL(GA,ALPHA_A,GF,ALPHA_F) % 边缘信息保留程度求取函数[row,col]=size(GA);GAF=zeros(row,col);AAF=zeros(row,col);%求取源图像与融合图像的相对幅值和相角for(i=1:row)for(j=1:col)if(GA(i,j)>GF(i,j))GAF(i,j)=GF(i,j)/GA(i,j);elseGAF(i,j)=GA(i,j)/GF(i,j);endendendALPHA_DIF=ALPHA_A-ALPHA_F;ALPHA_DIF=(abs(ALPHA_DIF)*2)/pi;AAF=1-ALPHA_DIF;% 可调节参数取值GAMA_G=0.9994;KG=-15;DELTA_G=0.5;GAMA_A=0.9879;KA=-22;DELTA_A=0.8;TEMP=exp(KG*(GAF-DELTA_G));QAF_G=GAMA_G./(1+TEMP);TEMP=exp(KA*(AAF-DELTA_A));QAF_ALPHA=GAMA_A./(1+TEMP);QAF=QAF_G.*QAF_ALPHA;size(QAF);sum(sum(QAF));endfunction NWP=NOR_WGT_VAL(QAF,GA,QBF,GB)% 边缘保持度求取函数NWP=0;temp1=(QAF.*GA+QBF.*GB);temp2=sum(sum(temp1));temp3=sum(sum(GA+GB));NWP=temp2/temp3;end11。
高斯变异matlab
高斯变异(Gaussian random variation)是一种常见的数学方法,常用于数值计算和统计分析中。
在 MATLAB 中实现高斯变异,通常需要使用内置的随机数生成函数。
以下是一个简单的 MATLAB 代码示例,演示如何使用高斯变异生成一组随机数:
```matlab
% 生成随机数种子,以确保结果可重复
rng('default');
% 设定高斯变异的标准差
sigma = 0.5;
% 生成随机数序列
x = randn(100,1) + sigma * randn(100,1);
% 绘制结果
histogram(x, 'Normalization', 'pdf');
```
上述代码中,`randn(100,1)` 用于生成标准正态分布的随机数序列,而 `sigma * randn(100,1)` 则用于对其进行高斯变异。
最后,使用 `histogram` 函数绘制了变异后的随机数分布图。
请注意,高斯变异的标准差(sigma)可以根据具体需求进行调整。
此外,还可以根据需要调整随机数生成器的种子,以确保结果的可重复性。
Matlab图像分割与目标提取技术详解
Matlab图像分割与目标提取技术详解引言图像分割和目标提取是计算机视觉领域的关键技术,它在诸如图像处理、医学图像分析、目标识别等应用中起着重要作用。
Matlab作为一种强大的科学计算和图像处理软件,提供了丰富的工具和函数用于图像分割和目标提取。
本文将以Matlab为工具,详细介绍图像分割和目标提取的相关技术和方法。
一、Matlab图像分割基础1.1 图像分割概述图像分割是将一幅图像划分为若干个不相交的区域或物体的过程,目标是将图像分割为具有独特特征的区域,常用于目标检测、图像分析和图像压缩等应用。
图像分割的基本原则是利用像素间的相似性或差异性进行区域划分。
1.2 基于阈值的分割方法阈值分割是图像分割中最常用的方法之一,其思想是根据像素的灰度值与设定的阈值进行比较,以确定像素所属的区域。
Matlab提供了丰富的函数用于基于阈值的分割,例如im2bw()函数可以将灰度图像转为二值图像。
1.3 基于区域的分割方法基于区域的分割方法是利用像素的相似性将图像分割为不同的区域,常用的方法包括区域生长、分水岭算法等。
在Matlab中,可以使用regiongrowing()函数进行区域生长分割,使用watershed()函数进行分水岭分割。
二、Matlab目标提取技术2.1 边缘检测与提取边缘是图像中物体边界的显著特征,边缘检测和提取是目标提取的重要步骤之一。
在Matlab中,可以使用Sobel、Canny等算子进行边缘检测,通过调整阈值来提取目标的边缘。
2.2 形态学处理形态学处理是一种以形状和结构为基础的图像处理方法,常用于目标提取和形状分析。
Matlab提供了多个形态学函数,如腐蚀、膨胀、开运算、闭运算等,可以对图像进行形态学处理,提取目标的特征。
2.3 区域填充与连接区域填充与连接是将分散的像素点组合成连续的区域的过程,常用于目标提取和分割后的区域处理。
Matlab提供了多个函数用于区域填充与连接,例如imfill()函数可以填充目标区域的空洞,bwlabel()函数可以标记连通区域。
高斯过程的matlab程序实现
高斯过程的matlab程序实现高斯过程作为一种强大的建模工具,广泛应用于各种领域,如机器学习、统计学、信号处理等。
Matlab作为一种功能强大的编程语言和计算软件,在高斯过程的实现方面提供了很好的支持。
本文将介绍高斯过程的基本理论和Matlab程序实现,以帮助读者了解和应用这一工具。
一、高斯过程基本理论高斯过程(Gaussian Process,简称GP)是一种用于处理连续随机变量的方法,它是一组无限个随机变量的集合,任意一组随机变量的联合分布都是高斯分布,且每个随机变量是对其他随机变量的线性组合。
也就是说,高斯过程可以看作是高斯分布的一个推广,它不再是单个随机变量的分布,而是一组随机变量的联合概率分布。
高斯过程的定义如下:设X是定义在D上的高斯过程,当对于任意的n个点$x_1,x_2,...,x_n$,其联合分布$(X(x_1),X(x_2),...,X(x_n))$服从高斯分布,且其均值向量为0,协方差矩阵为$K(x_i,x_j)$ ,即:$$\begin{bmatrix}X(x_1)\\X(x_2)\\\vdots\\X(x_n)\end{bmatrix} \sim\mathbb{N}\left(\begin{bmatrix}0\\0\\\vdots\\0\end{bmatrix}, \begin{bmatrix}K(x_1,x_1) &K(x_1,x_2) & \cdots & K(x_1,x_n)\\ K(x_2,x_1) &K(x_2,x_2) & \cdots & K(x_2,x_n)\\ \vdots & \vdots & \ddots & \vdots\\ K(x_n,x_1) & K(x_n,x_2) &\cdots & K(x_n,x_n)\end{bmatrix}\right)$$其中,协方差函数$K(x_i,x_j)$的选择是高斯过程的核心,直接影响着高斯过程的性质和应用效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
% % GDEC_level is a 3-D matrix
% % size(GDEC_level)=[row,col,level];
level=5; % % definition of decomposition level
图像的高斯金字塔分解 matlab源程序2009-04-16 00:02关键词:Laplacian Pyramid Decomposition; matlab
拉普拉斯金字塔分解;matlab源程序
说明:该函数的作用是对输入图像做金字塔分解。
level为指定分解图像的层次
% % VARIABLE MEANING
% % level decompose level
% % img input image
% % G_LOWER extracted image
% % DECIM convolved image
img=imread('lena.gif');
G0=double(img); % % modify data class
% % G0 is the 0th decomposition level
[row,col]=size(G0);
end
son
�
plate=[1,4,6,4,1;4,16,24,16,4;6,24,36,24,6;4,16,24,16,4;1,4,6,4,1];
W=plate/256; % % definition of the core
G_LOWER=G0;
GDEC=zeros(row,col,level); % % save the Gaussian decomposition image
function dec_gaussian
% % This function is used to process gaussian decomposion of input image.
% % editor : denghaibo
% % date : 2009-4-8
% % DEFINITION OF VARIABLES:
GDEC=GDEC-1; % % the reason to subtract 1 is used to judge the edge of the extracted image;
for(flag=1:level)
G_LOWER=reduce2(G_LOWER); % % 2-EXTRACT
DECIM=conv2(G_LOWER,W,'same');
[decrow,deccol]=size(DECIM);
figure;imshow(uint8(DECIM));title(['level ',num2str(flag)]);
GDEC(1:decrow,1:deccol,flag)=DECIM; % % save the decomposed image