微生物的遗传与育种论文
微生物遗传育种研究进展
题目:微生物遗传育种研究进展姓名:毛德昌学号:专业:微生物学方向:微生物生态学任课教师:翠新(副教授)2017年12月29日微生物遗传育种研究进展摘要:微生物育种是现代工业、医药、食品等行业生产中重要的一个环节,本文中介绍了几种微生物育种的方法,包括诱变育种、杂交育种、代调控育种等育种方法,其中主要介绍微生物遗传育种一种新的育种技术——低能离子注入育种技术和原生质体育种技术。
低能离子注入育种技术为我国科学家所创建的一种技术,为微生物的育种工作提供了新的方法。
关键词:微生物育种,离子注入,原生质体融合目录1前言 (1)2自然选育 (1)3诱变育种 (2)3.1物理诱变 (2)3.2化学诱变因子 (3)3.3生物诱变因子 (4)3.4复合因子诱变与新型诱变剂 (4)4杂交育种 (4)4.1有性杂交 (4)4.2准性杂交 (5)4.3原生质体融合育种 (5)4.3.1 原生质体融合的促融方法 (6)4.3.2原生质体融合育种的应用 (6)4.4 代控制育种 (7)5基因重组 (7)6小结 (8)参考文献 (8)1前言微生物是自然界中广泛存在的生物群体,在工业、医药、食品、科研等行业中具有广泛的应用,在工业上是某些工业产物的产生个体,医药行业将的很多种药物是来源于微生物个体的初级或次生代产物,方方面面都有微生物的影子,对于微生物育种最早是来源于什么时候,这个也许应该可以追溯到人类对微生物的应用。
生活中到处都存在着微生物的影子,人类为了能够更加充分的利用微生物,就会将个体形状优良的微生物保留下来,以便将其更好的利用,这边开始了微生物的育种,儿这种育种似乎是对微生物的育种工作已经开展,只是仍然停留在一个比较初步的阶段。
上世纪五十年以前对微生物的育种是在个体宏观表现上的对人类有用的形状上的育种工作,上世纪五十年代以后,DNA分子结构的确立,微生物的各个基因结构逐步得到阐释,微生物的各种代途径调控机制也逐步得到解释,对微生物进行遗传育种的方法也逐步开始出现多样化。
微生物遗传育种课程论文
微生物单细胞蛋白的遗传选育和应用前景张臣(山东农业大学生命科学学院生物工程专业09级03班)摘要随着世界人口的不断增长,粮食和饲料不足的情况日益严重。
面对这一严峻的现实,单细胞蛋白的开发与生产为解决人类食品和饲料问题开辟了新的途径。
因此,对生产单细胞蛋白的微生物利用诱变育种、航天育种、反向代谢工程育种和基因工程育种等现代微生物育种技术进行遗传选育越来越有必要。
一旦我们能根据自己的需要来设计和获得某种单细胞蛋白,这将会解决一直困扰人类的粮食问题,甚至还会推动其他很多行业和领域的发展。
关键词微生物单细胞蛋白生物特性遗传选育应用前景GENETIC BREEDING AND APPLICATION PROSPECT ABOUT SIMPLE CELL PROTEIN OF MICROBEAbstractWith the world population growing, the lack of food and feed is more and more serious. Faced with such severe situation, the development and production of simple cell protein (SCP) supply a new way to solve the problem. Therefore, it is more and more necessary to deal with the microbe that can produce SCP by means of modern microbial breeding technology, such as mutation breeding, space breeding, reverse metabolic engineering breeding and Gene engineering breeding. Once we can design and get a single cell protein according to our own needs, it will work out the food problem that has been perplexing human beings for a long time. In addition, it may push some other industries and fields forward.Key words: Microbe;Simple cell protein;Biological characteristics;Genetic breeding;Application prospect微生物细胞含有丰富的蛋白质,而这正是人和动物不可缺少的营养物质,这是微生物食品倍受青睐的一个原因。
微生物论文2000字
微生物论文2000字植物和微生物的演化植物界发生、发展和演化的历史过程。
当今地球上生长着约40多万种植物。
它们不仅在形态结构上不同,而在营养方式、生殖方式和生活环境上也各不一样。
现代科学和化石研究表明,现存的这些植物并不是现在才产生的,更不是由“上帝”创造出来的,它们大约经历了30多亿年的漫长历程逐渐发生发展和进化而来的。
地球上最早出现的植物是细菌和蓝藻等原核生物,时间大约距今35~33亿年前。
以后经历了5个主要发展阶段才发展到现在的状况。
第一个阶段称为菌藻植物时代。
即从35亿年前开始到4亿年前(志留纪晚期)近30亿年的时间,地球上的植物仅为原始的低等的菌类和藻类。
其中从35~15亿年间为细菌和蓝藻独霸的时期,常将这一时期称为细菌—蓝藻时代。
从15前亿年开始才出现了红藻、绿藻等真核藻类。
第二阶段为裸蕨植物时代。
从4亿年前由一些绿藻演化出原始陆生维管植物,即裸蕨。
它们虽无真根,也无叶子,但体内已具维管组织,可以生活在陆地上。
在3亿多年前的泥盆纪早、中期它们经历了约3千万年的向陆地扩展的时间,并开始朝着适应各种陆生环境的方向发展分化,此时陆地上已初披绿装。
此外,苔藓植物也是在泥盆纪时出现的,但它们始终没能形成陆生植被的优势类群,只是植物界进化中的1个侧支。
第三个阶段为蕨类植物时代。
裸蕨植物在泥盆纪末期已绝灭,代之而起的是由它们演化出来的各种蕨类植物;至二叠纪约1.6亿年的时间,它们成了当时陆生植被的主角。
许多高大乔木状的蕨类植物很繁盛,如鳞木、芦木、封印木等。
第四个阶段称为裸子植物时代。
从二叠纪至白垩纪早期,历时约1.4亿年。
许多蕨类植物由于不适应当时环境的变化,大都相继绝灭,陆生植被的主角则由裸子植物所取代。
最原始的裸子植物(原裸子植物)也是由裸蕨类演化出来的。
中生代为裸子植物最繁盛的时期,故称中生代为裸子植物时代。
第五个阶段为被子植物时代。
它们是从白垩纪迅速发展起来的植物类群,并取代了裸子植物的优势地位。
微生物的遗传变异和育种
第一节 微生物遗传的物质基础
三、基因表达 在所有的生物中,基因的主要功能是把遗传信息转变 为特定氨基酸顺序的多肽,从而决定生物性状的过程,这 一过程称为基因表达。基因表达包括以下两个步骤,首先 以DNA为模板,通过RNA聚合酶转录出mRNA(信使RNA), 然后将mRNA的碱基顺序翻译成由相应氨基酸顺序组成的蛋 白质(图6-1)。
第一节 微生物遗传的物质基础
(四)核苷酸 各种遗传密码子储存着各自对应的信息,而单个核苷 酸或碱基则是密码子的组成单位,是基因突变的最小单位。 从绝大多数微生物的DNA组分来看,其分别由腺苷酸、胸 苷酸、鸟苷酸和胞苷酸4种脱氧核苷酸组成。其上的碱基 分别为腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞 嘧啶(C)。
第一节 微生物遗传的物质基础
相结合。不论真核微生物的细胞核还是原核微生物细胞的 核区都是该微生物遗传信息的大本营和信息库,因此被称 为核基因组、核染色体组或简称基因组。再从细胞内的染 色体数目来看,不同的微生物的染色体数目差别很大,真 核微生物常有较多的染色体,如酵母菌属中有的种有17条 之多,而原核微生物中常只有一条裸露的环状DNA大分子 核酸,即一条染色体。
第一节 微生物遗传的物质基础
二、DNA的结构与复制 (一)DNA的结构 1953年,Watson和Crick首先提出DNA的结构模型,认 为DNA是由两条反向平行的多核苷酸组成的双螺旋结构, 两条多核苷酸链通过碱基间的氢键相结合。此结构已经扫 描隧道显微镜所证实。
第一节 微生物遗传的物质基础
(二)DNA的复制 在细胞分裂和传代的过程中,作为微生物遗传物质 的DNA必须准确无误地复制,才能使子代细胞含有相同的 遗 传 信 息 , 以 保 持 物 种 的 稳 定 。 1 9 5 8 年 , Meselson 和 Stahl用15N标记的碱基培养大肠杆菌,并定时取样分离DNA, 进行密度梯度离心。研究结果证明,DNA是以独特的半保 留方式进行复制的,即每一子代DNA分子的一条链来自亲 代,另一条链是新合成的。
微生物遗传育种论文
离子注入微生物诱变育种的研究与应用进展郝瑶 11生工1班 20110801111摘要:离子束作为一种新的诱变源虽然在微生物上的应用起步较晚,但成果显著。
这项技术适用于多种微生物,也可以和其它方法结合对菌种进行复合诱变。
这一技术在对微生物诱变育种的研究中,表现出比传统诱变方法高的诱变效率,利用离子注入进行微生物菌种改良已在生产实践中得到广泛的应用,并取得了显著的经济效益和社会效益。
该研究对离子注入微生物诱变育种的理论研究进展和实际应用情况进行了综述。
关键词:离子注入;微生物育种;诱变;综述1 引言离子束作为一种生物品种改良的新技术是由中国科学院等离子体物理研究所[1-2]于1986年开创的,经过近30年的发展,这方面的研究无论在理论上还是实际应用上都取得了一定的进展,已在诱变育种、植物转基因、生命起源和进化以及环境辐射与人类健康等方面取得了一些重要的阶段性研究结果,其中在微生物诱变育种的研究中,利用离子注入进行微生物菌种改良已在生产实践中得到广泛的应用,并取得了较好的研究成果和良好的生产效益[3]。
经过近20多年的发展,无论从理论上还是实际应用中,离子束生物技术已在诱变育种、创造生物体新种质的实用技术研究中取得了一定的进展,为生物的遗传改良开辟了新途径。
2 离子束生物技术的机理和优点2.1 离子束生物技术的作用机理借助于低能离子注入技术使生物体的特征特性发生本质变化,进而对生物体进行遗传改良是离子束生物技术的主导思想,离子生物技术是将能量为几万至几十万伏的离子束射入生物体内,在离子束的能量、质量和电荷三因素作用下,使基因产生突变,再从这些变异的种子中选出优良变异种质,经过培育而成为新品种。
因此,能量、质量、电荷成为离子束生物技术作用的核心,能量沉积效应[4]、质量沉积效应[5]、电荷交换效应[6]是目前离子束生物技术的主要理论依据。
其中,能量沉积指注入的离子与生物体大分子发生一系列碰撞并逐步失去能量,而生物大分子逐步获得能量进而发生键断裂、原子被击出位、生物大分子留下断键或缺陷的过程;质量沉积指注入的离子与生物大分子形成新的分子;动量传递会在分子中产生级联损伤;电荷交换会引起生物分子电子转移造成损伤,从而使生物体产生死亡、自由基间接损伤、染色体重复、易位、倒位或使DNA分子断裂、碱基缺失等多种生物学效应。
微生物育种论文
微生物遗传育种课程论文论文题目:班级:姓名:学号:指导老师:食用菌的转化研究及应用摘要:随着现代食品行业的飞速发展,食用菌在现在生活中发挥越来越重要的地位。
但是传统食用菌新菌株具有育种周期长、定向性较差的特点,近年来遗传转化技术的发展给食用菌新菌株的培育开辟了一条新的途径,有望解决这一问题。
本文综述了食用菌分子水平遗传转化的方法、筛选标记和遗传转化应用的进展。
关键词:食用菌,转化,筛选标记Translational research and applications of edible fungiAbstract: With the rapid development of the modern food industry, edible fungi now plays an increasingly important role in the life . But traditional new strains of edible fungi breeding cycle longer, less directional characteristics, the development of genetic transformation technology in recent years to the cultivation of new strains of edible fungi has opened up a new way, which is expected to address the issue. This paper reviews the methods of molecular level for genetic transformation of edible fungi, selection markers and genetic transformation application progress.Key words: mushroom, transformation, selection markers食用菌已经与我们的生活紧紧相关,如酵母的发酵作用能制造酒类、馒头、面包、单细胞蛋白等多种食品[1]。
生物论文范文(推荐(5篇)
生物论文范文(推荐(5篇)生物生物论文篇一1.1微生物学教学方法优化《微生物学》在实际教学中存在“知识点多且散、内容覆盖面广、知识点易混淆”等缺点,加之微生物本身肉眼看不见,在实际教学中抽象性概念及描述较多。
教师在课堂讲授过程中容易犯照本宣科、“填鸭式”教学的错误方法,造成学生学过就忘、考完就忘的问题,难以在脑海中形成完整的知识网络结构,容易使学生失去学习兴趣。
由于《微生物学》实践性较强,而且与人类健康休戚相关。
因此,需要在绪论内容讲述方面就充分调动学生的学习积极性,要让学生意识到微生物虽然个体小,但是其作用却是一点也不小;从日常生活中衣物与食品的发霉现象,到生产中酿酒、制作腐乳等工艺,到微生物致病性和引起人类恐慌的传染性疾病的蔓延等具体事例,引起学生对微生物的重视,激发学生对微生物学的学习兴趣。
在知识讲述方法上,注意前后结合,融会贯通,比如原核微生物的细胞结构与真核微生物的细胞结构差异、病毒一步式生长曲线与细菌群体生长曲线的对比、微生物分解代谢与微生物的营养之间的关系等。
前后知识点系统联系,对比记忆,归纳总结。
以提纲式教学的方法向学生讲授知识点、重点及难点,一方面既巩固了知识,又加强学生综合运用知识的能力,使学生在脑海中形成一套完整的理论知识体系和一张系统的知识脉络结构网,帮助学生快速高效的学习知识。
1.2紧跟科学前沿,放眼学科动态微生物学作为一门专业基础课程,与科技发展紧密相连,教师在课堂讲述过程中,除了系统介绍课本知识外,还应穿插当今科学研究前沿,以充满激情的科学态度向学生展示微生物学的发展动态及当前的热门话题。
比如:介绍与微生物相关的诺贝尔获奖者的研究成果;近期发表在Nature、Science、Cell等国际顶尖杂志上的科学文章;在讲授病毒这一章内容时,结合目前流行的埃博拉病毒、甲型H1N1流感病毒等疾病的感染与治疗讲述病毒的特点等。
以当今的科技成果和热点话题,激发学生对微生物学的学习兴趣和对微生物科研工作的崇拜感。
微生物的遗传与育种论文
工业微生物遗传育种学原理与应用综述摘要:本文综述了工业微生物遗传育种的历史地位,介绍了遗传育种的方法和机理,并对其前景进行了展望。
关键词:工业微生物;遗传育种;方法;机理前言:工业微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法,使我们获得所需要的高产、优质和低耗的菌种,其目的是改良菌种的特性,使其符合工业生产的要求。
本文主要从工业微生物遗传育种的历史地位、方法与技术、理论机理和发展前景综述了工业微生物育种的研究进展。
1 历史地位工业微生物遗传育种技术是工业发酵工程的核心技术,在其作用下人们获得了许多的高产优质菌株,为生产实践发展起了强大的推动作用。
2 机理及方法2.1 自然选育不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。
这种选育方法简单易行,可以达到纯化菌种,防止菌种退化,稳定生产,提高产量的目的。
但是自然选育的效率低,因此经常要与诱变育种交替使用,以提高育种效率。
2.2 诱变育种微生物的诱变育种,是以人工诱变手段诱变微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异体中筛选出产量高、性状优良的突变株,并且找出发挥这个变株最佳培养基和培养条件,使其在最合适的环境下合成有效产物[2]。
诱变育种和其他育种方法相比,具有速度快、收益大、方法简单等优点,是当前菌种选育的一种主要方法。
但是诱变育种缺乏定向性,因此诱变突变必须与大规模的筛选工作相配合才能收到良好的效果。
2.3 杂交育种杂交是指在细胞水平上进行的一种遗传重组方式。
杂交育种是利用两个或多个遗传性状差异较大的菌株,通过有性杂交、准性杂交、原生质体融合和遗传转化等方式,而导致其菌株间的基因的重组,把亲代的优良性状集中在后代中的一种育种技术。
通过杂交育种不仅可克服因长期诱变造成的菌株活力下降,代谢缓慢等缺陷,也可以提高对诱变剂的敏感性,降低对诱变剂的“疲劳”效应。
微生物育种学课程论文
微生物诱变技术研究进展戴泽翰 08植物保护微生物1班 200830200508摘要:人工诱变微生物育种具有速度快、收效大的优点,在生产和科研中被广泛应用。
常规的微生物育种技术主要分为物理诱变、化学诱变、生物诱变三种。
今年来三种诱变育种技术得到了长足的发展。
本文就三者今年来的研究进展,尤其是新技术的发展进行综述。
关键词:微生物;诱变育种;进展人工诱变手段诱发微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异菌体中筛选出产量高、性状优良的突变株,是生产和科研中微生物研究中常用的育种方法。
使用诱变育种,可以使菌株研发周期大大缩短,特别是在发酵工程育种上得到广泛的应用。
近年来,随着新诱变因子的不断发现和筛选技术的发展,微生物诱变育种技术有了长足进步。
1物理诱变技术物理诱变通常使用物理辐射中的各种射线,包括紫外线、X射线、γ射线、α射线、β射线、快中子、微波、超声波、电磁波、激光射线和宇宙射线等。
近年来,离子辐照、微波、超高压诱变育种也成为诱变育种的新方法。
1.1离子辐照诱变离子束具有高传能线性密度(Let),且在射程的末端还有尖锐的电离峰(Bragg峰)。
这使重离子能在生物介质中产生高密度的电离和激发事件,同时产生的高活度自由基造成间接损伤,从而引起较强的生理生化作用,可引起染色体的重复、易位、倒位、缺失或使DNA分子取代、补充、断裂等。
有学者(张宁等,2008)通过10k eV氮离子(N+)注入β-胡萝卜素生产菌三孢布拉霉(Blakeslea trispora)筛选得到2株产量比出发菌株提高20%的高产菌株,经过多次传代试验表明该菌遗传稳定性较好,并对pH值、温度、转速等发酵条件进行初步优化,使β-胡萝卜素的产量达到2.2 g/L。
另有学者(赵南等,2010)向井冈霉素产生菌注入能量10keV、剂量15×下1013个/cm2氮离子实施诱变,再生培养后单菌落接斜面上摇床进行效价测定,筛选高产菌株。
微生物遗传育种的研究进展
微生物遗传育种的研究进展摘要:微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造去除不良性状,增加有益新性状,以提高产品的产量和质量的一种育种方法。
本文对微生物遗传育种技术,包括自然育种、诱变育种、代谢控制育种、基因工程育种等进行了介绍,并对育种技术的发展做了展望。
关键词:微生物;自然育种;诱变育种;代谢控制育种;基因工程育种微生物育种的目的就是要人为地使某些代谢产物朝人们所希望的方向加以引导或者促使细胞内发生基因的重新组合优化遗传性状,获得所需要的高产优质和低能的菌种。
为达到这一目的必须改变微生物的遗传性能[1]。
现代生物技术特别是发酵工程技术的最终产品,一般都是经过工业微生物这一“工厂”生产得到的,已经取得了举世瞩目的经济效益和社会效益。
据统计,1979 年世界工业酶产量为53000 吨,1985 年酶制剂的总产量为10万吨,作为商品出售的酶制剂有200余种,到1990 年总产值约为10 亿美。
就生物技术而言,1991年美国、德国、法国和英国的总销售额依次为400,200,150,6.4 亿美元。
对工业微生物菌种的优化选育是提高产量和质量的一条有效途径。
以突变和筛选为中心的传统育种技术在工业微生物发展到现在规模的过程中始终起着重要作用。
70 年代以来,重组DNA技术和原生质体融合技术开始用于菌种选育。
各种外源基因在原核生物、真核细胞的克隆和表达研究取得了重大成果,使工业微生物育种技术进入了真正意义的分子水平育种时代[2]。
1 菌种选育的具体目标(1) 提高产量。
生产效率和生产效益总是排在一切商业发酵过程首位的目标。
( 2) 提高产物的纯度。
减少副产物; 提高有效组分;减少色素等杂质。
( 3) 改变菌种性状。
改善发酵过程, 包括: 改变和扩大菌种所利用的原料结构; 改善菌种生长速度; 提高斜面孢子化程度; 改善菌丝体形状, 采用菌球菌丝体发酵;少用消泡剂或使菌种耐合成消泡剂; 改善对氧的摄取条件, 降低需氧量及能耗; 耐不良环境: 抗噬菌体的侵染,耐高温、耐酸碱、耐自身所积累的代谢产物; 改善细胞透性, 提高产物的分泌能力等。
微生物育种论文
生产抗生素微生物育种技术研究进展摘要:自1929 年英国细菌学家弗来明发现青霉素,1943年瓦克斯曼等发现链霉素以来,人们不断从微生物代谢产物中提取出抗生素,并开发出半合成抗生素,抗生素生产得到了空前的发展。
但纵观整个抗生素市场,一些抗生素产生菌产素水平低,生产成本相对较高,从而严重削弱了其市场竞争力,影响了抗生素工业化生产进程。
可见微生物的产素水平高低决定抗生素是否具有开发价值。
诱变育种技术是最早在抗生素上应用的1种育种技术,通过将物理、化学、生物因素作用于抗生菌,人为使其遗传物质发生变异,从中选育出高产菌株。
由于该技术操作简便、速度快、收效大,且诱变手段多样,因此是实验室及生产上最常用的高产菌株的育种方式。
目前,常见的诱变方法包括3种:物理因素、化学因素和生物因素。
关键词:抗生素;微生物育种一、自然突变选育最初,菌种的选育主要是从自然界自发突变的菌群中筛选。
如早在几千年前,我国劳动人民在酿酒、制醋时就已经注意种曲的质量,并在生产实践中不断从自然界选择良曲。
尽管这是原始的人工选择方法,但在生产中发挥了很重要的作用。
[1]微生物菌种的自然突变率一般都很低,突变幅度也不大,因此,单纯依赖微生物群体的自然突变选育高产菌株远不能满足生产需要。
二、紫外线诱变育种紫外线的光谱范围在40~390 nm,而DNA的嘌呤和嘧啶可以吸收的紫外线光谱通常为260 nm。
因此能诱发生物突变的有效波长范围是200~300 nm,最有效的波长为253.7 nm,这一波长的诱变效应相当于波长260nm的紫外线。
当紫外线照射微生物时不能引起电离,其作用是使物质分子或原子中的轨道从基态跃迁到激发态,紫外光子本身作为能量被物质吸收。
由于紫外线穿透性很弱,所以被广泛用作微生物诱变剂。
紫外辐射使DNA分子形成嘧啶二聚体,阻碍碱基正常配对,并可能引起突变或死亡。
另外嘧啶二聚体的形成,还会阻碍双链的解开,从而影响DNA的复制和转录。
[2]紫外线对各种微生物的诱变效应因菌种不同而存在很大差异。
微生物遗传育种论文
工业微生物诱变育种技术及其应用刘世双(山东农业大学)摘要诱变育种是目前国内外最常用的工业微生物育种技术。
本文综述了几种普遍和新型的物理和化学诱变育种技术及其机理和应用状况,并对这些育种技术存在的问题进行分析,提出了解决问题的有关建议。
通过对当今分子生物学技术的飞速发展和应用的分析,对未来利用基因重组和基因工程等技术进行微生物定向诱变育种进行了展望。
关键词微生物;诱变育种;机制Mutation Breeding Techonologyand Its Application of Industrial MicroorganismLIU Shishuang(Shandong Agricultural University)Abstract mutition breeding is the most common breeding techonology of industrial microorganism at home and abroad untill now. this article generalize several commonly and newly physical and chemical breeding techonology and analyse some major problems,proposing related suggestions.through the analysis of the rapid development of molecular biology and its application,I give my hopes to the application recombinant DNA technology and genetic engineering in microbial-directed mutagenesis breeding.Key words microorganism;mutition breeding;mechanism工业微生物能产生人类生产生活必不可少的药物、食品、化工产品等生物制剂,具有极大的市场潜力和社会价值。
几种微生物遗传育种方法的比较
几种微生物遗传育种方法的比较摘要:微生物是一类形体微小的单细胞或个体结构比较简单的多细胞,甚至没有细胞结构的低等生物,是眼看不见,手摸不着,有生命的微小生物,只有借助于显微镜才能看到。
微生物与人类的关系极为密切,每时每刻都以不同的方式影响着人类的生活。
研究和应用微生物技术有助于消除环境污染,增进人类健康。
微生物育种是运用遗传学原理和技术对某个用于特定生物技术目的的菌株进行多方位的改造。
通过改造,可使现存的优良性状强化,或去除不良性质或增加新的性状。
用于微生物育种的方法主要有诱变、基因转移和基因重组,其中诱变是菌株改良的一项基本手段,基因重组则包括若干有效手段,如原生质体技术、基因克隆技术等是当今菌种改良中最具潜力的方法。
关键词:微生物;育种;诱变;基因重组;遗传微生物从发现到现在短短的300年间,特别是20世纪中叶,已在人类的生活和生产实践中得到广泛的应用,并形成了继动、植物两大生物产业后的第三大产业。
这是以微生物的代谢产物和菌体本身为生产对象的生物产业,所用的微生物主要是从自然界筛选或选育的自然菌种。
21世纪,微生物产业除了更广泛的利用和挖掘不同生境(包括极端环境)的自然资源微生物外,基因工程菌将形成一批强大的工业生产菌,生产外源基因表达的产物,特别是药物的生产将出现前所未有的新局面,结合基因组学在药物设计上的新策略将出现以核酸(DNA或RNA)为靶标的新药物(如反义寡核苷酸、肽核酸、DNA疫苗等)的大量生产,人类将完全征服癌症、艾滋病以及其他疾病。
此外,微生物工业将生产各种各样的新产品,例如降解性塑料、DNA芯片、生物能源等,在21世纪将出现一批崭新的微生物工业,为全世界的经济和社会发展做出更大贡献。
为了更好的运用微生物为我们创造更大的效益,我们需要微生物育种技术帮助我们改良现有的菌种。
本文参考了一些书籍及文献,概述几种微生物育种方法并做一下比较。
1 突变与育种1.1自发突变与育种1.1.1 生产中选育菌株在日常生产过程中,微生物也会以一定频率发生自发突变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业微生物遗传育种学原理与应用综述
摘要:本文综述了工业微生物遗传育种的历史地位,介绍了遗传育种的方法和机理,并对其前景进行了展望。
关键词:工业微生物;遗传育种;方法;机理
前言:
工业微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法,使我们获得所需要的高产、优质和低耗的菌种,其目的是改良菌种的特性,使其符合工业生产的要求。
本文主要从工业微生物遗传育种的历史地位、方法与技术、理论机理和发展前景综述了工业微生物育种的研究进展。
1 历史地位
工业微生物遗传育种技术是工业发酵工程的核心技术,在其作用下人们获得了许多的高产优质菌株,为生产实践发展起了强大的推动作用。
2 机理及方法
2.1 自然选育
不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。
这种选育方法简单易行,可以达到纯化菌种,防止菌种退化,稳定生产,提高产量的目的。
但是自然选育的效率低,因此经常要与诱变育种交替使用,以提高育种效率。
2.2 诱变育种
微生物的诱变育种,是以人工诱变手段诱变微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异体中筛选出产量高、性状优良的突变株,并且找出发挥这个变株最佳培养基和培养条件,使其在最合适的环境下合成有效产物[2]。
诱变育种和其他育种方法相比,具有速度快、收益大、方法简单等优点,是当前菌种选育的一种主要方法。
但是诱变育种缺乏定向性,因此诱变突变必须与大规模的筛选工作相配合才能收到良好的效果。
2.3 杂交育种
杂交是指在细胞水平上进行的一种遗传重组方式。
杂交育种是利用两个或多个遗传性状差异较大的菌株,通过有性杂交、准性杂交、原生质体融合和遗传转化等方式,而导致其菌株间的基因的重组,把亲代的优良性状集中在后代中的一种育种技术。
通过杂交育种不仅可克服因长期诱变造成的菌株活力下降,代谢缓慢等缺陷,也可以提高对诱变剂的敏感性,降低对诱变剂的“疲劳”效应。
2.3.1 有性杂交
有性杂交是指不同遗传型的两性细胞间发生的接合和随之进行的染色体重组,进而产生新遗传型后代的一种育种技术。
一般方法是把来自不同亲本、不同性别的单倍体细胞通过离心等方式使之密集地接触,就有更多的机会出现种种双倍体的有性杂交后代。
2.3.2 准性杂交
准性杂交是在无性细胞中所有的非减数分裂导致DNA重组的过程,微生物杂交仅转移部分基因,然后形成部分重组子,最终实现染色体交换和基因重组,在原核和真核生物中均
有存在。
准性杂交的方式主要有结合、转化和转导,其局限性在于等位基因的不亲合性。
2.3.3 原生质体融合
原生质体融合就是把两个不同亲本菌株的细胞壁,分别经酶解作用去除,而得到球状的原生质体,然后将两种不同的原生质体置于高渗溶液中,由聚乙二醇(PEG)助融,促使两者高度密集发生细胞融合,进而导致基因重组,就可由此再生细胞中获得杂交重组菌株[9]。
通过原生质体融合改良工业微生物菌株的遗传本质是培育高产、优质、抗逆性强的良种的一种行之有效的手段,可以与诱变育种等结合使用,以期达到工业生产的新需求。
2.4 代谢控制育种
微生物代谢控制育种是指以生物化学和遗传学为基础,研究代谢产物的生物合成途径和代谢调节的机制,选择巧妙的技术路线,通过遗传育种技术获得解除或绕过了微生物正常代谢途径的突变株,从而人为地使用有用产物选择性地大量合成积累。
代谢控制育种的调节体系主要包括诱导、分解阻遏、分解抑制、反馈阻遏、反馈抑制、细胞膜透性调节等。
2.5 基因工程育种
基因工程育种是在基因水平上,运用人为方法将所需的某一供体生物的遗传物质提取出来,在离体条件下用适当的工具酶进行切割后,与载体连接,然后导入另一细胞,使外源遗传物质在其中进行正常复制和表达。
基因工程育种技术是人们在分子生物学指导下的一种自觉的、能像工程一样可预先设计和控制的育种新技术,它可实现超远缘杂交,因而是最新最有前途的一种育种新技术。
3 展望
工业微生物遗传育种是一门在促进人类文明进步起了重要作用的技术,特别是近年来,其技术的发展和应用迅猛。
工业微生物遗传育种在基因工程、细胞工程、蛋白质工程和酶工程等现代生物技术的支持下,创造出许许多多的设计技巧、科技含量高、目的性强、劳动强度低、效果显著的育种方法,为人类获得稳定性好、高产、新种类的工程菌株和开发新药和工业产品,以及提高产品产量和质量提供了有力的保障。
我们有理由相信微生物遗传育种学将得到更加全面的纵横发展,将为生产实践提供更多的优良菌株,将在食品工业、医药、农业、环境保护、化工能源、矿产开发等领域发挥更加重要的作用。
参考文献
聂明,李怀波,万佳蓉,周传云工业微生物遗传育种的研究进展《现代食品科技》 2005,3(1):184-187 周德庆.微生物学教程.北京:高等教育出版社.2011.
金志华,林建平,梅乐和.工业微生物遗传育种学原理与应用.北京:化学工业出版社.2011.
曹军卫,马辉文.微生物工程[M]. 北京:科学出版社,2002.
Fereaczy L.Curreat microbiol[M].London:Cambridge UniversityPress,1980:550- 574
施巧琴,吴松刚.工业微生物育种学[M] .2版,北京:科学出版社,2003:2 — 3。