材料物理复习提纲2014152-12电科(材料)
材料物理性能总复习
材料性能学总复习
3)铁磁性:即使在较弱的磁场内也可以得到极高的磁化强度,而 且当外磁场移去后,仍可保留极强的磁性
铁磁体的磁化率为正值,而且很大,但当外场增大时,由于磁化 强度迅速达到饱和,其磁化率变小 铁磁性物质很强的磁性来自于其很强的内部交换场,自发磁化是 铁磁物质的基本特征 铁磁性物质的铁磁性只在某一温度以下才表现出来,超过这一温 度,由于物质内部热骚动破坏电子自旋磁矩的平行取向,因而自发 磁化强度变为0,铁磁性消失,这一温度称为居里点Te 4)反铁磁性:
材料的热学性能
材料的热学性能是表征材料与热相互 作用行为的一种宏观特性。
热容:在没有相变或化学反应的条件 下,材料温度升高1K所吸收的热量Q。 热膨胀:物体的体积或长度随温度的 升高而增大的现象。 热传导:当固体材料的两端存在温差 时,热量会从热端自动地传向冷端的现象。 材料性能学总复习
2、导电性本质因素
i ni qi i
i i
决定材料导电性好坏的本质因素有两个:
载流子浓度 载流子迁移率
温度、压力等外界条件,以及键合、成分等材料 因素都对载流子数目和载流子迁移率有影响。任何提 高载流子浓度或载流子迁移率的因素,都能提高电导 率,降低电阻率。
材料性能学总复习
•
磁畴:磁性材料中磁化方向一致的小区域
• 磁畴结构:各个磁畴之间彼此取向不同,首尾相接,形成闭 合的磁路,使磁体在空气中的自由静磁能下降为0,对外不显现磁性, 磁畴之间被畴壁隔开,畴壁实质上是相邻磁畴间的过渡层
• 磁畴成因:大量实验证明,磁畴结构的形成是由于这种磁体 为了保持自发磁化的稳定性,必须使强磁体的能量达到最低值,因而 就分裂成无数微小的磁畴 • 磁畴影响因素:畴壁的厚度取决于交换能和磁结晶各向异性 能平衡的结果,实际材料中的畴结构,受到材料的尺寸、晶界、第二 相、应力、掺杂、缺陷等的显著影响,使畴结构复杂化
材料物理性能复习资料
2012年贵州大学材料及冶金学院材料物理性能复习资料一.名词解释:1. 磁化:物质在磁场中由于受磁场的作用表现出来一定的磁性的现象。
3.磁矩:及磁偶极子等效的平面回路的电流和回路面积的乘积定义为磁矩。
其方向及环形电流法线方向一致,可用右手定则确定。
4.磁化强度M:一个物体在外磁场中被磁化的程度,用单位体积内磁矩多少来衡量,5.抗磁性:磁化方向及外加磁场方向相反,即当磁化率χ或磁化强度M为负时,固体表现为抗磁性。
χ=M/H<0,很小,约为-10-4~-10-6。
6.顺磁性:在外加磁场作用下,每个原子磁矩比较规则地取向,材料显示极弱的磁性。
磁化强度M及外磁场方向一致,M为正,而且M严格地及外磁场H成正比。
7.铁磁性:过渡金属Fe、Co、Ni和某些稀土金属如Gd等物质,无论是否施加外磁场,都具有永久磁矩,且在无外加磁场或较弱的磁场作用下,就能产生很大的磁化强度。
室温下的磁化率χ很大,可达106数量级,属于强磁性物质。
8.热传导:当固体材料一端的温度比另一端高时,热量会从热端自动地传向冷端的现象。
9.热阻:是材料对热传导的阻隔能力。
11.热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀。
12.魏得曼-弗兰兹定律:在室温下许多金属的热导率及电导率之比几乎相同,而不随金属的不同而改变。
13.材料的热稳定性:热稳定性是指材料承受温度的急剧变化而不致破坏的能力,又称为抗热震性。
14.导体:可在电场作用流动自由电荷的物体,能传导电流的元件15.绝缘体:不善于传导电流的物质16.半导体:电阻率介于金属和绝缘体之间并且有负的电阻温度系数的材料17、磁畴:未加磁场时铁磁质内部已经磁化到饱和状态的若干个小区域。
18、磁矫顽力:反磁化过程中,当反向磁畴扩大到同正向磁畴大小相相等时,它们的磁化对外对外部的效果相互抵消,有效磁化强度为零,这时的磁场强度称为磁矫顽力。
19、磁化率:即单位外磁场强度下材料的磁化强度。
它的大小反映了物质磁化的难易程度,是材料的一个重要的磁参数。
电子材料复习提纲20150524(2)..
2014-2015-2电子材料复习提纲1.平衡载流子/非平衡载流子平衡载流子:在特定温度下,由热激发形成的载流子的产生和复合两个过程建立起动态平衡,这种情况下的载流子称为平衡载流子;非平衡载流子:当半导体吸收光子后,导致导带中的电子数和价带中的空穴数增加,这部分载流子称为非平衡载流子。
2.辐射性复合/非辐射性复合辐射性复合:导带中的电子和价带中的空穴复合时以光子的形式释放能量;非辐射性复合:导带中的电子和价带中的空穴复合时以声子的形式释放能量;3.功能电子材料/结构电子材料功能电子材料:除强度性能外,还有其他特殊功能,或能实现光,电,磁,热,力等不同形式的交互作用和转换的非结构材料;结构电子材料:能承受一定压力和重力,并能保持尺寸和大部分力学性质稳定的一类材料;4.玻璃键合/氧化物键合玻璃键合:把厚膜导电材料中配以一定的玻璃,通过离子的相互渗透作用使它与基片表面形成健合,这种键合类型成为玻璃键合;氧化物键合:在厚膜浆料的配料中加入金属氧化物,通过金属氧化物与基片表面形成的键合;5.负温度系数(NTC)热敏材料/正温度系数(PTC)热敏材料/临界温度电阻热敏材料负温度系数(NTC)热敏材料:电阻率随温度升高而下降的材料称为负温度系数(NTC)热敏材料;正温度系数(PTC)热敏材料:电阻率随温度升高而升高的材料称为正温度系数(PTC)热敏材料/临界温度电阻热敏材料;临界温度电阻热敏材料:具有突变电阻温度特性曲线的材料;6.跳跃电导跳跃电导:电子传导时,传导的电子不进入导带,而是在禁带内的一些能级间跳跃,这种电导称为跳跃电导;7.极化子(导电模式)极化子(导电模式):是指载流子在离子晶体中慢速运动时,载流子与离子之间相互作用而产生极化,并使载流子处于半束缚状态,这种极化状态极化子,相对应的电导称极化子导电机理;8.磁敏传感器SQUID:是指超导量子干涉器;9.压敏电压:是指在厚度为1mm样品上通过1mA电流所产生的电压降,称为压敏电压;10.能写出非化学计量化合物的缺陷方程式,并判断载流子类型不等价取代、气氛的影响,缺陷反应方程式的写法11.N TC半导陶瓷晶体结构反尖晶石和半反尖晶石结构;12.气敏半导体材料的晶界势垒模型(p404)13.Z nO压敏陶瓷的能带结构示意图(p415)14.B aTiO3半导陶瓷PTC效应的海望焦克模型的基本观点①在多晶BaTiO3半导陶瓷的晶粒边界存在一个由受主表面态引起的势垒层;②该势垒高度与相对介电常数成反比;③铁电补偿是决定PTC效应的重要因素;在T<Tc时,由于电畴存在,极化电荷在垂直晶界方向产生电子通道,补偿大约50%左右的表面电荷,材料呈低电阻;但在T>Tc时.铁电相变顺电相,极化电荷消失,材料呈高阻态.15.金属导热的主要机制;电介质材料的热传导机理16.影响固溶度的因素:1.晶体结构;2.离子半径;3.电价;4.电负性。
材料物理性能考试重点、复习题
材料物理性能考试重点、复习题1.格波:在晶格中存在着角频率为ω的平面波,是晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡附近的振动以波的形式在晶体中传播形成的波2.色散关系:频率和波矢的关系3.声子:晶格振动中的独立简谐振子的能量量子4.热容:是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。
5.两个关于晶体热容的经验定律:一是元素的热容定律----杜隆-珀替定律:恒压下元素的原子热容为25J/(K*mol);另一个是化合物的热容定律-----奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。
6.热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀7.固体材料热膨胀机理:材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶格结点上原子振动的平衡位置间的距离。
材料温度一定时,原子虽然振动,但它平衡位置保持不变,材料就不会因温度升高而发生膨胀;而温度升高时,会导致原子间距增大。
8.温度对热导率的影响:在温度不太高时,材料中主要以声子热导为主,决定热导率的因素有材料的热容C、声子的平均速度V和声子的平均自由程L,其中v 通常可以看作常数,只有在温度较高时,介质的弹性模量下降导致V减小。
材料声子热容C在低温下与温度T3成正比。
声子平均自由程V随温度的变化类似于气体分子运动中的情况,随温度升高而降低。
实验表明在低温下L值的变化不大,其上限为晶粒的线度,下限为晶格间距。
在极低温度时,声子平均自由程接近或达到其上限值—晶粒的直径;声子的热容C则与T3成正比;在此范围内光子热导可以忽略不计,因此晶体的热导率与温度的三次方成正比例关系。
在较低温度时,声子的平均自由程L随温度升高而减小,声子的热容C 仍与T3成正比,光子热导仍然极小,可以忽略不计,此时与L相比C对声子热导率的影响更大,因此在此范围内热导率仍然随温度升高而增大,但变化率减小。
材料物理性能期末复习考点教学内容
材料物理性能期末复习考点一名词解释1.声频支振动:震动着的质点中所包含的频率甚低的格波,质点彼此之间的相位差不大,格波类似于弹性体中的应变波,称声频支振动。
2.光频支振动:格波中频率甚高的振动波,质点间的相位差很大,临近质点的运动几乎相反,频率往往在红外光区,称光频支振动。
3.格波:材料中一个质点的振动会影响到其临近质点的振动,相邻质点间的振,动会形成一定的相位差,使得晶格振动以波的形式在整个材料内传播的波。
4.热容:材料在温度升高和降低时要时吸收或放出热量,在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量。
5.一级相变:相变在某一温度点上完成,除体积变化外,还同时吸收和放出潜热的相变。
6.二级相变:在一定温度区间内逐步完成的,热焓无突变,仅是在靠近相变点的狭窄区域内变化加剧,其热熔在转变温度附近也发生剧烈变化,但为有限值的相变。
7.热膨胀:物体的体积或长度随温度升高而增大的现象。
8.热膨胀分析:利用试样体积变化研究材料内部组织的变化规律的方法。
9.热传导:当材料相邻部分间存在温度差时,热量将从温度高的区域自动流向温度低的区域的现象。
10.热稳定性(抗热震性):材料称受温度的急剧变化而不致破坏的能力。
11.热应力:由于材料的热胀冷缩而引起的内应力。
12.材料的导电性:在电场作用下,材料中的带电粒子发生定向移动从而产生宏观电流13.载流子:材料中参与传导电流的带电粒子称为载流子14.精密电阻合金:需要电阻率温度系数TRC或者α数值很小的合金,工程上称其为精密电阻合金15.本征半导体:半导体材料中所有价电子都参与成键,并且所有键都处于饱和(原子外电子层填满)状态,这类半导体称为本征半导体。
16. n型半导体:掺杂半导体中或者所有结合键处被价电子填满后仍有部分富余的价电子的这类半导体。
17. p型半导体:在所有价电子都成键后仍有些结合键上缺少价电子,而出现一些空穴的一类半导体。
18.光致电导:半导体材料材料受到适当波长的电磁波辐射时,导电性会大幅升高的现象。
材料物理复习大纲复习进程
材料物理复习大纲【一、力学】1 材料力学性能概论材料的力学性能是关于材料强度的一门学科,即关于材料在外加载荷(外力)作用下或载荷和环境因素(温度、介质和加载速率)联合作用下表现的变形、损伤与断裂的行为规律及其物理本质和评定方法的一门学科。
2 弹性极限σe:不产生永久变形的最大应力比例极限σp:保持弹性比例关系的最大应力值。
略小于σe;3 弹性模量的影响因素(1)结合键材料熔点与弹性模量的一致性关系(2)原子结构:对金属来说,原子结构对其弹性模量影响很大弹性模量的周期性变化(3)温度:随温度升高,弹性模量降低。
(4)相变:相变影响晶体结构,从而影响弹性模量。
相变包括:多晶型转变、有序化转变、铁磁性转变、超导态转变等。
陶瓷的弹性模量E与气孔率P的关系可表示为:E = E0e-bP式中,E0是气孔率为零时的弹性模量,b为与陶瓷制备工艺有关的常数。
对连续基体内的闭气孔,经验公式为:E = E0 (1-1.9P + 0.9 P2)4 陶瓷材料的弹性模量特点特点一:陶瓷材料的弹性模量一般高于金属。
特点二:陶瓷材料的弹性模量,不仅与结合键有关,还与陶瓷相组成及气孔率有关。
(金属材料的弹性模量是一个非常稳定的力学性能指标)⏹对两相陶瓷复合物,两相弹性模量分别为E1,E2,体积百分数分别为V1,V2⏹当应力平行于层面,各层应变相等,复合陶瓷的平均弹性模量为:E//=E1V1+E2V2⏹当应力垂直于层面,各层的应力相等,复合陶瓷的平均弹性模量为: E⊥=E1E2/(E2V1+E1V2)特点三:陶瓷材料压缩时的弹性模量一般高于拉伸时的弹性模量,即压缩时的曲线斜率比拉伸时大。
5 滞弹性6 屈服强度σs:应力超过σe,材料开始出现塑性变形,当应力增至s点时,试样开始产生明显的塑性变形,在曲线上出现了水平的锯齿形的线段,表现为应力不增加,试样仍然继续塑性伸长,这种现象叫屈服。
对应的强度叫屈服强度。
7 陶瓷材料的抗弯强度由于陶瓷材料塑性小,陶瓷强度主要指它的断裂强度。
材料物理性能复习重点
第二章非组织敏感:弹性模量,热膨胀系数,居里点(成分) 组织敏感性:内耗,电阻率,磁导率(成分及组织)相对电导率:IACS% 定义:把国际标准纯软铜(在室温20度,电阻率为0.01724.mm2/m )的电导率作为100%,其它导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。
载流子:电荷的载体(电子,空穴,正离子,负离子)物体的导电现象的微观本质是:载流子在电场作用下的定向迁移迁移数t x ,也称输运数(transference number) 定义为:式中: σT 为各种载流子输运电荷形成的总电导率 σx 表示某种载流子输运电荷的电导率t x 的意义:是某一种载流子输运电荷占全部电导率的分数表示。
载流子与导电性能的关系:因素:单位体积中可移动的带电粒子数量N 每个载流子的电荷量 q 载流子的迁移率 μ迁移率:受到外加电场作用时,材料中的载流子移动的难易程度令μ=v/E ,并定义其为载流子的迁移率。
其物理意义为载流子在单位电场中的迁移速度。
σ=Nq μ迁移率的影响因素:1. 温度越高,平均碰撞间隔时间t 越小,迁移率越小 2. 晶体缺陷越多,………………金属导电机制:载流子为自由电子。
经典理论:所有自由电子都对导电做出贡献。
所以有量子理论,两点基本改进:n ef 表示单位体积内实际参加热传导的电子数,即费米面能级附近参加电传导的电子数 m*为电子的有效质量,考虑晶体点阵对电场作用的结果 实际导电的载流子为费米面附近的自由电子!T x x t σσ=vm l ne 2=σ电子的平均自由程m 为电子的质量 n 为电子的密度 n 为电子的平均速度 f f ef vm l e n *2=σ产生电阻的根本原因:当电子波通过一个理想晶体点阵时(0K ),它将不受散射;只有在晶体点阵完整性遭到破坏的地方,电子波才会受到散射(不相干散射)。
理想晶体中晶体点阵的周期性受到破坏时,才产生阻碍电子运动的条件。
电子材料物理复习提纲
《电子材料物理》复习提纲第一章电子材料的结构1. 晶体的结构与对称性熟悉晶体的主要特征;晶体的点线面指数、x射线衍射与晶面间距;对称操作,晶胞,14种布拉菲点阵,七大晶系,32种点群,230空间群,了解点群符号、空间群符号的含义。
2. 典型晶体结构密堆积,配位数,电负性,鲍林规则,固溶现象以及固溶度的影响条件,了解典型离子晶体的结构特征。
3. 熟悉液晶、非晶的结构第二章晶体中的缺陷与扩散1.熟悉点缺陷、线缺陷、面缺陷的定义以及分类,掌握点缺陷Kroger-Vink符号表示的含义,熟悉点缺陷形成的准化学反应式的书写原则,掌握热缺陷和杂质缺陷准化学反应式的书写。
2.熟悉缺陷的扩散规律,了解扩散系数的测定方法。
第三章电子材料的电导1.熟悉电导的物理特性、种类及特点;掌握电子电导特性,掌握影响电子电导的因素,特别是杂质缺陷及组分缺陷对氧化物半导体性能的影响;2.熟悉离子扩散机制,熟悉离子电导的影响因素,能斯特-爱因斯坦方程,掌握稳定性氧传感器的工作原理。
ZrO23.熟悉界面电导,了解表面电导、超导体。
第四章电子材料的介电性能1.介质的极化介电常数、极化率、极化强度、电偶极矩;极化的微观描述,电介质中的电场,克劳修斯-莫索蒂方程;介质的极化类型2.交变电场下介质的极化损耗介质损耗的形式及表示方法;复介电常数;德拜方程了解复介电常数的实部与虚部、介质损耗与温度、频率的关系3.铁电性和压电性熟悉铁电体、铁电畴、电滞回线,掌握铁电体的重要特征熟悉压电性、热释电性及其与晶体结构的关系第五章电子材料的磁学性能1、磁导率、磁化率、磁化强度、磁矩的概念。
2、磁性的起源,角动量和磁矩之间的关系,离子磁矩和孤立原子磁矩的计算方法,轨道角动量冻结的概念。
3、磁性的分类及各自的特点。
自发磁化的概念以及自发磁化产生的根源,铁磁性物质的基本特征,交换积分与各种磁性间的关系。
能够熟练分析尖晶石结构铁氧体的磁性。
4、磁畴的概念和磁畴的成因,磁化过程中的三种磁化机制,磁滞产生的原因,简单的对一些磁学参量进行分析,动态磁化过程的特点,动态磁滞回线与静态磁滞回线的异同。
华中科技大学-电子材料物理2012复习提纲 -答案整理
《电子材料物理》复习提纲第一章电子材料的结构1. 晶体的结构与对称性理解点阵结构与晶体结构之间的关系,能够根据晶体结构画出点阵图。
将构成晶体的结构济源抽象成一个几何点,这些几何点在空间按一定的规则重复排列所形成的阵列。
点阵反映晶体结构周期性的大小和方向。
掌握晶胞的基本概念,并会计算晶胞中结点的个数;晶胞是从晶体结构中取出来的反映晶体周期性和对称性的重复单元。
熟悉七大晶系的特征。
理解4种晶胞类型7大晶系14种点阵类型32种点群和230种空间群之间的相互联系掌握晶体的宏观对称操作和微观对称操作,对于常见立方结构的晶体能够找出其中的对称操作元素;旋转、反映、反演及旋转-反演 立方结构CsCl 各三个4次转轴和4次反轴,各四个3次转轴和3次反轴,各六个2次转轴和2次反轴,九个反映面,一个反演中心掌握点群符号、空间群符号的含义以及空间群符号向同型点群符号的转变。
点群反映的是晶体理想外形的宏观对称性,空间群反映的是晶体内部原子等规则排列而具有的微观对称性。
空间群的数目多于点群,意味着微观对称性不同的晶体结构可能生长出相同的晶体外形,即同一个点群可能对应不同的空间群 空间群转点群 1、将滑移面转换为反映面2、将螺旋轴转换为旋转轴2. 典型晶体结构掌握密堆积,配位数,电负性等基本概念;电负性:原子的电负性即是衡量分子中原子吸引电子的能力。
电离能与亲和能之和则称为该元素的电负性。
掌握物质理论密度的计算方法;理解鲍林规则的主要内容;1、鲍林第一规则:负离子配位多面体规则2、鲍林第二规则:电价规则3、鲍林第三规则:多面体组联规则4、鲍林第四规则:高价低配位多面体远离法则5、鲍林第五规则:结构简单化法则掌握典型离子晶体结构的类型及结构特征(重点AX 型,钙钛矿型,正尖晶石型)。
只考氯化铯,重点钙钛矿,正尖晶石 第二章晶体中的缺陷与扩散熟悉点缺陷的定义及分类,AC NV nA =ρ引起几个原子范围的点阵结构不完整,亦称零维缺陷按产生原因:热缺陷,杂质缺陷,非化学计量缺陷,电荷缺陷,辐照缺陷等掌握点缺陷Kroger-Vink 符号的书写及表示的含义,熟悉点缺陷形成的准化学反应方程式的书写原则,掌握热缺陷和MO 型金属氧化物杂质缺陷准化学反应方程式的书写,并能根据质量作用定律计算平衡状态下缺陷的浓度。
2014材料综合复习大纲
物理化学考试大纲(2014版)适用专业:材料科学与工程专业《物理化学》是化学、化工、材料及环境等专业的基础课。
掌握化学热力学及化学动力学的基本知识;培养学生对化学变化和相变化的平衡规律及变化速率规律等物理化学问题,具有明确的基本概念,熟练的计算能力,同时具有一般科学方法的训练和逻辑思维能力,体会并掌握怎样由实验结果出发进行归纳和演绎,或由假设和模型上升为理论,并能结合具体条件应用理论分析解决较为简单的化学热力学及动力学问题。
一、考试内容及要求以下按化学热力学基础、多组分系统热力学、相平衡、化学平衡、界面现象、电化学、以及化学动力学六部分列出考试内容及要求。
并按深入程度分为了解、理解(或明了)和掌握(或会用)三个层次进行要求。
(一)化学热力学基础理解平衡状态、状态函数、可逆过程、热力学标准态等基本概念;理解热力学第一、第二、第三定律的表述及数学表达式涵义;明了热、功、内能、焓、熵和Gibss函数,以及标准生成焓、标准燃烧焓、标准摩尔熵和标准摩尔吉布斯函数等概念。
熟练掌握在物质的p、T、V变化,相变化和化学变化过程中求算热、功以及各种热力学状态函数变化值的原理和方法;在将热力学公式应用于特定体系的时候,能应用状态方程(主要是理想气体状态方程)和物性数据(热容、相变热、蒸汽压等)进行计算。
掌握熵增原理和吉布斯函数减小原理判据及其应用;明了热力学公式的适用条件,理解热力学基本方程、对应系数方程。
(二)相平衡理解并掌握Clapeyron公式和Clausius-Clapeyron方程,并能进行有关计算。
理解相律的意义;掌握单组分系统和二组分系统典型相图的特点。
(三)化学平衡明了热力学标准平衡常数的定义,会用热力学数据计算标准平衡常数;理解并掌握Van't Hoff等温方程及等压方程的含义及其应用,能够分析和计算各种因素对化学反应平衡组成的影响(如系统的温度、浓度、压力和惰性气体等)。
(四)界面现象理解(比)表面Gibss能和表面张力的概念;了解表面变化的热力学原理;理解弯曲液面附加压力的概念,掌握Laplace公式及简单计算;理解分散度对系统物理化学性质的影响(如蒸气压、凝固点等);理解润湿、接触角概念,掌握Young方程。
材料物理性能复习资料
晶格热振动:晶体中的质点总是围绕着平衡位置作微小振动。
格波:晶格振动以波的形式在材料内传播。
热容:在没有相变或化学反应的条件下,材料温度升高1K时所吸收的热量(Q),单位为J/k。
声频支振动:格波中频率甚低的振动波,质点彼此之间的位相差不大时,格波类似于弹性体中的应变波.光频支振动:格波中频率甚高的振动波,质点间的位相差很大,邻近质点的运动几乎相反时,频率往往在红外光区为什么温度升高材料会吸收热量?这是因为温度升高时,晶格振动加剧,材料的内能增加;另外,吸收的热量与过程有关,若温度升高时体积发生膨胀,物体还要对外作功。
热容是材料的焓随温度变化而变化的一个物理量,这就是热容的本质。
组织转变对热容的影响:①一级相变:相变在某一温度点完成,除体积突变外,还同时吸收和放出潜热的相变。
如金属三态转变、同素异构转变、合金的共晶和包晶转变等。
特点:如图1-6(a)所示,加热到Tc时,热焓H发生突变,热容为无限大。
②二级相变:是在一定温度区间内逐步完成。
如磁性转变、bbc点阵有有序—无序转变、合金的超导转变等。
特点:如图1-6(b)所示,热焓无突变,仅在相变点附近的狭窄区域内加剧,同时热容也发生剧烈变化,但为有限值。
相变的潜热对应于图中的阴影部分面积。
热容的测量:1.量热计法2.撒克斯法3.热分析法热膨胀:物体的体积或长度随温度的升高而增大的现象。
线膨胀系数:温度升高1K时,物体的相对伸长。
线性振动:是指质点间的作用力与距离成正比。
热膨胀和结合能、熔点的关系:固体材料的热膨胀与晶体点阵中质点的位能性质有关,而质点的位能性质是由质点间的结合力特性所决定的。
所以,质点间结合力强,热膨胀系数小.熔点也取决于质点间的结合力。
所以熔点高的材料膨胀系数小。
热膨胀系数的测定:要测准材料的平均线膨胀系数,关键在于能否精确地给出试样温度变化值△T并同时精确反映出此时试样长度的变化值△L。
通常把能给出试样长度随温度变化的装置称为膨胀仪。
材料物理复习大纲
v1.0可编辑可修改【一、力学】1材料力学性能概论材料的力学性能是关于材料强度的一门学科,即关于材料在外加载荷(外力)作用下或载荷和环境因素(温' 介质和加载速率)联合作用下表现的变形、损伤与断裂的行为规律及其物理本质和评定方法的一门学科。
2弹性极限e:不产生永久变形的最大应力比例极限p :保持弹性比例关系的最大应力值。
略小于e;3弹性模量的影响因素(1)结合键材料熔点与弹性模量的一致性关系(2 )原子结构:对金属来说,原子结构对其弹性模量影响很大弹性模量的周期性变化(3)温度:随温度升高,弹性模量降低。
(4)相变:相变影响晶体结构,从而影响弹性模量。
相变包括:多晶型转变、有序化转变、铁磁性转变、超导态转变等。
陶瓷的弹性模量E与气孔率P的关系可表示为:E = EOe-bP式中,E0是气孔率为零时的弹性模量, 制备工艺有关的常数。
对连续基体内的闭气孔,经验公式为:E = E o + P 2)4陶瓷材料的弹性模量特点特点一:陶瓷材料的弹性模量一般高于金属。
特点二:陶瓷材料的弹性模量,不仅与结合键有关,还与陶瓷相组成及气孔率有关。
(金属材料的弹性模量是一个非常稳定的力学性能指标)对两相陶瓷复合物,两相弹性模量分别为E1,E2,体积百分数分别为V1, V2当应力平行于层面,各层应变相等,复合陶瓷的平均弹性模量为:E4C2A2A b为与陶瓷a)温融、光氐阳敏及戟想材料曙昭議養噪牧対料等黴致卽菊材耦、览馭*磴橄具牺盛功能松•科瑞利散射当a0?入时d =4,即当散射中心的线度远小于入射光的波长时,散射强度与波长的4次方成反比。
瑞利散射不改变原入射光的频率。
4I S* 1/ 入1)非弹性散射:由于入射光子与介质发生非弹性碰撞而使频率发生改变的光散射。
a)拉曼散射:是分子或点阵振动的光学声子(即光学模)对光波的散射。
b)布里渊散射:是点阵振动引起的密度起伏或超声波对光波的非弹性散射,即点阵振动的声学声子(即声学模)与光波之间的能量交换结果。
【《电子材料》复习纲要】
1.根据材料的物理性质,电子材料的分类?导电材料,超导材料,半导体材料,绝缘材料,压电铁电材料,磁性材料,光电材料和敏感材料等。
2.何谓导电材料?导电材料的应用有哪些?常用的金属导电材料?导电材料就是指电流容易通过的材料,常用做电极,电刷,电线等。
常用的金属导电材料有铜,铜合金,铝合金。
3.薄膜导电材料的制备工艺有哪些?化学气象沉积,真空蒸发,溅射工艺,钨螺丝蒸发。
4.何谓电阻材料?应用?电阻材料是指常用的电阻器,片式电阻器,混合集成电路中的薄膜和后膜电阻器。
可变电阻器和电位器等所用的电阻体材料。
5.常用的薄膜电阻材料有哪些?碳系材料,金属膜,金属陶瓷薄膜,复合电阻薄膜,特殊电阻薄膜。
6.材料的导电性与哪些因素有关?合金的电阻比纯金属的电阻高的原因?杂质,缺陷,温度。
金属退火后,导致金属内的组织趋于平衡状态,导致电导率增大,则电阻率减小。
7.材料的导电性会随温度变化而变化,金属、合金、半导体材料随温度变化的规律?金属的电阻会随温度的升高而增大,合金和半导体的导电性随温度的升高而减小8.何谓超导材料?超导材料的临界参量有哪些?在一定的温度条件下材料出现零电阻,完全抗磁性现象的材料。
临界参量:Tc临界温度;Tc临界电流,Hc临界磁场9.低温超导材料与高温超导材料的区别?低温超导材料的转变温度低(Tc<30K),分为金属、合金和化合物。
高温超导材料转变温度高(Tc),主要是氧化物材料,成分多是以铜为主要元素的多元金属氧化物,氧含量不确定,具有陶瓷性质。
10.何谓半导体材料?半导体材料是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。
11.按组成,无机半导体材料的分类?元素半导体(Si硅Ge锗Se硒)化合物半导体及固溶体半导体(GaAs砷化镓+三五族化合物CdS硫化镉+二六族化合物SiC+四四族化合物等)。
材料物理性能-复习资料
材料物理性能-复习资料第⼆章材料的热学性能热容:热容是分⼦或原⼦热运动的能量随温度⽽变化的物理量,其定义是物体温度升⾼1K所需要增加的能量。
不同温度下,物体的热容不⼀定相同,所以在温度T时物体的热容为:物理意义:吸收的热量⽤来使点阵振动能量升⾼,改变点阵运动状态,或者还有可能产⽣对外做功;或加剧电⼦运动。
晶态固体热容的经验定律:⼀是元素的热容定律—杜隆-珀替定律:恒压下元素的原⼦热容为25J/(K?mol);⼆是化合物的热容定律—奈曼-柯普定律:化合物分⼦热容等于构成此化合物各元素原⼦热容之和。
热差分析:是在程序控制温度下,将被测材料与参⽐物在相同条件下加热或冷却,测量试样与参⽐物之间温差(ΔT)随温度(T)时间(t)的变化关系。
参⽐物要求:应为热惰性物质,即在整个测试的温度范围内它本⾝不发⽣分解、相变、破坏,也不与被测物质产⽣化学反应同时参⽐物的⽐热容,热传导系数等应尽量与试样接近。
第三章材料的光学性能四、选择吸收:同⼀物质对各种波长的光吸收程度不⼀样,有的波长的光吸收系数可以⾮常⼤,⽽对另⼀波长的吸收系数⼜可以⾮常⼩。
均匀吸收:介质在可见光范围对各种波长的吸收程度相同。
⾦属材料、半导体、电介质产⽣吸收峰的原因(1)⾦属对光能吸收很强烈,这是因为⾦属的价电⼦处于未满带,吸收光⼦后即呈激发态,⽤不着跃迁到导带即能发⽣碰撞⽽发热。
(2)半导体的禁带⽐较窄,吸收可见光的能量就⾜以跃迁。
(3)电介质的禁带宽,可见光的能量不⾜以使它跃迁,所以可见光区没有吸收峰。
紫外光区能量⾼于禁带宽度,可以使电介质发⽣跃迁,从⽽出现吸收峰。
电介质在红外区也有⼀个吸收峰,这是因为离⼦的弹性振动与光⼦辐射发⽣谐振消耗能量所致。
第六章材料的磁学性能⼀、固有磁矩产⽣的原因原⼦固有磁矩由电⼦的轨道磁矩和电⼦的⾃旋磁矩构成,电⼦绕原⼦核运动,产⽣轨道磁矩;电⼦的⾃旋也产⽣⾃旋磁矩。
当电⼦层的各个轨道电⼦都排满时,其电⼦磁矩相互抵消,这个电⼦层的磁矩总和为零。
材料物理复习
材料强化一、决定材料强度的关键因素1.原子之间的结合力2. 位错二、位错类型以及运动①类型:刃型位错;螺型位错;混合位错②运动:滑移:沿着滑移面移动的位错运动攀移:沿着垂直于滑移面移动的位错运动三、衡量材料力学性质的参数①断裂韧性:就是表示含有裂纹的材料所能承受的应力断裂韧性。
材料抵抗裂纹扩展的能力与许多因素有关:(1)裂纹尺寸a越大,许可应力σ越低。
(2)材料发生塑性变形的能力非常重要。
(3)厚试样的断裂韧性比薄试样的要小。
(4)增加负载速率,像冲击试验那样,往往会减小材料的断裂韧性。
(5)与冲击试验相同,降低温度会减小材料的断裂韧性。
(6)减小晶粒尺寸一般可以改善断裂韧性。
测量:利用含有一个已知尺寸的裂纹的试样,可以测得该裂纹开始扩展并导致材料发生断裂时的临界K值。
这个临界应力强度因子定义为材料的断裂韧性Kc。
四、固溶强化&共析强化(一)固溶强化金属材料通过形成固溶体合金,可以实现固溶强化的目的。
固溶强化的效果决定因素:1.溶剂原子和溶质原子的尺寸差别越大,固溶强化的效果越大2.添加的合金元素越多,固溶强化的效果也越大固溶强化对材料性质的影响:①合金的屈服强度,抗拉强度,硬度等会超过纯金属。
②几乎所有的合金的塑性都低于纯金属。
但是,铜锌合金的强度和塑性都高于纯铜,这是一个例外。
③合金的导电率大大低于纯金属。
所以不应该用固溶强化的铜合金或铝合金作导线。
④固溶强化能够改善合金的抗蠕变性能。
高温环境不会明显损害固溶强化效果。
(二)固态相变强化与共析反应共析反应是固态相变强化的重要手段。
从一个固相S1转变成两个固相S2和S3的反应,如下公式所示: S1 → S2 + S3固相之间的反应,所以在热处理时,可以先将材料加热到形成固相S1的温度,然后在冷却过程中利用共析反应得到S2和S3两个固相,作为共析反应产物的两个固相可以使合金实现弥散强化。
金属电导一、金属费米球的概念,为什么金属导电导热,哪部分电子起了作用特鲁德模型解释:导热:二、金属电阻,马基申定则马基申定则:把固溶体的电阻看成由金属的基本电阻和残余电阻组成。
材料物理学复习提纲
材料物理学复习提纲第一章材料的热学性能1.声子:用以描述晶格热振动的能量量子。
2.热容:在没有相变或化学反应的条件下,物体温度升高1K所吸收的热量。
3.热膨胀:物体的体积或长度随温度升高而增大的现象叫做热膨胀。
4.热传导:当固体材料一端的温度比另一端高时,热量会从热端自动地传向冷端,这个现象称为热传导。
5.导热率:指单位温度梯度下,单位时间内通过单位截面积的热量。
重点内容:1、格波是多频率振动的组合波。
(1)如果振动着的质点中包含频率甚低的格波,质点彼此之间的位相差不大,则格波类似于弹性体中的应变波,称为“声频支振动”。
(2)格波中频率甚高的振动波,质点彼此之间的位相差很大,邻近质点的运动几乎相反时,频率往往在红外光区,称为“光频支振动”。
2、恒压热容与恒容热容的比较:(1)由于恒压加热过程中,物体除温度升高外,还要对外界做功,所以CP > CV(2)CP 的测定比较简单,但CV更有理论意义,因为它可以直接从系统的能量增量计算(3)对于凝聚态材料,CP 与CV差异很小;但在高温时,CP和CV的差别增大3、固体的导热微观机理包括:电子导热、声子导热和光子导热4、温度对无机非金属材料热导率的影响:(1)在低温段,λ近似与T3成比例地变化,随着温度升高,λ迅速增大,这是因为低温段主要是热容对热导率的影响,而热容随温度的三次方成正比。
(2)温度高于某一温度后,热容与温度的关系不再是三次方的关系,并在德拜温度以后,趋于一恒定值。
这时对热导率的影响主要是声子的平均自由程起作用,其随温度升高而下降。
故某个低温处,λ出现了极大值。
(3)到了某高温时,热容趋于定值,而平均自由程达到下限值,因而热导率趋于恒定;更高温度时,由于光子导热的影响使热导率又有所增大。
5、晶体与非晶体导热系数曲线的比较:(1)非晶体的导热系数(不考虑光子导热的贡献)在所有温度下都比晶体的小。
(2)在高温下,二者比较接近,因为声子热容在高温下都接近3R。
【精】《材料物理性能》期末复习资料
• 当ωτ=1时,ε′′极 大,因而tgδ也极 大
16. 介电强度的定义?
• 介质的特性,如绝缘、介电能力,都是指 在一定的电场强度范围内的材料的特性, 即介质只能在一定的电场强度以内保持这 些性质。当电场强度超过某一临界值时, 介质由介电状态变为导电状态。这种现象 称介电强度的破坏,或叫介质的击穿
• 本征离子电导的导电离子主要由热缺陷提 供
• 其载流子浓度:n=Nexp(−E/2kT)中E的物 理意义是缺陷形成能
7.离子迁移率的公式,试分析影响离子 迁移率的主要因素是什么。
• 离子迁移率的公式是 i 62kv0T qexpU(0/kT) • (在弱电场作用下)影响离子迁移率的主要因素包
括晶体结构(δ、ΔU0、ν0 ) ,而指数项受温度影响 较大
15. 德拜方程以及各参数的物理意义,试分析 频率对ε′、ε′′的影响
• 德拜方程:
r (
)
(0) 1 i
'r
(0) 1 2 2
' 'r
[
(0) 1 2
]
2
• 各参数物理意义:ε(0)为静态相对介电系数,ε∞ 为高频相对介电系数,τ为弛豫时间常数
15. 德拜方程以及各参数的物理意义,试分析频率 对ε′、ε′′的影响
• “雪崩”式电击穿理论:晶格的破坏过程,碰撞 电离后的自由电子的倍增,产生雪崩现象,以碰 撞电离后自由电子数倍增到一定值作为电击穿判 据
1. 铁电体的定义与电滞回线、铁电畴的定义。
• 铁电体:在一定温度范围内含有能自发极 化,且极化方向可随外电场作可逆转动的 晶体
• 电滞回线:在铁电态下晶体的极化与电场 的关系曲线
• 其中N为等效状态密度,Eg为禁带宽度
材料物理性能复习资料
1、固体无机材料的物理性能主要包括力(可用机械性能代替)、热、光、电、磁、辐照(或写成辐射)、介电、声等方面的性能。
2、超导体的三个性能指标分别是指:临界转变温度、临界磁场强度、临界电流密度3、导热的微观机制有:电子热导和声子热导(也可写作电子导热和声子导热)4、光子通过固体会发生反射、折射、透过、吸收现象;5、原子本征磁矩包括电子的轨道磁矩和电子的自旋磁矩 ;6、顺磁性产生的基本条件:一、具有奇数个电子的原子或点陈缺陷,二、内壳层未被填满的原子或离子,这样使原子的固有磁矩不为零;7、钛酸钡(BaTiO 3)具有哪些介电性:压电性、热释电性、铁电性;8、热应力的来源:因热胀冷缩而产生的热应力、因温度梯度而产生热应力和多相复合材料因各相膨胀系数不同而产生的热应力;9、光磁记录时可以采用 居里温度 和 补偿温度 两种不同温度下的写入方式10核外电子的能量由主量子数n 、角量子数l 、磁量子数m 、自旋量子数ms 这四种量子数来确定11理想金属的电阻来源为电子散射、声子散射12电介质的主要性能指标有介电常数ε、介电损耗因子ε''、介电强度、品质因子()1tan -δ、介电电导率10、热膨胀来自于原子的非简谐振动;13、可以通过居里温度点进行磁场热处理(或“冷加工”)获得磁织构;14、电介质的击穿有电击穿、热击穿、化学击穿三种模式15、电阻产生的本质是 晶体点阵的完整性遭到破坏的地方,电子波受到散射16、压电体具有的最典型晶体结构特征是 无中心对称结构 ;17、电容器的电流由 理想电容器所造成的电流;电容器真实电介质极化建立的电流;电容器真实电介质漏电流 三部分构成 18、彩色光的三个基本参量是 亮度、 色调 、色饱和度 ;19、技术磁化可以通过磁畴的旋转和磁畴壁的迁移两种形式进行;20、减少退磁能是产生分畴的基本动力,但却增加了畴壁能;21、赛贝克效应和珀尔贴效应热电效应互为可逆热电效应;22、固体热容包括晶格热容、电子热容两部分;23、德拜温度是反映 原子间结合力 的重要物理量;24、固体中的导热主要是由晶格振动的格波(声子)和自由电子的运动来实现25、在计算半导体中的载流子数量时需要用到 费米-狄拉克 统计26、自由电子至少是二重简并态27、众所周知,纯银的导电性比纯铝好,纯铝中溶入5%的纯银后形成的合金,一般来说其导电性将 降低 ,导热性将 降低28、离子型导体在高温区导电的特征是 本征 导电,低温区是 杂质导电29、电介质极化的类型主要有: 位移极化 、空间电荷极化 、驰豫极化 、取向极化30、原子磁矩包括电子轨道磁矩、电子自旋磁矩、原子核磁矩31、磁畴的起因是 减小退磁能32、常见的三种热电效应是 赛贝克 、帕尔贴、汤姆逊33、只有在发生非弹性应变(表达出与此意思相同的亦可得分,如“应力与应变相差一个相位”,回答滞弹性或粘弹性只能算半对时才能产生内耗;34、固体对所有作用力的反应的实质来自于 原子间相互作用的势能35、固体物质中有电子、空穴、正离子、负离子四种载流子能够形成导电36、电阻产生的波长为500 nm 的单色光相当于波数为 20000 的单色光37、马氏体不锈钢 是 铁磁性材料,奥氏体不锈钢 不是 铁磁性材料;38、激光器是光波谐振器,由光波放大器(或激光工作物质)、谐振腔、 泵浦系统三部分构成,激活离子的作用是 提供亚稳态能级; 39、波长与波数的换算关系式是 n 710=λ, λ:波长(nm), n: 波数(1-cm )(需指明符号的含义);40、家用电脑光盘上的数据一般可以通过克尔 效应读出;41、固体对所有作用力的反应的实质来自于 原子间相互作用的势能42、固体电阻产生的基本机制是电子散射和声子散射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015-2材料物理性能复习提纲
1.霍尔效应
2.德布洛意波
3.物质波波函数的物理意义
4.物质波的波动方程(薛定谔方程)
5.波动方程的物理图像
6.金属中自由电子的能级(一维势阱模型,特别是其中的边界条件—量子化的)
7.满足玻恩--- 卡曼周期性边界条件的波动方程解(表面状态与周期性)
8.自由电子的能级密度(概念或者说物理意义)
9.费密分布函数(不同温度下的物理图像)
10.0K时自由电子的平均能量(与经典冲突)
11.能带理论
12.禁带的起因
13.布里渊区(划分,理论)
14.导体、半导体和绝缘体的能带结构特征
15.半导体与绝缘体能带结构的差异性
16.混合导体
17.迁移数
18.载流子
19.金属的导电机制
20.影响金属电阻或散射的因素
21.温度对金属电阻的影响规律及原因分析
22.马西森定律
23.剩余电阻率及其意义
24.离子导电机制
25.温度对离子导体电阻的影响规律
26.能斯特-爱因斯坦方程
27.快离子导体
28.本征半导体、杂质半导体
29.本征半导体中载流子的数量(导带中电子分布的特征)
30.本征半导体的费米能级
31.杂质半导体的相关概念(n型、p型半导体、施主、受主、施主能级、受主能级、电离能等)
32.杂质半导体载流子的数量
33.杂质半导体的费米能随温度的变化规律
34.半导体电导率与迁移率的关系
35.温度影响半导体载流子迁移率的微观机制及作用规律
36.温度影响半导体导电性的一般规律
37.直流四探针法(用途、基本原理)
38.电阻法应用举例(简单列举)
39.电介质、电介质极化、束缚电荷等基本概念
40.介电常数、电偶极矩及其单位
41.电极化强度、电位移及其相互关系
42.电极化机制(温度、频率等影响关系)
43.克劳修斯-莫索堤方程(物理意义)
44.介电损耗机制
45.复(相对)介电常数、损耗因子、损耗角正切
46.德拜方程的物理图像
47.频率对介电损耗的影响
48.介电(击穿)强度
49.正(逆)压电效应、压电应变常量
50.逆压电效应与电致伸缩之间的差异
51.压电性的表征参数(机械品质因数、机电耦合系数)
52.热释电效应
53.铁电效应
54.电滞回线
55.电畴
56.自发极化
57.压电性、热释电性与铁电性产生的条件,对晶体结构的要求,及相互之间的关系
58.光与固体作用的微观机制
59.材料折射率的影响因素
60.发生折射的本质原因
61.色散
62.金属颜色的来源
63.影响材料透明的因素分析
64.荧光和磷光的发光原理和特点、热辐射原理和特性
65.激光定义、特点、发光原理、能级系统,固体激光器重要组成部分
66.红外透过材料性能要求、特点、材料种类
67.红外探测材料的性能要求、典型材料
68.红外探测的种类及优缺点
69.固体热容理论发展
70.金属和陶瓷热容的特点
71.热膨胀的原理
72.影响热膨胀的因素
73.表征材料导热性的物理量及其意义
74.导热的宏观规律和微观机制
75.金属和非金属导热的异同点
76.塞贝克效应和帕尔贴效应
77.热电性的应用
78.热稳定性的表征,热应力的来源
79.磁性分类、磁性物理量
80.原子本征磁矩的来源
81.各类磁性物质磁化率随温度的变化
82.铁磁和亚铁磁体的磁学特性
83.铁磁体的来源。