液压缸设计
液压缸设计计算范文
液压缸设计计算范文液压缸是一种利用液压力来产生线性运动的设备。
液压缸的设计计算是指在给定工作条件下,根据液压系统参数及工作要求,计算液压缸的尺寸、力学参数、压力等重要参数,以确保液压缸能够正常工作。
1.功率计算:根据所需的输出力和速度,计算液压缸的功率要求。
功率可以通过公式P=F×V/1000来计算,其中P表示功率,F表示输出力,V表示速度。
2.液压力计算:根据所需的输出力,计算液压压力的大小。
液压力可以通过公式P=F/A来计算,其中P表示液压力,F表示输出力,A表示活塞面积。
3.活塞面积计算:根据所需的液压力,计算活塞的面积。
活塞面积可以通过公式A=F/P来计算,其中A表示活塞面积,F表示输出力,P表示液压力。
4. 活塞直径计算:根据所需的活塞面积,计算活塞的直径。
活塞直径可以通过公式D= 2 × sqrt(A/π)来计算,其中D表示活塞直径,A表示活塞面积,π表示圆周率。
5.液压缸行程计算:根据工作要求和装置的限制条件,计算液压缸的最大行程。
行程可以通过设备的限制条件来确定,如设备的尺寸、行程限制等。
6.液压缸稳定性计算:根据液压缸的结构和工作要求,计算液压缸的稳定性。
稳定性计算包括校核液压缸的抗屈曲、抗剪切等能力,以确保液压缸在工作中不发生变形或破坏。
7.寿命计算:根据液压缸的设计参数和工作条件,计算液压缸的寿命。
寿命计算包括根据液压缸的设计寿命和使用条件,计算液压缸的可靠性和寿命预测。
在进行液压缸设计计算时,需要考虑以下几个重要因素:1.工作条件:包括工作压力、工作温度、介质类型等。
2.力学要求:包括输出力、速度、行程等。
3.设备限制:包括装置的尺寸、行程限制等。
4.安全要求:包括液压缸的稳定性、可靠性等。
在进行液压缸设计计算时,需要根据实际情况进行具体分析。
一般来说,液压缸的设计计算是一个复杂的工作,需要涉及力学、流体力学、材料力学等多个学科的知识,并以此为基础进行具体计算。
液压缸的设计
目录一、设计要求——————————————————————-1 题目—————————————————————————1二、各零部件的设计及验算————————————————-51、缸筒设计———————————————————————52、法兰设计———————————————————————143、活塞设计———————————————————————194、活塞杆设计——————————————————————21•一、设计一单活塞杆液压缸,工作台快进时采用差动联接,快进、快退速度为5m/min。
当工作进给时外负载为25×103N,背压为0.5MPa,已知泵的公称流量为25L/min,公称压力为6.3MPa,工作行程L=100mm。
•要求:(1)确定活塞和活塞杆直径。
(2)如缸筒材料的[σ]=5×107N/m2,计算筒壁厚。
1、主要设计参数:•(1)外载F=25×103N,背压P2=0.5MPa•(2)工进、快退速度V1= 5m/min。
•(3)泵的公称流量q=25L/min,公称压力为P1=6.3MPa •(4)工作行程L=100mm•(5)缸筒材料的自选(教材仅作参考)2、设计提要①、液压油缸主要参数给定在设计要求中已经提到的参数这里就不再赘述,下面只给出此次设计中液压油缸主要部件的其他参数:缸内径:D=100mm;缸外径:D=116mm;1壁厚: =8mm;极限推力:F=25KN;max活塞杆直径:d=70mm;活塞外推流量(快退):q2 =0.20L/min,快进:q1=0.39L/min说明:液压缸的效率油缸的效率η:本设计不考虑效率②、法兰安装方式螺纹连接③、缓冲机构的选用一般承压在10MP以上应当选用缓冲机构,本次设计中,工作压力为3.5MP,因此缓冲机构从略。
④、密封装置选用选用Y型密封圈.⑤、工作介质的选用因为工作在常温下,所以选用普通的是油型液压油即可。
液压缸的设计计算
液压缸的设计计算液压缸设计计算是液压系统设计的关键部分之一,液压缸通过液压油的压力作用,将液压能转化为机械能。
液压缸的设计需要考虑液压缸的工作条件、负载要求、速度要求等多个因素。
下面是液压缸设计计算的一些关键要点。
液压缸设计前需要明确以下几个参数:(1)负载:液压缸要承受的最大负载。
(2)行程:液压缸的活塞行程,即活塞从一个极限位置到另一个极限位置的移动距离。
(3)速度:液压缸的移动速度要求。
(4)传动方式:液压缸的传动方式有单杆式和双杆式,单杆式主要用于简单操作,而双杆式适用于更复杂的应用场景。
(5)工作压力:液压缸的额定工作压力,一般由液压系统的工作压力决定。
在设计液压缸时,需要进行以下计算和选型:(1)工作压力的计算:根据液压缸所需承受的最大负载和速度要求,计算出液压缸所需的工作压力。
工作压力计算公式为:工作压力=功率÷斜杠(活塞面积×张角因数)活塞面积=π×活塞直径²÷4张角因数根据活塞材料和工作环境选取合适的值。
(2)液压缸尺寸的计算:根据所需承受的最大负载和工作压力,计算出液压缸的尺寸。
液压缸尺寸计算公式为:活塞面积=承受的负载÷工作压力活塞直径=(4×活塞面积÷π)^0.5根据液压缸的类型和具体要求,还需要进行一些其他计算,如活塞杆直径、带式液压缸的带宽和带材厚度的计算等。
(3)液压缸速度的计算:根据液压缸的移动速度要求,结合液压缸的流量特性和阀门的流量系数等参数,计算出所需的液压缸速度。
液压缸速度计算公式为:流量=活塞面积×速度速度=流量÷活塞面积其中,流量需要根据阀门流量系数、压差等因素计算得出。
为了确保液压缸的工作效果和可靠性,设计时还需要考虑液压缸的密封性、液压阀的选型、活塞材料的选择和润滑等方面的计算和选型。
总结起来,液压缸的设计计算包括工作压力的计算、液压缸尺寸的计算以及液压缸速度的计算等。
液压缸设计规范范文
液压缸设计规范范文液压缸是一种常用的液压元件,广泛应用于各个工业领域。
设计规范对液压缸的设计和制造起着重要的指导作用。
下面将从设计原则、结构设计、制造和检测等方面介绍液压缸的设计规范。
设计原则:1.力学原则:液压缸的设计应满足机械强度和刚度的要求,以确保在工作条件下不发生变形和振动。
2.密封原则:液压缸的设计应采用可靠的密封结构,以确保液压缸的密封性能和工作寿命。
3.动力原则:液压缸的设计应满足给定的工作条件和要求,以保证液压缸具有足够的工作压力和速度。
4.可靠性原则:液压缸的设计应考虑到使用寿命、可靠性和安全性等因素,以确保液压缸的长期稳定工作。
结构设计:1.缸体设计:液压缸的缸体应具有充分的强度和刚度,以承受工作压力和荷载。
缸体的内腔应光滑且无明显凹凸坑洞,以减小液压缸内流体的泄露和阻力。
2.活塞设计:液压缸的活塞应具有充分的强度和密封性能。
活塞的直径和有效面积应根据工作条件进行合理选择,以满足要求的工作压力和运动速度。
3.密封设计:液压缸的密封系统应具有良好的密封性能和可靠性。
应选择适当的密封装置,如密封圈、密封垫等,以避免泄漏和污染。
4.支承设计:液压缸的支承结构应具有足够的强度和刚度,以承受工作荷载和防止不正常运动。
支承结构的设计应考虑到液压缸的安装和维护便利性。
制造要求:1.材料选择:液压缸的缸体和活塞等关键部件应选用高强度、高刚度和耐磨损的材料,经过热处理等工艺,以确保其机械性能和使用寿命。
2.加工工艺:液压缸的加工工艺应符合相关标准和规范,以确保关键尺寸和形位公差的精度和可靠性。
3.涂层处理:液压缸的关键部件可进行表面涂层处理,如镀铬、电镀等,以提高其耐磨性和耐腐蚀性。
4.装配工艺:液压缸的装配应严格遵循相关规范和要求,以确保各部件之间的配合精度和装配质量。
检测要求:1.尺寸检测:液压缸在制造过程中,应进行各关键尺寸和形位公差的检测,以确保液压缸的装配质量和性能。
2.密封性检测:液压缸的密封系统应进行密封性能的测试,以确保液压缸的密封效果及使用寿命。
液压缸设计计算实例
液压缸设计计算实例液压缸是一种常用于工业设备中的液压传动装置,主要由一个活塞、一个油缸和两个密封件组成。
它通过液压力将活塞推动,从而实现各种机械运动或工艺过程。
液压缸的设计计算主要包括以下几个方面:液压缸的尺寸计算、密封件的设计和选择、液压缸的工作压力计算、液压缸的材料和结构设计。
下面以液压缸在机械设备中的应用为例,进行设计计算。
液压缸的油缸内径可以根据活塞面积计算得到,油缸内径=2×√(A/π)=2×√(0.04/π)≈0.36m。
为了方便选用标准化油缸,取油缸内径为0.35m。
根据液压缸的工作行程和速度,可以计算出整个工作周期的时间 t=行程/速度=1000mm/0.5m/s=2000s。
液压缸的密封件设计和选择也是重要的一步。
常见的密封元件有油封、活塞密封圈和导向环等。
根据液压缸的工作压力和速度,可以选择适用的密封件类型和尺寸,确保密封性能以及使用寿命。
液压缸的工作压力计算也是必要的。
液压缸工作时,会受到工作压力的作用,为了保证液压缸的安全性和可靠性,需要计算液压缸允许的最大工作压力。
液压缸的最大工作压力一般按照材料、工艺和安全要求确定,常用的安全系数为2倍。
根据工作压力和安全系数,可以计算出液压缸最大允许工作压力为12.5MPa×2=25MPa。
液压缸的材料和结构设计也需要考虑。
液压缸常用的材料有铸铁、铝合金和不锈钢等,根据具体的应用场景和要求选择适合的材料。
液压缸的结构设计包括油缸壁厚、密封件槽设计、支撑结构等,需要根据实际情况和安全性要求进行设计。
综上所述,液压缸设计计算涉及液压缸的尺寸计算、密封件的设计和选择、液压缸的工作压力计算、液压缸的材料和结构设计等方面。
通过合理计算和选取,可以设计出安全可靠的液压缸,满足机械设备的工作需求。
液压缸设计指导书(2023最新版)
液压缸设计指导书液压缸设计指导书目录⒈引言⑴文档目的⑵适用范围⑶参考文件⑷术语和定义⒉设计要求⑴功能需求⑵技术要求⑶性能指标⑷安全要求⒊系统设计⑴系统结构⑵工作原理⑶主要组成部件⒋液压缸设计⑴缸体设计⒋⑴材料选择⒋⑵结构设计⒋⑶壁厚计算⑵活塞设计⒋⑴材料选择⒋⑵结构设计⒋⑶活塞密封设计⑶密封件设计⒋⑴ O型圈⒋⑵ V型圈⒋⑶磁性密封件⑷配合设计⒋⑴缸体和活塞配合⒋⑵密封件和槽设计⒋⑶建议的优化配合尺寸⒌安全与可靠性考虑⑴安全设计要求⑵可靠性分析⒌⑴故障模式与影响分析⒌⑵可靠性评估方法⒌⑶可靠性改进措施⒍检验与测试⑴压力测试⑵密封性能测试⑶功能测试⒎维护与保养⑴维护计划⑵保养要点附件附件1、详细图纸附件2、技术规范附件3、实验报告附件4、相关数据表格法律名词及注释⒈《液压缸设计指导书》:本文档所指液压缸的设计指导。
⒉液压缸:一种将液体能量转换为机械能的装置,通常由缸体、活塞和密封件组成。
⒊缸体:液压缸的外壳,通常由钢材制成。
⒋活塞:液压缸内部移动的元件,与缸体配合形成密封工作腔。
⒌O型圈:一种常用的密封件,具有圆环状横截面。
⒍V型圈:一种具有V形横截面的密封件,适用于高压密封。
⒎磁性密封件:利用磁性力实现密封效果的密封件。
⒏故障模式与影响分析:对系统故障模式及其对系统性能的影响进行分析和评估。
⒐可靠性评估方法:对系统的可靠性进行定量或定性评估的方法和工具。
⒑维护计划:规定液压缸维护工作内容、周期和方法的计划。
1⒈保养要点:液压缸日常保养中需要注意的关键事项和操作指南。
油缸(液压缸)设计指导书
液压缸设计指导书温馨推荐您可前往百度文库小程序享受更优阅读体验不去了立即体验一、设计目的油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。
具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。
因此,广泛应用于工业生产各部门。
其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。
它们所用的都是直线往复运动油缸,即推力油缸。
所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。
通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。
二、设计要求1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。
2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。
计算公式不必进行推导,但应注明公式中多符号的意义,代入数据得出结果即可。
3、说明书要有插图,且插图要清晰、工整,并选取适当此例。
说明书的最后要附上草图。
4、绘制工作图应遵守机械制图的有关规定,符合国家标准。
5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。
三、设计任务设计任务由指导教师根据学生实际情况及所收集资料情况确定。
四、设计依据和设计步骤油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。
不同的机型和工作机构对油缸则有不同的工作要求。
因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容。
主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。
液压缸的设计与计算
(六)液压缸设计中应注意的问题
液压缸的设计是否正确,直接影响到它的性能和工作寿命。在这方面,经常碰 到的是液压缸安装不当、活塞杆承受偏载、液压缸或活塞下垂以及活塞杆的压杆失 稳等问题。所以,在设计液压缸时,必须注意以下几点:
1
尽量使液压缸的活塞杆在受拉状态下承受最大负载,或在受压状态
下具有良好的稳定性。
不能正常工作(如满足不了负载和运动速度的要求等)。良好的防尘措
施,有助于提高液压缸的工作寿命。
液压传动
4
液压缸各部分的结构需根据推荐的结构形式和设计标准进行设计,
尽可能做到结构简单、紧凑、加工、装配和维修方便。
5
在保证能满足运动行程和负载力的条件下,应尽可能地缩小液压缸
的轮廓尺寸。
要保证密封可靠,防尘良好。液压缸可靠的密封是其正常工作的重
6
要因素。当产生严重泄漏时,不仅降低液压缸的工作效率,甚至会使其
D 4Fmax πp1
D 4Fmax d 2 πp1
(4-25) (4-26)
图
液压缸的导向长度
图 液压缸的导向长度
(三)强度校核
对液压缸的缸筒壁厚 δ 、活塞杆直径 d 和缸盖固定螺栓的直径进行强度校核。
(1)缸筒壁厚校核
缸筒壁厚校核时分薄壁和厚壁两种情况:
当 D /δ …10 时为薄壁,壁厚按式进行校核 式中,D ——缸筒内径;
(四)液压缸稳定性校核
活塞杆受轴向压缩负载时,其直径 d 一般不小于长 度 L 的 1/15。
当 L/d ≥ 15 时,需要进行稳定性校核,活塞杆承受的 力 F 不能超过使它保持稳定工作所允许的临界负载 F k , 以免发生纵向弯曲,破坏液压缸的正常工作。
Fk 的值与活塞杆材料性质、截面形状、直径和长度 以及缸的安装方式等因素有关,校核可按材料力学中的有 关公式进行。
液压缸的设计
3.2 液压缸的设计计算液压缸一般来说是标准件,但有时也需要自行设计。
本节主要介绍液压缸主要尺寸的计算及强度,刚度的验算方法。
液压缸的设计是在对所设计的液压系统进行工况分析、负载计算和确定了其工作压力的基础上进行的。
首先根据使用要求确定液压缸的类型,再按负载和运动要求确定液压缸的主要结构尺寸,必要时需进行强度验算,最后进行结构设计。
液压缸的主要尺寸包括液压缸的内径D 、缸的长度L 、活塞杆直径d 。
主要根据液压缸的负载、活塞运动速度和行程等因素来确定上述参数。
3.2.1液压缸工作压力的确定液压缸要承受的负载包括有效工作负载、摩擦阻力和惯性力等。
液压缸的工作压力按负载确定。
对于不同用途的液压设备,由于工作条件不同,采用的压力范围也不同。
设计时,液压缸的工作压力可按负载大小及液压设备类型参考表3.2、表3.3来确定。
表3.2 液压缸的公称压力(单位:MPa,GB7938-87)表3.3 各类液压设备常用的工作压力(单位:MPa)3.2.2液压缸主要尺寸的确定液压缸内径D 和活塞杆直径d 可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时,由式(3.4)D =有杆腔进油并不考虑机械效率时,由式(3.6)可得D=一般情况下,选取回油背压,这时,上面两式便可简化,即无杆腔进油时D=(3.16)有杆腔进油时:D= (3.17)式(3.17)中的杆径d可根据工作压力选取,见表3.4;当液压缸的往复速度比有一定要求时,由式(3.7)得杆径为d=推荐液压缸的速度比如表3.5所示。
表3.4 液压缸工作压力与活塞杆直径表3.5 液压缸往复速度比推荐值计算所得的液压缸内经D和活塞杆直经d应圆整为标准系列参见《新编液压工程手册》。
液压缸的缸筒长度由活塞最大行程,活塞长度,活塞杆导向套长度,活塞杆密封长度和特殊要求的长度确定。
其中活塞长度为(0.6~1.0)D;导向套长度为(0.6~1.5)d。
液压缸的毕业设计
液压缸的毕业设计液压缸的毕业设计随着工业技术的不断发展,液压系统在各个领域得到了广泛应用。
液压系统的核心部件之一就是液压缸。
液压缸作为液压系统中的执行元件,承担着转换液压能为机械能的重要任务。
因此,液压缸的设计与优化对于液压系统的性能和效率具有重要意义。
在毕业设计中,我选择了液压缸作为研究对象。
首先,我将对液压缸的工作原理进行深入了解和分析。
液压缸的工作原理是利用液体的压力将活塞推动,从而实现力的传递和工作的完成。
在设计液压缸时,我将考虑液压缸的结构、材料和尺寸等因素,以确保其正常工作和可靠性。
其次,我将研究液压缸的动力学特性。
液压缸在工作过程中,受到液压力、负载和惯性等多种因素的影响。
因此,了解液压缸的运动规律和响应特性对于设计和优化液压系统至关重要。
我将通过理论分析和数值模拟的方法,研究液压缸的运动学和动力学特性,以及其对系统性能的影响。
在液压缸的设计中,我还将考虑液压缸的密封问题。
液压缸的密封性能直接影响着系统的工作效率和寿命。
因此,我将研究不同类型的密封件,并选择合适的密封材料和结构,以确保液压缸的可靠密封性能。
此外,我还将对液压缸的控制系统进行设计和优化。
液压缸的控制系统是实现液压缸运动控制的关键。
我将研究不同的控制方法和算法,并结合液压缸的动力学特性,设计出高效、精确的液压缸控制系统。
最后,为了验证液压缸设计的可行性和有效性,我将进行实验验证。
通过搭建实验平台和采集实验数据,我将对液压缸的性能进行评估和分析。
根据实验结果,我将进一步优化液压缸的设计,以提高其性能和可靠性。
总之,液压缸的毕业设计是一个充满挑战和机遇的课题。
通过深入研究和分析液压缸的工作原理、动力学特性、密封问题和控制系统等方面,我将设计出一个性能优良、可靠稳定的液压缸。
这不仅对于提高液压系统的效率和性能具有重要意义,同时也对于我个人的专业能力和研究水平的提升具有重要意义。
我相信,在毕业设计的过程中,我将获得宝贵的经验和知识,并为液压技术的发展做出自己的贡献。
液压缸设计步骤和液压缸计算方法档
液压缸设计步骤和液压缸计算方法档液压缸(油缸)设计步骤:1.确定液压缸的工作参数:包括工作压力、负荷要求、行程长度、作用力、运动速度等。
这些参数可以根据设备的应用需求来确定。
2.选择液压缸的类型:有单作用和双作用两种,单作用液压缸只能在一个方向上产生推或拉力,而双作用液压缸可以在两个方向上产生推拉力。
3.计算活塞直径和活塞杆直径:活塞直径和活塞杆直径是根据负荷要求和工作压力来计算的。
一般来说,活塞直径越大,液压缸的承载能力越大,但也会增加摩擦阻力和油液消耗量。
4.确定液压缸筒体和活塞杆材料:根据工作环境的要求和负荷的性质选择合适的材料,一般常用的材料有铸铁、钢等。
5.完成液压缸内部部件的设计:包括密封件、液压缸密封结构、液压缸的阻尼装置等。
密封结构的设计需要考虑到液压缸的工作环境和工作温度。
6.进行液压缸的强度计算:计算液压缸各个部件的强度,包括活塞杆、筒体和密封结构等。
强度计算需要考虑到工作压力和作用力等参数。
7.进行液压缸的动态计算:根据液压缸的运动速度和所需的加速度等参数,进行液压缸的动态计算。
1.计算缸体容积:液压缸的容积可以通过下式计算得到:V=π/4*D^2*L其中,V为缸体容积,D为活塞直径,L为活塞行程长度。
2.计算活塞面积:根据活塞直径计算活塞面积,可以通过下式计算得到:A=π/4*D^2其中,A为活塞面积,D为活塞直径。
3.计算活塞杆面积:根据活塞杆直径计算活塞杆面积,可以通过下式计算得到:A'=π/4*D'^2其中,A'为活塞杆面积,D'为活塞杆直径。
4.计算推力:根据工作压力和活塞面积计算液压缸的推力,可以通过下式计算得到:F=P*A其中,F为液压缸的推力,P为工作压力,A为活塞面积。
5.计算液压缸的速度:液压缸的速度可以通过可控阀门来调节,一般使用油流量来计算液压缸的速度,可以通过下式计算得到:V=Q/A其中,V为液压缸的速度,Q为油流量,A为活塞面积。
液压油缸的设计内容和步骤
液压油缸的设计内容和步骤液压油缸是一种广泛应用于机械、工程和农业等领域的装置,通过利用液体的压力将机械能转化为液压能,并实现力的放大和方向的改变。
液压油缸的设计涉及多个主要内容和步骤,下面将详细介绍。
一、液压油缸设计前的准备工作1.确定应用环境:液压油缸的设计应该先明确所处的工作环境和工作条件,包括温度、湿度、压力要求等。
2.确定工作要求:确定液压油缸需要承受的最大负荷和所需的运动速度、力的输出方向等。
3.选择液压油缸类型:根据应用的具体要求,选择合适的液压油缸类型,例如单作用液压油缸、双作用液压油缸等。
二、液压油缸设计步骤1.计算负荷:根据液压油缸的工作要求,计算液压油缸所需承受的最大负荷。
这可以通过计算受力分析和力的分解来实现。
2.计算液压缸行程:液压油缸的行程是指活塞从一个极端位置到另一个极端位置的线性位移量。
根据工作要求,计算液压缸的行程。
3.计算活塞面积:液压油缸的活塞面积是指活塞所覆盖的面积。
根据负荷和压力要求,计算出活塞面积。
4.选择密封件:为保证液压缸的密封性,选择合适的密封件材料和形状,并按照密封性能计算具体尺寸。
5.计算液压油缸尺寸:根据活塞面积、行程和密封件尺寸,计算液压油缸的具体尺寸,包括外径、内径、长度等。
6.选择材料:根据工作环境和负荷要求,选择合适的液压油缸材料,例如铸铁、碳钢、不锈钢等。
7.设计活塞杆:液压油缸的活塞杆是负责传递力量的部分,根据需求选择合适的活塞杆材料和直径。
8.计算液压油缸的稳定性:通过计算液压油缸的稳定性,确定液压油缸的最小稳定直径,以确保其在工作过程中不会发生扭转。
9.计算液压油缸的工作压力:根据所需负荷和活塞面积,计算液压油缸所需的工作压力。
10.设计油缸壳体:根据液压油缸的尺寸、行程和工作压力,设计油缸的壳体结构,保证其足够强度和刚度。
11.进行液压油缸的组装:根据设计要求和步骤,对液压油缸的各个组成部分进行组装。
通过以上这些步骤,液压油缸的设计过程可以得以实现。
液压缸设计
第一章液压系统设计液压缸动作过程3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。
工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。
按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。
液压系统设计参数〔1〕合模力;〔2〕最大液压压28Mp;〔3〕主缸行程700㎜;〔4〕主缸速度υ快=38㎜/s、υ慢=4.85㎜/s。
分析负载〔一〕外负载压制过程中产生的最大压力,即合模力。
〔二〕惯性负载设活塞杆的总质量m=100Kg,取△(三)阻力负载活塞杆竖直方向的自重活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。
静摩擦阻力动摩擦阻力由此得出液压缸在各个工作阶段的负载如表****所示。
表*** 液压缸在各个工作阶段的负载F工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。
F/N v/mm s-1537 491981 384.850 l/mm 0 l/mm-491 -981由已知速度υ快=38㎜/s、υ慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如图***所示。
液压缸的计算〔一〕液压缸承受的合模力为3150KN,最大压力p1=28Mp。
鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。
在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。
由合模力和负载计算液压缸的面积。
将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:由此得液压缸两腔的实际有效面积〔二〕确定液压缸壁厚根据公式计算液压缸壁厚。
式中:δ=管壁厚 mmP=最大压力 kg/cm2D=液压缸内径 mm许用应力,[]=,n为安全系数,此处取n=5。
液压缸的设计
液压缸的设计⽬录⼀、设计要求——————————————————————-1 题⽬—————————————————————————1⼆、各零部件的设计及验算————————————————-51、缸筒设计———————————————————————52、法兰设计———————————————————————143、活塞设计———————————————————————194、活塞杆设计——————————————————————21⼀、设计⼀单活塞杆液压缸,⼯作台快进时采⽤差动联接,快进、快退速度为5m/min。
当⼯作进给时外负载为25×103N,背压为0.5MPa,已知泵的公称流量为25L/min,公称压⼒为6.3MPa,⼯作⾏程L=100mm。
要求:(1)确定活塞和活塞杆直径。
(2)如缸筒材料的[σ]=5×107N/m2,计算筒壁厚。
1、主要设计参数:(1)外载F=25×103N,背压P2=0.5MPa(2)⼯进、快退速度V1= 5m/min。
(3)泵的公称流量q=25L/min,公称压⼒为P1=6.3MPa ?(4)⼯作⾏程L=100mm(5)缸筒材料的⾃选(教材仅作参考)2、设计提要①、液压油缸主要参数给定在设计要求中已经提到的参数这⾥就不再赘述,下⾯只给出此次设计中液压油缸主要部件的其他参数:缸内径:D=100mm;缸外径:D=116mm;1壁厚: =8mm;极限推⼒:F=25KN;max活塞杆直径:d=70mm;活塞外推流量(快退):q2 =0.20L/min,快进:q1=0.39L/min说明:液压缸的效率油缸的效率η:本设计不考虑效率②、法兰安装⽅式螺纹连接③、缓冲机构的选⽤⼀般承压在10MP以上应当选⽤缓冲机构,本次设计中,⼯作压⼒为3.5MP,因此缓冲机构从略。
④、密封装置选⽤选⽤Y型密封圈.⑤、⼯作介质的选⽤因为⼯作在常温下,所以选⽤普通的是油型液压油即可。
(完整word版)液压缸设计规范
液压缸的设计计算标准目录 : 一、液压缸的根本参数1、液压缸内径及活塞杆外径尺寸系列2、液压缸行程系列〔GB2349-1980〕二、液压缸种类及安装方式1、液压缸种类2、液压缸安装方式三、液压缸的主要零件的结构、资料、及技术要求1、缸体2、缸盖〔导向套〕3、缸体及联接形式4、活塞头5、活寒杆6、活塞杆的密封和防尘7、缓冲装置8、排气装置9、液压缸的安装联接局部〔GB/T2878〕四、液压缸的设计计算1、液压缸的设计计算部骤2、液压缸性能参数计算3、液压缸几何尺寸计算4、液压缸结构参数计算5、液压缸的联接计算一、液压缸的根本参数1.1 液压缸内径及活塞杆外径尺寸系列液压缸内径系列〔GB/T2348-1993〕810121620253240506380〔90〕 100〔110〕125〔140〕 160〔180〕 200220〔250〕〔280〕 320〔360〕 400450500括号内为优先采用尺寸活塞杆外径尺寸系列〔 GB/T2348-1993〕456810121416182022252832364045505663708090100110125 140160 180200 220250280 320360活塞杆连接螺纹型式按细牙,规格和长度查有关资料。
1.2 液压缸的行程系列〔 GB2349-1980〕第一系列255080100125160200250320400500 63080010001250160020002500320040001.2.1 第二系列406390110140180 220280360 45055070090011001400180022002800 3600二、液压缸的种类和安装方法2.1 液压缸的种类对江东机械公司而言双作用式活塞式液压缸单作用式柱塞式液压缸2.2 液压缸的安装方式对江东机械公司而言对柱塞式头部法兰对活塞式螺纹联接在梁上三、液压缸主要零件的结构、资料、技术要求3.1 缸体缸体资料A 焊接缸头缸底等,采用 35 钢粗加工后调质B 一般情况采用45钢HB241 -285C 铸钢采用ZG310-57[D 球墨铸铁〔江东厂采用〕QT50-7[E 无缝纲管调质〔 35 号 45 号〕[缸体技术要求[[ σ ] =110MPaσ] =120MPa σ] =100MPa σ] = 80-90MPa σ] =110MPaA内径 H8 H9 B 内径圆度精度9-11 级粗糙度〔垳磨圆柱度 8级〕缸盖(导向套)缸盖资料A可选 35,45 号锻钢B可采用 ZG35,ZG45铸钢C可采用 HT200 HT300 HT350 铸铁D当缸盖又是导导游时选铸铁缸盖技术要求A 直径 d( 同缸内径 ) 等各种辗转面 ( 不含密封圈 ) 圆柱度按9 、10、11 级精度B 内外圆同轴度公差C与油缸的配合端面⊥按7 级D导向面表面粗糙度联接形式多种可按图13活塞头(耐磨)A 资料灰铸铁 HT200 HT300 钢 35 、45B技术要求外径 D(缸内径 ) 与内孔 D1↗按 7、8 级外径 D的圆柱度9 、10、11 级端面与内孔 D1的⊥按 7 级C活塞头与活塞杆的联接方式按图 3形式D活塞头与缸内径的密封方式V 型组合搬动局部柱寒缸40MPa以下Yx 型搬动局部活塞缸32MPa以下用O“型静止局部32MPa以下用“活塞杆A端部结构按江东厂常用结构图17、18B活塞杆结构空心杆实心杆C资料实心杆 35、45 钢空心杆 35、45 无缝缸管D技术要求粗加工后调质 HB229-285 可高频淬火 HRC45-55外圆圆度圆柱度公差按 9、10、11按 8 级级精度两外圆↗为端面⊥按 7 级工作表面粗糙度<〔江东镀铬深度〕渡后抛光3.2.6 活塞杆的导向、密封、和防尘A 导向套结构图9〔江东常用〕导向杆资料可用铸铁、球铁导向套技术要求内径 H8/f8 、H8/f9 表面粗糙度B活塞杆的密封与防尘柱塞缸 V 型组合搬动局部活塞缸Yx搬动局部“O〞型〔静止密封〕防尘,毛毡圈〔江东常用〕3.2.7 液压缸缓冲装置多路节流形式缓冲参照教科书3.2.8 排气装置采用排气螺钉液压缸的安装联接局部的型式及尺寸可用螺纹联接〔细牙〕油口部位可用法兰压板联接油口部位液压缸安装可按图84液压缸的设计计算液压缸的设计计算部骤依照主机的运动要求定缸的种类选择安装方式依照主机的动力解析和运动解析确定液压缸的主要性能参数和主要尺寸如推力速度作用时间内径行程杆径注:负载决定了压力。
液压缸设计计算
第一部分总体计算1、压力油液作用在单位面积上的压强Pa式中:F——作用在活塞上的载荷,NA——活塞的有效工作面积,从上式可知,压力值的建立是载荷的存在而产生的。
在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。
换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。
额定压力(公称压力)PN,是指液压缸能用以长期工作的压力。
最高允许压力,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。
通常规定为:MPa。
耐压实验压力,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。
通常规定为:MPa。
液压缸压力等级见表1。
表1 液压缸压力等级单位MPa压力范围0~2.5 >2.5~8 >8~16 >16~32 >32 级别低压中压中高压高压超高压2、流量单位时间内油液通过缸筒有效截面的体积:L/min由于L 则L/min对于单活塞杆液压缸:当活塞杆伸出时当活塞杆缩回时式中:V——液压缸活塞一次行程中所消耗的油液体积,L;t——液压缸活塞一次行程所需的时间,min;D——液压缸缸径,m;d——活塞杆直径,m;——活塞运动速度,m/min。
3、速比液压缸活塞往复运动时的速度之比:式中:——活塞杆的伸出速度,m/min;——活塞杆的缩回速度,m/min;D——液压缸缸径,m;d——活塞杆直径,m。
计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。
速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。
4、液压缸的理论推力和拉力活塞杆伸出时的理推力:N活塞杆缩回时的理论拉力:N式中:——活塞无杆腔有效面积,;——活塞有杆腔有效面积,;P——工作压力,MPa;D——液压缸缸径,m;d——活塞杆直径,m。
5、液压缸的最大允许行程活塞行程S,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。
为了计算行程,应首先计算出活塞的最大允许计算长度。
《液压缸结构设计》课件
03
液压缸的密封设计
密封的种类与选择
接触式密封
利用密封圈或垫片在压力下与密封面 接触实现密封。选择时应考虑耐磨性 、耐压能力和使用寿命。
非接触式密封
利用间隙、回油槽等设计,使密封面 在不接触的情况下实现密封。选择时 应考虑泄漏量、稳定性和可靠性。
密封材料与性能
橡胶密封圈
具有良好的弹性和密封性能,适用于中低 压和温度变化不大的场合。
液压缸的结构形式
单作用液压缸
只能实现单向运动,回程 需要依靠外力(如重力或
弹簧力)或外力矩。
双作用液压缸
可以实现双向运动,即活 塞的伸出和缩回都可以通
过液压油的进出实现。
柱塞式液压缸
柱塞在缸体中只做往复运 动,不作旋转运动,缸和 工作时密封性较好,但柱 塞力较大,适用于高压力
、小行程的场合。
液压缸的设计原则
详细描述
针对挖掘机工作过程中需要承受复杂工况和高负载的特点,设计了一种具有较强稳定性和耐用性的液压缸。采用 了特殊的材料和结构,以确保在各种恶劣环境下都能正常工作。
案例二:某型数控机床液压缸设计
总结词
高精度、高效率
详细描述
为了满足数控机床高精度和高效率的工作需求,设计了一种具有高响应速度和定位精度的液压缸。采 用了先进的控制技术和优化的结构设计,有效提高了液压缸的工作性能和稳定性。
度、压力、介质等,以确保密
7
封件的正常使用和寿命。
7
04
为减少磨损和摩擦阻力,应优
7
化密封面的几何形状和表面粗
糙度。
04
液压缸的强度分析
强度分析的理论基础
静力学原理
研究物体在力的作用下保持平衡的规律。
液压缸的设计规范
液压缸的设计规范目录:一、液压缸的基本参数1、液压缸内径及活塞杆外径尺寸系列2、液压缸行程系列(GB2349-1980) 二、液压缸类型及安装方式1、液压缸类型2、液压缸安装方式三、液压缸的主要零件的结构、材料、及技术要求1、缸体2、缸盖(导向套)3、缸体及联接形式4、活塞头5、活寒杆6、活塞杆的密封和防尘7、缓冲装置8、排气装置9、液压缸的安装联接部分(GB/T2878)四、液压缸的设计计算1、液压缸的设计计算部骤2、液压缸性能参数计算3、液压缸几何尺寸计算4、液压缸结构参数计算5、液压缸的联接计算一、液压缸的基本参数1.1液压缸内径及活塞杆外径尺寸系列1.1.1液压缸内径系列(GB/T2348-1993)8 10 12 16 20 25 32 40 50 63 80 (90) 100 (110)125 (140) 160 (180) 200 220 (250)(280) 320 (360) 400 450 500括号内为优先选取尺寸1.1.2活塞杆外径尺寸系列(GB/T2348-1993)4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360活塞杆连接螺纹型式按细牙,规格和长度查有关资料。
1.2液压缸的行程系列(GB2349,1980)1.2.1第一系列25 50 80 100 125 160 200 250 320 400500 630 800 1000 1250 1600 2000 2500 3200 40001.2.1第二系列40 63 90 110 140 180 220 280 360 450550 700 900 1100 1400 1800 2200 28003600二、液压缸的类型和安装办法2.1液压缸的类型对江东机械公司而言2.1.1双作用式活塞式液压缸2.1.2单作用式柱塞式液压缸2.2液压缸的安装方式对江东机械公司而言2.2.1对柱塞式头部法兰2.2.2对活塞式螺纹联接在梁上三、液压缸主要零件的结构、材料、技术要求3.1缸体3.1.1缸体材料A焊接缸头缸底等,采用35钢粗加工后调质[σ],110MPaB一般情况采用45钢HB241,285 [σ],120MPaC铸钢采用ZG310,57 [σ],100MPaD球墨铸铁 (江东厂采用)QT50,7 [σ],80,90MPaE无缝纲管调质(35号 45号) [σ],110MPa 3.1.2缸体技术要求A内径 H8 H9 精度粗糙度( 垳磨 )B内径圆度 9,11级圆柱度 8级3.2缸盖(导向套)3.2.1缸盖材料A可选35,45号锻钢B可选用ZG35,ZG45铸钢C可选用HT200 HT300 HT350铸铁D当缸盖又是导向导时选铸铁3.2.2缸盖技术要求A直径d(同缸内径)等各种回转面(不含密封圈)圆柱度按 9 、10 、11 级精度B内外圆同轴度公差0.03mmC与油缸的配合端面?按7级D导向面表面粗糙度3.2.3联接形式多种可按图133.2.4活塞头(耐磨)A材料灰铸铁HT200 HT300 钢35 、45B技术要求外径D(缸内径)与内孔D1?按7、8级外径D的圆柱度 9、10、11级端面与内孔D1的?按7级C活塞头与活塞杆的联接方式按图3形式D活塞头与缸内径的密封方式柱寒缸 40MPa以下V型组合移动部分活塞缸 32MPa以下用Yx型移动部分静止部分 32MPa以下用“O“型 3.2.5 活塞杆A端部结构按江东厂常用结构图17、18B活塞杆结构空心杆实心杆C材料实心杆35、45钢空心杆35、45无缝缸管D技术要求粗加工后调质HB229,285可高频淬火HRC45,55外圆圆度公差按9、10、11级精度圆柱度按8级两外圆?为0.01mm端面?按7级工作表面粗糙度 < (江东镀铬深度0.05mm)渡后抛光 3.2.6活塞杆的导向、密封、和防尘 A导向套结构图9(江东常用) 导向杆材料可用铸铁、球铁导向套技术要求内径H8/f8、H8/f9表面粗糙度 B活塞杆的密封与防尘柱塞缸V型组合移动部分活塞缸Yx 移动部分“O”型 (静止密封)防尘,毛毡圈(江东常用)3.2.7 液压缸缓冲装置多路节流形式缓冲参考教科书3.2.8 排气装置采用排气螺钉3.2.9液压缸的安装联接部分的型式及尺寸可用螺纹联接(细牙) 油口部位可用法兰压板联接油口部位液压缸安装可按图84 液压缸的设计计算4.1液压缸的设计计算部骤4.1.1根据主机的运动要求定缸的类型选择安装方式4.1.2根据主机的动力分析和运动分析确定液压缸的主要性能参数和主要尺寸如推力速度作用时间内径行程杆径注:负载决定了压力。
液压缸的结构设计
液压缸的结构设计1. 引言液压缸是液压系统中的重要组成部分,常用于工程机械、冶金设备、船舶等领域。
它通过液体的压力将机械能转化为线性运动,具有结构简单、负载能力大、工作平稳可靠等优点。
本文将详细介绍液压缸的结构设计。
2. 液压缸的基本结构液压缸主要由缸体、活塞、密封装置和连接件等部分组成。
2.1 缸体液压缸的缸体一般采用铸铁或钢制成,具有足够的强度和刚度以承受工作时的载荷。
为了减少摩擦损失和提高密封性能,缸体内表面通常经过精加工或镀硬铬处理。
2.2 活塞活塞是液压缸中起到推动作用的部件,一般由铝合金或钢制成。
活塞与缸体之间留有一定间隙,以便活塞在工作时能自由移动。
为了提高密封性能,活塞上通常设有密封圈。
2.3 密封装置液压缸的密封装置主要包括活塞密封、杆子密封和缸体密封。
活塞密封一般采用双向活塞密封圈,杆子密封一般采用双向油封,缸体密封一般采用O型圈。
这些密封件的选材和结构设计对液压缸的使用寿命和性能有重要影响。
2.4 连接件液压缸的连接件包括杆子、油管和连接螺栓等。
杆子连接在活塞上,通过连接螺栓与其他机械部件相连。
油管用于输送液压油,连接液压缸与液压泵或控制阀。
3. 液压缸的结构设计要点液压缸的结构设计需要考虑以下几个要点:3.1 负载能力液压缸在工作时承受较大的负载,因此结构设计需要保证足够的强度和刚度,以防止变形或破坏。
3.2 密封性能良好的密封性能是液压缸的关键要求之一。
密封装置的选材和结构设计需要考虑工作环境的温度、压力和介质等因素,以确保可靠的密封效果。
3.3 运动平稳性液压缸在工作时需要实现平稳的线性运动,避免震动和冲击。
结构设计需要考虑减小摩擦阻力、提高液压缸的刚度和稳定性等因素。
3.4 维修与维护液压缸在使用过程中可能会出现泄漏、磨损等问题,因此结构设计需要考虑方便维修与维护。
活塞上的密封圈应易于更换,缸体应设有排水孔等。
4. 结论液压缸的结构设计是确保其正常运行和使用寿命的关键因素之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1—活塞杆
2—压盖
双活塞杆液压缸结构 3—缸盖 4—缸筒 5—活塞
6—密封圈
双活塞缸机构示意
将缸筒固定在床身上,活塞杆和工作台 相联接时,工作台运动所占空间长度为活塞 有效行程的三倍(见图A)。一般多用于小 机床;反之,将活塞杆固定在床身上,缸筒 和工作台相联接时,工作台运动所占空间长 度为液压缸有效行程的两倍(见图B),适 用于中型及大型机床。
二、柱塞式液压缸
柱塞式液压缸结构
柱塞式液压缸特点: (1)它是一种单作用式液压缸,靠 液压力只能实现一个方向的运动,柱 塞回程要靠其它外力或柱塞的自重; (2)柱塞只靠缸套支承而不与缸套 接触,这样缸套极易加工,故适于做 长行程液压缸; (3)工作时柱塞总受压,因而它必须 有足够的刚度; (4)柱塞重量往往较大,水平放置时 容易因自重而下垂,造成密封件和导向 单边磨损,故其垂直使用更有利。
4、活塞杆的计算
直径强度校核:d≥[4F/π(σ)]1/2
d—活塞杆直径;F—液压缸的负载; (σ)—活塞杆材料许用应力,(σ)=σb/n。
5、液压缸缸筒长度的确定
缸筒长度根据所需最大工作行程而定。 活塞杆长度根据缸筒长度而定。对于工作 行程受压的活塞杆,当活塞杆长度与活塞 杆直径之比大于15时,应按材料力学有关 公式对活塞进行压杆稳定性验算。
二、液压缸结构设计中的几个基本问题
1、液压缸的缓冲
液压缸中使用的缓冲装置,常见的有 环状间隙式,节流口可调式或外加缓冲回 路等。
i
环状间隙式缓冲装置
节流口可调式缓冲机构
2、液压缸的排气
为了排除聚集在液压缸内的空气,可在缸 的两端最高部位各装一只排气塞。 排气塞结构
结束
排气塞结构
第四章
液压缸
液压缸的类型和工作原理
液压缸的设计和计算
§ 4-1液压缸的类型和工作原理
液压缸是将液压能转变为机械能 的、做直线往复运动(或摆动运动) 的液压执行元件。它结构简单、工作 可靠。用它来实现往复运动时,可免 去减速装置,并且没有传动间隙,运 动平稳,因此在各种机械的液压系统 中得到广泛应用。
柱塞上有效作用力F为:
p . d2 F=p.A= 4 柱塞运动速度为: Q 4Q v= A = d2 式中 d—柱塞直径;其它符号意义同 前。
三、伸缩式液压缸
伸缩式液压缸具有二级或多级活塞, 如图所示。伸缩式液压缸中活塞伸出的顺 序式从大到小,而空载缩回的顺序则一般 是从小到大。伸缩缸可实现较长的行程, 而缩回时长度较短,结构较为紧凑。此种 液压缸常用于工程机械和农业机械上。
二、液压缸结构设计中的几个基本问题
一、液压缸主要尺寸的确定
1、工作压力的选取
根据液压缸的实际工况,计算出外负载 大小,然后参考下表选取适当的工作力。
液压缸工作压力的确定
负载
缸工作压力
0~0.7
70~140
140 ~250
>250
320
P1(bar)
60
100 ~140 180 ~210
2、活塞杆直径d与缸筒内径D的计算
单叶片式摆动液压缸计算简图
结束
§ 4-2
液压缸的设计和计算
液压缸的设计和计算是在对整个液压系 统进行工况分析,计算了最大负载力,先定 了工作压力的基础上进行的(详见第十一 章)。因此,首先要根据使用要求确定结构 类型,在按照负载情况,运动要求决定液压 缸的主要结构尺寸,最后进行结构设计。
一、液压缸主要尺寸的确定
符号意义参阅下图
图4-3 差动连接的单活塞杆液压缸
单活塞杆液压缸可以是缸筒固定,活塞 运动;也可以是活塞杆固定缸筒运动。无 论采用其中哪一种形式,液压缸运动所占 空间长度都是两倍行程。(见下图)
单活塞杆液压缸运动所占空间
双活塞杆液压缸的两活塞杆直径通常相 等,活塞两端有效面积相同。如果供油压力 不变,那么活塞反复运动时两个方向的作用 力和速度相等。
A 摆动式液压缸
1-定子块 2-缸体 3-弹簧 4-密封镶条 6-叶片 7-支承盘 8-盖板 5-转子
如图所示,若输入液压油的流量为Q和 摆动轴输出的角速度之间的关系为: Q=/4(D2-d2)b.n=(b/8)(D2-d2) 所以 =8Q/b(D2-d2) 式中 n-摆动轴的转速(n= /2); b-叶片宽度; D、d-见图。
根据常用液压缸的结构形式,可 将其分为四种类型:
活塞式
{ 双活塞杆式
单活塞杆式
柱塞式
伸缩式 摆动式
一、活塞式液压缸
单活塞杆液压缸只有一端有活塞杆。如 图所示是一种单活塞液压缸。其两端进出口 油口A和B都可通压力油或回油,以活塞杆液压缸
1-缸底 2-弹簧挡圈 3-套环 4-卡环 5-活塞 6- 型密封圈 7-支承环 8-挡圈 9- 形密封圈 10-缸筒 11-管接头 12-导向套 13-缸盖 14-防尘圈 15-活塞杆 16-定位螺钉 17-耳环
伸缩式液压缸结构示意图 1—活塞 2—套筒 3—O形密封圈 4—缸筒 5—缸盖
四、摆动式液压缸
摆动式液压缸是输出扭矩并实现往复运 动的执行元件,也称摆动式液压马达。有单 叶片和双叶片两种形式。图中定子块固定在 缸体上,而叶片和转子连接在一起。根据进 油方向, A A-A 叶片将 带动转 子作往 复摆动。
受拉时: d=(0.3-0.5)D 受压时: d=(0.5-0.55)D (p1<5mpa) d=(0.6-0.7)D (5mpa< p1<7mpa) d=0.7D (p1>7mpa)
3、液压缸缸筒壁厚和外径的计算
缸筒最薄处壁厚:δ≥pyD/2(σ) δ—缸筒壁厚;D—缸筒内径; py—缸筒度验压力,当额定压Pn>160x105Pa 时,Py=1.25Pn ; (σ)—缸筒材料许用应力。(σ)=σb/n。
v=Q/A=4Q/(D2-d2) , F=p.A=p. (D2-d2)/4
v—活塞(或缸筒)运动速度;Q—供油流量; F—活塞(或缸筒)上的作用力; p—供油压力;A—活塞有效面积; D—活塞直径;d—活塞杆直径。 这种液压缸在传动时活塞杆只承受拉力, 多数用于机床。
2、双活塞杆液压缸
双活塞杆液压缸的两端都有活塞伸出, 如图所示。其组成与单活塞杆液压缸基本 相同。缸筒与缸盖用法兰连接,活塞与缸 筒内壁之间采用间隙密封。
参照下图,当供给液压缸的流量Q一定时, 活塞两个方向的运动速度为: V1=Q/A1=4Q/πD2 (向左) V2= Q/A2=4Q/π(D2-d2) (向右) 当供油压力p一定,回油压力为零时 作用力: F1=p.A1=p.πD2/4 (向右)
F2=p.A2=p.π(D2-d2)/4 (向左)
当其差动连接时,作用力为: F3=p(A1-A2)=p.(πd2/4) 速度:v3=(Q+Q2)/A1=(Q+v3.A2)/A1 所以 v3=Q/(A1-A2)=4Q/πd2