材料现代分析方法课后简答题及名词解释汇总

合集下载

《材料现代分析方法》练习与答案

《材料现代分析方法》练习与答案

第一章一、选择题1•用来进行晶体结构分析的X射线学分支是( B )A.X射线透射学;B.X射线衍射学;C.X射线光谱学;2.M层电子回迁到K层后,多余的能量放出的特征X射线称(B )A. Ka ; B.KB ; C.K Y;。

3.当X射线发生装置是Cu靶,滤波片应选(C )A. Cu;B. Fe;C. Ni;D. Mo。

4.当电子把所有能量都转换为X射线时,该X射线波长称(A )A.短波限入0: B.激发限入k;C.吸收限;D.特征X射线5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生(D )(多选题)A.光电子;B.二次荧光;C.俄歇电子;D. (A+C)二、正误题1•随X射线管的电压升高,入o和山都随之减小。

()2.激发限与吸收限是一回事,只是从不同角度看问题。

()3.经滤波后的X射线是相对的单色光。

()4.产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。

()5.选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。

()三、填空题1.当X射线管电压超过临界电压就可以产生一连续X射线和特征X射线。

2.X射线与物质相互作用可以产生一俄歇电子、透射X射线、散射X射线、荧光X射线、光电子3.经过厚度为H的物质后,X射线的强度为__________________ o4.X射线的本质既是波长极短的电磁波也是光了束,具有波粒二象ih ______ 性。

5.短波长的X射线称____________ ,常用于______________________ :长波长的X射线称___________ ,常用于___________________________ o习题1.X射线学有儿个分支?每个分支的研究对象是什么?2.分析下列荧光辐射产生的可能性,为什么?(1)用CuK u X射线激发CuKo荧光辐射;(2)用CuKpX射线激发CuKo荧光辐射;(3)用CuK u X射线激发CuLo荧光辐射。

(完整版)材料现代分析方法第一章习题答案解析

(完整版)材料现代分析方法第一章习题答案解析

第一章1.X射线学有几个分支?每个分支的研究对象是什么?答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。

X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。

X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。

X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。

2. 试计算当管电压为50 kV时,X射线管中电子击靶时的速度与动能,以及所发射的连续谱的短波限和光子的最大能量是多少?解:已知条件:U=50kV电子静止质量:m0=9.1×10-31kg光速:c=2.998×108m/s电子电量:e=1.602×10-19C普朗克常数:h=6.626×10-34J.s电子从阴极飞出到达靶的过程中所获得的总动能为:E=eU=1.602×10-19C×50kV=8.01×10-18kJ由于E=1/2m0v02所以电子击靶时的速度为:v0=(2E/m0)1/2=4.2×106m/s所发射连续谱的短波限λ0的大小仅取决于加速电压:λ0(Å)=12400/U(伏) =0.248Å辐射出来的光子的最大动能为:E0=hv=h c/λ0=1.99×10-15J3. 说明为什么对于同一材料其λK<λKβ<λKα?答:导致光电效应的X光子能量=将物质K电子移到原子引力范围以外所需作的功hV k = W k以kα为例:hV kα = E L– E khe = W k – W L = hV k – hV L ∴h V k > h V k α∴λk<λk α以k β 为例:h V k β = E M – E k = W k – W M =h V k – h V M ∴ h V k > h V k β∴ λk<λk βE L – E k < E M – E k ∴hV k α < h V k β∴λk β < λk α4. 如果用Cu 靶X 光管照相,错用了Fe 滤片,会产生什么现象?答:Cu 的K α1,K α2, K β线都穿过来了,没有起到过滤的作用。

材料现代分析方法知识点汇总

材料现代分析方法知识点汇总

材料现代分析方法知识点汇总1.基础分析技术:材料现代分析方法常用的基础分析技术包括光学显微镜、电子显微镜、X射线衍射、扫描电子显微镜等。

这些技术可以用于材料样品的形态、结构和成分的分析和表征。

2.元素分析方法:材料中元素的分析是材料研究中的重要内容。

现代元素分析方法包括原子吸收光谱、原子发射光谱、原子荧光光谱、质谱等。

通过这些方法可以获取样品中各个元素的含量和分布情况。

3.表面分析技术:材料的表面性质对其性能有着重要影响。

表面分析技术包括扫描电子显微镜、原子力显微镜、拉曼光谱等。

这些技术可以用于研究材料表面形貌、结构和成分,以及表面与界面的性质。

4.结构分析方法:材料的结构对其性能有着决定性的影响。

结构分析方法包括X射线衍射、中子衍射、电子衍射等。

这些方法可以用于确定材料的晶体结构、非晶态结构和纳米结构,从而揭示材料的物理和化学性质。

5.磁学分析方法:材料的磁性是其重要的性能之一、磁学分析方法包括霍尔效应测量、磁化率测量、磁滞回线测量等。

这些方法可以用于研究材料的磁性基本特性,如磁场效应、磁滞行为和磁相互作用。

6.热学分析方法:材料的热性质对其在高温、低温等条件下的应用具有重要意义。

热学分析方法包括热重分析、差示扫描量热法、热导率测量等。

这些方法可以用于研究材料的热稳定性、相变行为和导热性能。

7.分子分析技术:材料中分子结构的分析对于研究其化学性质具有重要意义。

分子分析技术包括红外光谱、拉曼光谱、核磁共振等。

通过这些技术可以确定材料的分子结构、键合方式和功能性分子的存在情况。

8.表征方法:材料的表征是指对其特定性能的评估和描述。

表征方法包括电阻率测量、粘度测量、硬度测量等。

这些方法可以用于研究材料的电学、力学和流变学性质。

总之,材料现代分析方法是一门综合应用各种科学技术手段对材料样品进行分析与表征的学科。

掌握这些现代分析方法的知识,可以帮助科学家和工程师更好地了解材料的性质和特点,为材料设计和应用提供科学依据。

材料现代分析方法知识点

材料现代分析方法知识点

材料现代分析方法知识点材料现代分析方法知识点1.什么是特征X射线?当管压增至与阳极靶材对应的特定值U k时,在连续谱的某些特定波长位置上出现一系列陡峭的尖峰。

该尖峰对应的波长λ与靶材的原子序数Z存在着严格的对应关系,尖峰可作为靶材的标志或特征,故称尖峰为特征峰或特征谱。

2.什么是电子探针的点分析、线分析、面分析?①点分析:将电子束作用于样品上的某一点,波谱仪分析时改变分光晶体和探测器的位置,收集分析点的特征X射线,由特征X射线的波长判定分析点所含的元素;采用能谱仪工作时,几分钟内可获得分析点的全部元素所对应的特征X射线的谱线,从而确定该点所含有的元素及其相对含量。

②线分析:将探针中的谱仪固定于某一位置,该位置对应于某一元素特征X射线的波长或能量,然后移动电子束,在样品表面沿着设定的直线扫描,便可获得该种元素在设定直线上的浓度分布曲线。

改变谱仪位置则可获得另一种元素的浓度分布曲线。

③面分析:将谱仪固定于某一元素特征X射线信号(波长或能量)位置上,通过扫描线圈使电子束在样品表面进行光栅扫描(面扫描),用检测到的特征X射线信号调制成荧光屏上的亮度,就可获得该元素在扫描面内的浓度分布图像。

3. XRD对样品有何要求?粉末样品应干燥,粒度一般要求约10~80μm,应过200目筛子(约0.08mm),且避免颗粒不均匀。

块状样品应将其处理成与窗孔大小一致,可扫描宽度宜大于5mm,小于30mm,至少保证一面平整。

4.电子探针分析原理?电子探针是一中利用电子束作用样品后产生的特征X射线进行微区成分分析的仪器。

其结构与扫描电竞基本相同,所不同的只是电子探针检测的是特征X射线,而不是二次电子或背散射电子。

5.结构因子的计算?P68(1)简单点阵:简单点阵的晶胞仅有一个原子,坐标为(0,0,0),即X=Y=Z=0,设原子的散射因子为f,则(公式3-69) (2)底心点阵:底心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,0)各原子的散射因子为f,则(公式3-70)(3)体心点阵:体心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,1/2)各原子的散射因子为f,则(公式3-71)(4)面心点阵:面心点阵的晶胞有4个原子,坐标分别为(0,0,0),(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)各原子的散射因子为f,则(公式3-72)6.X射线衍射与电子衍射的关系(比较)?P150(1)电子波的波长短,远远小于X射线,同等衍射条件下,它的衍射半角很小,衍射束集中在前方额,而x射线的衍射半角可接近90度。

材料现代分析方法试卷(1)

材料现代分析方法试卷(1)

一、名词解释题数值孔径:由物体与物镜间媒介的折射率n与物镜孔径角的一半的正弦值的乘积。

干涉面:面间距为dHKL的晶面并不一定是晶体中的原子面,而是为了简化布拉格方程所引入的反射面,我们把这样的反射面称为干涉面。

干涉指数:干涉面的面指数称为干涉指数,是对空间方位与晶面间距的标识。

景深:当像平面固定时(象距不变)不变时,能维持物象清晰的范围内,允许物平面(样品)沿透镜主轴移动的最大距离。

焦长:固定样品条件下(物镜不变),像平面沿主轴移动时仍能保持物象清晰的距离范围。

差热分析:是指在程序控温下,测量样品和参比物的温度差与温度关系的一种热分析方法。

质谱:质谱(又叫质谱法)是一种与光谱并列的谱学方法,是离子数量(强度)对质荷比的分布,以质谱图或质谱表的形式表达。

晶带:晶体中,与某一晶相【uvw】平行的所有晶面(hkl)属于同一晶带,称为【uvw】晶带。

倒易点阵:倒易点阵是由晶体点阵按照一定的对应关系建立的空间点阵,此对应关系可称为倒易变换。

透镜分辨率:用物理学方法(如光学仪器)能分清两个密切相邻物体的程度。

衍射衬度:若样品上不同区域的衍射条件不同,图像上相应区域的亮度将有所不同,这样就在图像上便形成了衍射衬度。

差示扫描量热法:在程序控制温度下,测量输入给样品和参比物的功率差与温度关系的一种热分析方法。

埃利斑:由于衍射效应的作用,电光源在像平面上得到的并不是一个点,而是一个中心最亮,而周围带有明暗相间的同心圆环的圆斑Kα射线:把K层电子所激发的过程称为K系激发,电子跃迁所引起的辐射称为K系辐射。

跨越一级用α表示,即Kα射线。

质厚衬度:非晶样品透射电子显微图像衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,即质量厚度衬。

填空题1)光学光学系统包括(目镜)、( 物镜)、光源及(聚光器)。

2)通常有三种抛光的方法,即( 机械抛光)、(电解抛光)、(化学抛光)。

3)通常透射电镜由(成像系统)、电源系统、(记录系统)、循环冷却系统和(真空系统)组成(照明系统)4)材料性能主要决定于其(化学成分)、(物相组成)、(宏观及微观结构)。

(完整版)材料现代分析方法期末考试题与答案

(完整版)材料现代分析方法期末考试题与答案

1.名词解释:相干散射(汤姆逊散射):入射线光子与原子内受核束缚较紧的电子(如内层电子)发生弹性碰撞作用,仅其运动方向改变而没有能量改变的散射。

又称弹性散射;不相干散射(康普顿散射):入射线光子与原子内受核束缚较弱的电子(如外层电子)或晶体中自由电子发生非弹性碰撞作用,在光子运动方向改变的同时有能量损失的散射。

又称非弹性散射;荧光辐射:物质微粒受电磁辐射激发(光致激发)后辐射跃迁发射的光子(二次光子)称为荧光或磷光,吸收一次光子与发射二次光子之间延误时间很短(10-8~10-4s)称荧光,延误时间较长(10-4~10s)则为磷光;(有待确定)俄歇效应:如原子的退激发不以发射X射线的方式进行则将以发射俄歇电子的德方式进行,此过程称俄歇过程或俄歇效应;吸收限:当入射X射线光子能量达到某一阈值可击出物质原子内层电子时,产生光电效应。

与此能量阈值相应的波长称为物质的吸收限。

晶面指数与晶向指数:为了表示晶向和晶面的空间取向(方位),采用统一的标识,称为晶向指数和晶面指数;晶带:晶体中平行于同一晶向的所有晶面的总体干涉面:晶面间距为d HKL/n、干涉指数为nh、 nk、 nl的假想晶面称为干涉面X射线散射:X射线衍射:X射线反射:结构因子:晶胞沿(HKL)面反射方向的散射波即衍射波F HKL是晶胞所含各原子相应方向上散射波的合成波,表征了晶胞的衍射强度;多重因子:通常将同一晶面族中等同晶面组数P称为衍射强度的多重性因数。

罗仑兹因子:系统消光:因︱F︱2=0而使衍射线消失的现象称为系统消光。

2.讨论下列各组概念中二者之间的关系:1)同一物质的吸收谱和发射谱;答:当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。

吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。

2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。

材料现代分析方法课后简答题及名词解释

材料现代分析方法课后简答题及名词解释

材料现代分析方法课后简答题及名词解释一、名词解释:分子振动:分子中原子(或原子团)以平衡位置为中心的相对(往复)运动。

伸缩振动:原子沿键轴方向的周期性(往复)运动;振动时键长变化而键角不变。

(双原子振动即为伸缩振动)变形振动又称变角振动或弯曲振动:基团键角发生周期性变化而键长不变的振动。

晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw]晶带。

辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。

辐射被吸收程度对ν或λ的分布称为吸收光谱。

辐射的发射:物质吸收能量后产生电磁辐射的现象。

作为激发源的辐射光子称一次光子,而物质微粒受激后辐射跃迁发射的光子(二次光子)称为荧光或磷光。

吸收一次光子与发射二次光子之间延误时间很短(10-8~10-4s)则称为荧光;延误时间较长(10-4~10s)则称为磷光。

发射光谱:物质粒子发射辐射的强度对ν或λ的分布称为发射光谱。

光致发光者,则称为荧光或磷光光谱辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象散射基元:物质中与入射的辐射相互作用而致其散射的基本单元瑞利散射(弹性散射):入射线光子与分子发生弹性碰撞作用,仅光子运动方向改变而没有能量变化的散射。

拉曼散射(非弹性散射):入射线(单色光)光子与分子发生非弹性碰撞作用,在光子运动方向改变的同时有能量增加或损失的散射。

拉曼散射线与入射线波长稍有不同,波长短于入射线者称为反斯托克斯线,反之则称为斯托克斯线光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。

光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。

光电子能谱:光电子产额随入射光子能量的变化关系称为物质的光电子能谱分子光谱:由分子能级跃迁而产生的光谱。

紫外可见光谱(电子光谱):物质在紫外、可见辐射作用下分子外层电子在电子能级间跃迁而产生的吸收光谱。

现代材料分析方法习题汇总及答案

现代材料分析方法习题汇总及答案

现代材料分析⽅法习题汇总及答案材料分析测试⽅法复习题简答题:1. X射线产⽣的基本条件答:①产⽣⾃由电⼦;②使电⼦做定向⾼速运动;③在电⼦运动的路径上设置使其突然减速的障碍物。

2. 连续X射线产⽣实质答:假设管电流为10mA,则每秒到达阳极靶上的电⼦数可达6.25x10(16)个,如此之多的电⼦到达靶上的时间和条件不会相同,并且绝⼤多数达到靶上的电⼦要经过多次碰撞,逐步把能量释放到零,同时产⽣⼀系列能量为hv(i)的光⼦序列,这样就形成了连续X射线。

3. 特征X射线产⽣的物理机制答:原⼦系统中的电⼦遵从刨利不相容原理不连续的分布在K、L、M、N等不同能级的壳层上,⽽且按能量最低原理从⾥到外逐层填充。

当外来的⾼速度的粒⼦动能⾜够⼤时,可以将壳层中某个电⼦击出去,于是在原来的位置出现空位,原⼦系统的能量升⾼,处于激发态,这时原⼦系统就要向低能态转化,即向低能级上的空位跃迁,在跃迁时会有⼀能量产⽣,这⼀能量以光⼦的形式辐射出来,即特征X射线。

4. 短波限、吸收限答:短波限:X射线管不同管电压下的连续谱存在的⼀个最短波长值。

吸收限:把⼀特定壳层的电⼦击出所需要的⼊射光最长波长。

5. X 射线相⼲散射与⾮相⼲散射现象答:相⼲散射:当X 射线与原⼦中束缚较紧的内层电⼦相撞时,电⼦振动时向四周发射电磁波的散射过程。

⾮相⼲散射:当X 射线光⼦与束缚不⼤的外层电⼦或价电⼦或⾦属晶体中的⾃由电⼦相撞时的散射过程。

6. 光电⼦、荧光X 射线以及俄歇电⼦的含义答:光电⼦:光电效应中由光⼦激发所产⽣的电⼦(或⼊射光量⼦与物质原⼦中电⼦相互碰撞时被激发的电⼦)。

荧光X 射线:由X 射线激发所产⽣的特征X 射线。

俄歇电⼦:原⼦外层电⼦跃迁填补内层空位后释放能量并产⽣新的空位,这些能量被包括空位层在内的临近原⼦或较外层电⼦吸收,受激发逸出原⼦的电⼦叫做俄歇电⼦。

8. 晶⾯及晶⾯间距答:晶⾯:在空间点阵中可以作出相互平⾏且间距相等的⼀组平⾯,使所有的节点均位于这组平⾯上,各平⾯的节点分布情况完全相同,这样的节点平⾯成为晶⾯。

《材料现代分析方法》练习与答案

《材料现代分析方法》练习与答案

《材料现代分析方法》练习与答案《材料现代分析方法》练习与答案1. 在粉末多晶衍射的照相法中包括、和。

2. 德拜相机有两种,直径分别是和Φ mm。

测量θ角时,底片上每毫米对应o和o。

3. 衍射仪的核心是测角仪圆,它由、和共同组成。

4. 可以用作X射线探测器的有、和等。

5. 影响衍射仪实验结果的参数有、和等。

八、名词解释1. 偏装法——2. 光栏——3. 测角仪——4. 聚焦圆—— 5. 正比计数器—— 6. 光电倍增管——习题:1. CuKα辐射(λ=0.154 nm)照射Ag(f.c.c)样品,测得第一衍射峰位置2θ=38°,试求Ag的点阵常数。

2. 试总结德拜法衍射花样的背底来源,并提出一些防止和减少背底的措施。

3. 粉末样品颗粒过大或过小对德拜花样影响如何?为什么?板状多晶体样品晶粒过大或过小对衍射峰形影响又如何?4. 试从入射光束、样品形状、成相原理(厄瓦尔德图解)、衍射线记录、衍射花样、样品吸收与衍射强度(公式)、衍射装备及应用等方面比较衍射仪法与德拜法的异同点。

5. 衍射仪与聚焦相机相比,聚焦几何有何异同?6. 从一张简单立方点阵物的德拜相上,已求出四根高角度线条的θ角(系由CuKα所产生)及对应的干涉指数,试用“a-cos2θ”的图解外推法求出四位有效数字的点阵参数。

HKL 532 620 443 541 611 540 621θ.角72.08 77.93 81.11 87.447. 根据上题所给数据用柯亨法计算点阵参数至四位有效数字。

8. 用背射平板相机测定某种钨粉的点阵参数。

从底片上量得钨的400衍射环直径2Lw=51.20毫米,用氮化钠为标准样,其640衍射环直径2LNaCl =36.40毫米。

若此二衍射环均系由CuKαl辐射引起,试求精确到四位数字的钨粉的点阵参数值。

9. 试用厄瓦尔德图解来说明德拜衍射花样的形成。

10. 同一粉末相上背射区线条与透射区线条比较起来其θ较高还是较低?相应的d较大还是较小?既然多晶粉末的晶体取向是混乱的,为何有此必然的规律11. 衍射仪测量在人射光束、试样形状、试样吸收以及衍射线记录等方面与德拜法有何不同?12. 测角仪在采集衍射图时,如果试样表面转到与入射线成30°角,则计数管与人射线所成角度为多少?能产生衍射的晶面,与试样的自由表面呈何种几何关系?13. Cu Kα辐射(λ=0.154 nm)照射Ag(f.c.c)样品,测得第一衍射峰位置2θ=38°,试求Ag的点阵常数。

材料分析方法第三版课后答案

材料分析方法第三版课后答案

材料分析方法第三版课后答案【篇一:材料现代分析方法试题3(参考答案)】ss=txt>一、基本概念题(共10题,每题5分)1.试述获取衍射花样的三种基本方法及其用途?答:获取衍射花样的三种基本方法是劳埃法、旋转晶体法和粉末法。

劳埃法主要用于分析晶体的对称性和进行晶体定向;旋转晶体法主要用于研究晶体结构;粉末法主要用于物相分析。

3.试述罗伦兹三种几何因子各表示什么?答:洛伦兹因数第一种几何因子是表示样品中参与衍射的晶粒大小对衍射强度的影响。

,第二种几何因子是表示样品中参与衍射的晶粒的数目对衍射强度的影响,第三种几何因子是表示样品中衍射线位置对衍射强度的影响。

4.在一块冷轧钢板中可能存在哪几种内应力?它们的衍射谱有什么特点?答:在一块冷轧钢板中可能存在三种内应力,它们是:第一类内应力是在物体较大范围内或许多晶粒范围内存在并保持平衡的应力。

称之为宏观应力。

它能使衍射线产生位移。

第二类应力是在一个或少数晶粒范围内存在并保持平衡的内应力。

它一般能使衍射峰宽化。

第三类应力是在若干原子范围存在并保持平衡的内应力。

它能使衍射线减弱。

5.设[uvw]是(hkl)的法线,用正、倒空间的变换矩阵写出它们之间的指数互换关系。

***答:[uvw]?=〔〕[uv13wa11gaa?]12??*?0?i?jg?aaa其中 2223?,ai?aj21??1i?j??6.给出简单立方、面心立方、体心立方以及密排六方晶体结构电子衍射发?a31a32a33??生消光的晶面指数规律。

答:常见晶体的结构消光规律简单立方对指数没有限制(不会产生结构消光)f. c. ch. k. l. 奇偶混合b. c. ch+k+l=奇数h. c. ph+2k=3n, 同时l=奇数体心四方h+k+l=奇数7.假定需要衍射分析的区域属于未知相,但根据样品的条件可以分析其为可能的几种结构之一,试根据你的理解给出衍射图标定的一般步骤。

答:(1)测定低指数斑点的r值。

材料分析方法名词解释(2)

材料分析方法名词解释(2)

材料分析方法名词解释(2)材料分析方法名词解释13、劳厄法:用连续X射线照射单晶体的衍射方法。

14、周转晶体法:用单色射线照射转动的单晶体的衍射方法。

15、粉末衍射法(多晶法):用单色射线照射粉末多晶体的衍射方法。

16、f :原子散射因子。

Aa一个原子散射波振幅f Ae一个电子散射波振幅17、F:以一个散射波振幅为单位的晶胞散射波合成振幅。

FHKLnAb晶胞内各原子散射波合成振幅Ae一个电子散射波振幅ij18、系统消光:由于|F|2=0引起的衍射线消失的现象称为系统消光。

分为两类:点阵消光和结构消光。

fjej1fjej1ni2HxjKyjLzj19、点阵消光:只决定于晶胞中原子位置的消光现象。

20、结构消光:在点阵消光的基础上因结构基元内原子位置不同而产生的附加消光(如金刚石结构)。

21、|G|2称为干涉函数,又称形状因子。

22、晶带:在晶体结构或空间点阵中,与某一取向平行的所有晶面均属于同一个晶带。

23、聚焦圆:X射线衍射仪法中,样、光源和光阑必须位于同一圆周上才能获得足够高的衍射强度和分辨率。

此圆周称为聚焦圆。

24、辐射探测器:接收样品发射的X射线(X光子),并将光子信号转变为电脉冲信号(瞬时脉冲)的装置。

25、闪烁计数器:利用X射线作用在某些物质(磷光体)上产生可见荧光,并通过光电倍增管来接收的探测器。

26、物相分析:确定物质的相组成和各组成相的相对含量,前者称物相定性分析,后者称物相定量分析。

27、透射电子显微镜(TEM):以波长很短的电子束作为照明源,用电磁透镜成像的一种具有高分辨本领、高放大倍数的电子光学仪器。

28、分辨率:把两个Airy斑中心距离等于Airy斑半径时物平面上相应两个物点间的距离定义为透镜能分辨的最小间距,即透镜分辨率。

29、球差:由于电磁透镜近轴区域和远轴区域磁场对电子折射能力不同而产生的一种像差。

30、像散:由于透镜磁场的非旋转对称引起的像差。

31、色差:由于成像电子的能量不同或变化,从而在透镜磁场中运动轨迹不同,不能在一点聚焦而形成的像差。

材料现代分析方法重点笔记

材料现代分析方法重点笔记

材料现代分析方法重点笔记一、材料X射线衍射分析1、X射线的性质、产生及谱线种类及机理2、X射线与物质的相互作用:几种现象及机理3、X射线衍射方向:布拉格方程及推导,X射线衍射方法4、X射线衍射强度:多晶体衍射图相的形成过程,衍射强度影响因数及积分强度公式5、多晶体分析方法:X射线衍射仪的构造及各部件的作用,实验参数的选择6、物相分析及点阵常数精确测定二、x衍射线知识点1、X射线的本质一种电磁波(波长短:0.01-10nm)2、X射线产生原理由高速运动着的带电粒子与某种物质相撞击后淬然减速,且与该物质中的内层电子相作用而产生的。

3、X射线产生的几个基本条件(1)产生自由电子;(2)使电子作定向高速运动:(3)在电子运动的路径上设置使其突然减速的障碍物4、旋转阳极(用于大功率转靶XRD仪)工作原理:因阳极不断旋转,电子束轰击部位不断改变,故提高功率也不会烧熔靶面。

目前有100kW的旋转阳极,其功率比普通X射线管大数十倍。

5、X射线谱X射线强度与波长的关系曲线6、连续x射线谱管压很低时,例如小于20kv,X射线谱曲线是连续变化的。

7、形成连续x射线谱两种理论解释:1.经典物理学理论:一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。

由于极大数量的电子射到阳极上的时间和条件不可能相8/同,因而得到的电磁波将具有连续的各种波长,形成连续X 射线谱。

量子力学概念:当能量为ev的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,每碰撞一次,产生一个能量为hv的光子,即“韧致辐射”。

大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。

8、特征(标识)X射线谱当管电压等于或高于20KV时,则除连续X射线谱外,位于一定波长处还叠加有少数强谱线,它们即特征X射线谱。

9、形成特征X射线谱的理论解释:原子结构的壳层模型:特征X射线的产生机理与靶物质的原子结构有关。

材料现代分析名词解释 修改版

材料现代分析名词解释 修改版

倒易点阵:倒易点阵是由具有晶格常数a 、b 、c 的晶体点阵(或称为正点阵、真点阵)经过一定的数学变换转换而来的一种虚拟点阵。

俄歇电子:向内层跃迁填位的电子的多余能量不以产生电磁辐射的形式释放,而使本层壳能级上的另一电子脱离原子发射出去(即电离),此电子即为俄歇电子。

晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面均属于同一个晶带,称为[uvw]晶带。

晶向[uvw]中过坐标原点的直线称为晶带轴。

晶带轴的晶向指数即为该晶带的指数。

连续X 射线谱:由某一最短波长0λ开始,强度)(I 相对波长连续分布的射线谱。

连续X 射线是覆盖很大波长范围且连续变化的电磁辐射。

特征X 射线谱:在管电压高到某特定值时,在某些特定波长处出现的叠加在连续谱上的高而尖锐的谱线(各波长是分立的)。

在连续谱基础上叠加若干条具有一定波长的谱线构成特征X 射线谱。

背散射电子:入射电子与固体作用后又反弹离开固体的总电子流。

背散射电子包括被样品表面原子反射回来的入射电子(弹性背散射电子),以及入射电子进入固体后通过散射连续改变前进方向,最后又从样品表面发射出去的入射电子(非弹性背散射电子)。

背散射电子是被固体样品原子反射回来的一部分入射电子,包括弹性和非弹性背散射电子,其能量接近于入射电子能量。

二次电子:包括入射电子从固体中直接击出的原子核外电子和激发态原子退回基态时产生的电子发射。

前者称为(真)二次电子,能量较低;后者称为特征二次电子(如俄歇电子),能量取决于原子本身的电子结构。

厄瓦尔德图解:厄瓦尔德提出了描述晶体中各晶面产生衍射必要条件的几何图解,即厄瓦尔德图解。

衍射矢量方程的图解法表达形式是由入射线λ/s 0、反射晶面(HKL )倒易矢量*H KLr 及反射线λ/s 构成衍射矢量三角形。

结构因子:晶胞衍射波F 称为结构因子,F 的模|F|即为其振幅,|F|称为结构振幅。

由于合成F 时,以j f 为各原子散射波的振幅,而fj 是以两种振幅的比值定义的(e aj j E E f /=),故|F|也是以两种振幅的比值定义的,即:e E E F /b = 点阵消光:点阵消光取决于晶胞中原子(阵点)位置而导致的02=F 的现象。

材料分析知识点总结精选全文

材料分析知识点总结精选全文

可编辑修改精选全文完整版材料分析(不完全整理) 卜1.名词解释吸收限:um随λ的变化是不连续的,期间被尖锐的突变分开,突变对应的波长为K吸收限.短波限:连续X射线谱在短波方向上有一个波长极限,称为短波限λ。

它是由光子一次碰撞就耗尽能量所产生的X射线.景深(Df):透镜物平面允许的轴向偏差定义为透镜的景深。

或者说试样超越物平面所允许的厚度。

焦长(Dl):透镜像平面允许的轴向偏差定义为焦长(深),或者说观察屏或照相底版沿镜轴所允许的移动距离。

差热分析(DTA):在程序控制温度条件下,测量样品与参比物之间的温度差与温度关系的一种热分析方法。

热重分析:是指在程序温度控制下,测量物质的质量(m)与温度关系的一种技术。

ICTA的命名是Thermogravimetry,我国的标准命名是“热重法”简称“TG”。

明场成像:让投射束通过物镜光阑而把衍射束挡掉得到的图像衬度的方法叫做明场成像暗场成像:将明场成像中物镜光阑的位置移动一下,使其光阑套住hkl斑点而把透射束挡掉就得到图像衬度的方法叫暗场成像置信度:采用一种概率的陈述方法,也就是数理统计中的区间估计法,即估计值与总体参数在一定允许的误差范围以内,其相应的概率有多大,这个相应的概率称作置信度。

检出限:用于表示在适当置信度下,能检测出的待测元素的最小浓度或最小质量。

像衬度:像衬度是图像上不同区域间明暗程度的差别。

透射电镜的像衬度来源于样品对入射电子束的散射。

荧光X射线:由X射线激发所产生的特征X射线称为二次特征X射线或荧光X 射线。

*试分析下属工件选择一样恰当的的仪器分析方法1.某结构件残余应力的测定--XRD(X射线衍射)2.测定某件金属的熔点或比热容 --DTA(差热分析/DSC(差示扫描量热分析)3.首饰中所含元素的无损检--EPMA(电子探针)/EDS(能谱仪)/WDS(波谱仪)4.测定某种废水中的微量元素含量—AAS(原子吸收光谱)/AES(原子发射光谱)5.测定纳米粉末的晶形及晶粒度的大小-- XRD(X射线衍射)材料端口形貌观察—SEM(扫描电子显微镜)/TEM复型(透射电镜复型)7.区别TiAl3、TI3AL-- XRD(X射线衍射)8.分析材料的热稳定性—TG(热重分析)9有机物材料的鉴别—FTIR(红外光谱分析)1. 晶粒度的测定用XRD2. 有机物 FTIR3. 热重分析 TG4. 扫描电镜的微观组成:5. 二次电子6. X 射线衍射仪的核心部件:测角仪第一章1.伦琴把引起奇异现象的未知射线称作X 射线2.特征X 射线谱实验规律①激发电压Uk > UL > ……. ②同系各谱线存在 λ k β < λ k α ③ 特征谱线位置(波长)仅与靶材(Z)有关,而与U 无关。

材料现代分析方法复习-07

材料现代分析方法复习-07

X射线复习(陈老师讲课内容)一、名词解释1、物相分析:是指确定材料由哪些相组成(即物相定性分析或称物相鉴定)和确定各组成相的含量(常以体积分数或质量分数表示,即物相定量分析)。

2、零层倒易面:属于同一[uvw]晶带的各(HKL)晶面对应的倒易矢量r*HKL处于一个平面内.这是一个通过倒易点阵原点的倒易面,称为零层倒易面。

3、X射线:一种波长介于紫外线和 射线之间的具有较短波长的电磁波。

4、Kα射线与Kβ射线:若K层产生空位,L层或M层或更外层电子向K层跃迁,产生的X射线统称为K系特征辐射,分别按顺序记为Kα,Kβ,…射线。

5、短波限:连续X射线谱中,波长连续分布的起点为短波限。

6、吸收限:产生光电效应可击出物质原子内层电子的入射X射线光子能量阈值相应的波长。

7、线吸收系数:因为μ表示X射线通过单位长度物质时强度的衰减.又因强度为(垂直于传播方向上)单位面积的能量,所以μ亦为X射线通过单位体积物质时能量的衰减.质量吸收系数:设μm= μ/ρ(ρ为物质密度),称μm为质量吸收系数,则:It = Iexp(- μ*t) = Iexp(- μm*ρ*t)∵ μ定义为X射线通过单位体积物质时能量的衰减.∴ μm为X射线通过单位质量物质时能量的衰减,亦称单位质量物质对X射线的吸收.8、晶带:在晶体中如果若干个晶面同时平行于某一轴向时,则这些晶面属于同一晶带,而这个轴向就称为晶带轴。

10、二次特征辐射(X射线荧光辐射)二、简答,论述,计算题1、辨析点阵与阵胞、点阵与晶体结构、阵胞与晶胞的关系.点阵:为了描述晶体中原子的排列规则,将每一个原子(原子团等)抽象视为一个几何点(称为阵点),从而得到一个按一定规则排列分布的无数多个阵点组成的空间阵列,称为空间点阵或晶体点阵,简称点阵.阵胞(晶胞):在点阵中选择一个由阵点连接而成的几何图形(一般为平行六面体)作为点阵的基本单元来表达晶体结构的周期性,称为阵胞(晶胞)阵胞与点阵的关系: 阵胞在空间的重复堆砌 → 空间点阵晶体结构与空间点阵若将组成晶体的原子(离子、分子等,以下称为结构基元)置于点阵的各个阵点上,则将还原为晶体结构,即:晶体结构 = 空间点阵 + 结构基元.2、在面心立方晶胞中标明(001)、(002)和(003)面,并据此回答:干涉指数表示的晶面上是否一定有原子分布?为什么?3、判别下列哪些晶面属于[111]晶带:(011),(123),(231),(211),(011),(331),(211),(213),(110),(212)。

现代材料分析方法试题含有答案

现代材料分析方法试题含有答案

(d ) XRD FTIR 和 Raman 和透射电(a ) - C-H 、-OH 和-NH2 (b) - C-H 、(c) 和-C=C- (d) - C-H 和 CO2分,共10分)1 ( 2. . -C-H判断题(正确的打V,分 无 关。

(V ) (V )《现代材料分析方法》期末试卷 1 一、单项选择题(每题2分,共10分) 1 •成分和价键分析手段包括【b 】 (a )WDS 能谱仪(EDS 和 XRD (b ) WDS EDS 和 XPS (c ) TEM WDS 和 XPS (d ) XRD FTIR 和 Raman 2 •分子结构分析手段包括【a 】 (a )拉曼光谱(Rama )核磁共振(NMR 和傅立叶变换红外光谱(FTIR ) (b ) NMR FTIR 和 WDS (c ) SEM TEM 和STEM (扫描透射电镜) 3 •表面形貌分析的手段包括【d 】 (a ) X 射线衍射(XRD 和扫描电镜(SEM (b ) SEM (c )波谱仪(WDS 和X 射线光电子谱仪(XPS (d ) SEM 4 •透射电镜的两种主要功能:【b 】 (a )表面形貌和晶体结构 (b )内部组织和晶体结构 (c )表面形貌和成分价键 (d )内部组织和成分价键 5. 下列谱图所代表的化合物中含有的基团包括: 【c 和-NH2,4. 放大倍数是判断显微镜性能的根本指标。

5. 在样品台转动的工作模式下,X 射线衍射仪探头转动的角速度是样品转动角 速度的二倍。

(V ) 三、简答题(每题5分,共25分)1. 扫描电镜的分辨率和哪些因素有关?为什么 ?和所用的信号种类和束斑尺寸有关, 因为不同信号的扩展效应不同,例如二次电子产生 的区域比背散射电子小。

束斑尺寸越小,产生信号的区域也小,分辨率就高。

2. 原子力显微镜的利用的是哪两种力,又是如何探测形貌的?范德华力和毛细力。

以上两种力可以作用在探针上,致使悬臂偏转 ,当针尖在样品上方扫描时,探测器可实时 地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料现代分析方法课后简答题及名词解释一、名词解释:分子振动:分子中原子(或原子团)以平衡位置为中心的相对(往复)运动。

伸缩振动:原子沿键轴方向的周期性(往复)运动;振动时键长变化而键角不变。

(双原子振动即为伸缩振动)变形振动又称变角振动或弯曲振动:基团键角发生周期性变化而键长不变的振动。

晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw]晶带。

辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。

辐射被吸收程度对ν或λ的分布称为吸收光谱。

辐射的发射:物质吸收能量后产生电磁辐射的现象。

作为激发源的辐射光子称一次光子,而物质微粒受激后辐射跃迁发射的光子(二次光子)称为荧光或磷光。

吸收一次光子与发射二次光子之间延误时间很短(10-8~10-4s)则称为荧光;延误时间较长(10-4~10s)则称为磷光。

发射光谱:物质粒子发射辐射的强度对ν或λ的分布称为发射光谱。

光致发光者,则称为荧光或磷光光谱辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象散射基元:物质中与入射的辐射相互作用而致其散射的基本单元瑞利散射(弹性散射):入射线光子与分子发生弹性碰撞作用,仅光子运动方向改变而没有能量变化的散射。

拉曼散射(非弹性散射):入射线(单色光)光子与分子发生非弹性碰撞作用,在光子运动方向改变的同时有能量增加或损失的散射。

拉曼散射线与入射线波长稍有不同,波长短于入射线者称为反斯托克斯线,反之则称为斯托克斯线光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。

光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。

光电子能谱:光电子产额随入射光子能量的变化关系称为物质的光电子能谱分子光谱:由分子能级跃迁而产生的光谱。

紫外可见光谱(电子光谱):物质在紫外、可见辐射作用下分子外层电子在电子能级间跃迁而产生的吸收光谱。

红外吸收谱:物质在红外辐射作用下,分子振动能级(和/或转动能级)跃迁而产生的吸收光谱。

红外活性与红外非活性:只有发生偶极矩变化的分子振动,才能引起可观测到的红外吸收光谱带,称这种分子振动为红外活性的,反之则称为非红外活性的散射角(2θ)散射电子运动方向与入射方向之间的夹角。

电子吸收:由于电子能量衰减而引起的强度(电子数)衰减。

点阵消光:因晶胞中原子(阵点)位置而导致的|F|2=0的现象系统消光:晶体衍射实验数据中出现某类衍射系统消失的现象。

结构消光:在点阵消光的基础上,因结构基元内原子位置不同而进一步产生的附加消光现象,称为结构消光。

衍射花样指数化:确定衍射花样中各线条(弧对)相应晶面(即产生该衍射线条的晶面)的干涉指数,并以之标识衍射线条,又称衍射花样指数化(或指标化)。

电子透镜:能使电子束聚焦的装置称为电子透镜质量厚度衬度(简称质厚衬度):由于样品不同微区间存在原子序数或厚度的差异而形成的衬度衍射衬度:由于晶体对电子的衍射效应而形成的衬度。

d-d跃迁:在配位体的影响下,处于低能态d轨道上的电子吸收光能后可以跃迁至高能态的d轨道,这种跃迁,称之为d-d跃迁。

f-f跃迁:处于f轨道上的f电子,在配位体的影响下,f电子吸收光能后可以由低能态的f轨道跃迁至高能态的f轨道,从而产生相应的吸收光谱。

这种跃迁称为f-f跃迁。

生色团:在紫外及可见光范围内产生吸收的原子团(或原子、电子、空穴等)。

蓝移:当物质的结构或存在的环境发生变化时,其吸收带的最大吸收波长(λ最大)向短波方向移动,这种现象称为紫移或蓝移(或向蓝)。

红移:当物质的结构或存在的环境发生变化时,其吸收带的最大吸收峰波长(λ最大)向长波长方向移动,这种现象称为红移(或称为“向红”)。

助色团:有些含n电子的官能团,本身并不在紫外可见区产生吸收,但它们具有能使生色团的光谱峰移向长波区并使其强度增加的作用,这种官能团叫做助色团。

电荷转移光谱,就是在光能激发下,某一化合物中的电荷发生重新分布,导致电荷可从化合物的一部分转移至另一部分而产生的吸收光谱。

倍频峰(或称泛音峰):出现在强峰基频约二倍处的吸收峰,一般都是弱峰。

组频峰:也是弱峰,它出现在两个或多个基频之和或差附近特征振动频率:某一键或基团的振动频率有其特定值,它虽然受周围环境的影响,但不随分子构型作过大的改变,这一频率称为某一键或基团的特征振动频率。

而其吸收带称为特征振动吸收带。

热分析:在程序控制温度条件下,测量物质的物理性质随温度或时间变化的函数关系的技术。

差热分析(DTA):在程序控制温度条件下,测量样品与参比物之间的温度差与温度(或时间)关系的一种热分析方法。

差示扫描量热法(DSC):在程序控制温度条件下,测量输入给样品与参比物的功率差与温度(或时间)关系的一种热分析方法。

振动自由度:分子简单正振动数目。

简并:在多原子分子的简正振动中,有时两个或三个振动模式不同的简正振动具有相同的频率,此时在红外光谱上成为一个吸收峰出现,这种现象就是简并。

分裂:某些基团处于某些机构中,因其对称性降低,简并的吸收带分裂开来。

中心暗场像:将入射电子束反向倾斜一个相应的散射角度,而使散射电子沿光轴传播。

二次离子:固体表面原子以离子态发射叫做二次离子。

透射离子:当样品的厚度小于入射电子的平均穿入深度时,有一部分入射电子穿过样品,在样品背面被接收检测到的电子。

吸收电流(电子):入射电子在固体中传播时,能量逐渐减小,最后失去全部动能的电子流。

背散射电子:入射电子与固体作用后又离开固体的总电子流。

特征X射线:射线管电压增至某一临界值,使撞击靶材的电子具有足够能量时,可使靶原子内层产生空位,此时较外层电子将向内层跃迁产生辐射即是特征X 射线。

俄歇电子:由于原子中的电子被激发而产生的次级电子,在原子壳层中产生电子空穴后,处于高能级的电子可以跃迁到这一层,同时释放能量。

当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子发射,被称为俄歇电子。

二次电子:入射电子从固体中直接击出的的原子的核外电子和激发态原子退回基态时产生的电子发射,前者叫二次电子,后者叫特征二次电子。

波数:2∏长度上出现的全波数目;在波传播的方向上单位长度内的波长的数目。

分子散射:入射线与线度即尺寸大小远远小于其波长的分子或分子聚集体相互作用产生的散射。

X射线相干散射:入射光子与原子内受核束缚较紧的电子发生弹性碰撞作用,仅其运动方向改变没有能量改变的散射。

X射线非相干散射:入射光子与原子内受到较弱的电子或者晶体中自由电子发生非弹性碰撞作用,在光子运动方向改变的同时有能量损失的散射。

K系特征辐射:原子K层出现空位,较外的L层电子向内的K层辐射跃迁,发射的辐射。

L系特征辐射:原子的L层出现空位,其外M,N层电子跃迁产生的谱线统称为L 系特征辐射。

吸收限:X射线照射固体物质产生光子效应时能量阀值对应的波长称为物质的吸收限。

X射线散射:X射线与物质作用(主要是电子)时,传播方向发生改变的现象。

X射线衍射:散射X射线干涉一致加强的结果,即衍射。

X射线反射:与可见光的反射不同,是“选择反射”,实质是晶体中各原子面产生的反射方向上的相干散射线。

二、简答题1.量子数n、l与m如何表征原子能级?在什么情况下此种表征失去意义?答:原子中核外电子的运动状态由主量子数n、角量子数l、磁量子数m、自旋量子数s和自旋磁量子数m s表征。

n、l、m共同表征了电子的轨道运动,而s与m则是电子自旋运动的表征。

n决定电子运动状态的主要能量(主能级能量,E),sn值越大,则电子离核越远,能量越高。

l取值为0~n-1的正整数,对应于l=0,1,2,3,…的电子亚层或原子轨道形状分别称为s、p、d、f等层或(原子)轨道。

磁量子数m取值为0,±1,±2,…,±l。

当无外磁场存在时,同一亚层伸展方向不同的轨道具有相同的能量。

当有外磁场时,只用量子数n、l与m表征的原子能级失去意义。

2.下列各光子能量(eV)各在何种电磁波谱域内?各与何种跃迁所需能量相适应?1.2×106~1.2×102、6.2~1.7、0.5~0.02、2×10-2~4×10-7。

答:1.2×106~1.2×102 X射线谱域,与原子内层电子跃迁所需能量相对应。

6.2~1.7 紫外-可见谱域,与原子(或分子)外层电子跃迁所需能量相对应。

0.5~0.02 红外谱域,与分子振动能级跃迁所需能量相对应。

2×10-2~4×10-7微波谱域,与分子转动能级和电子自旋能级跃迁所需能量相对应。

10.分子能级跃迁有哪些类型?紫外、可见光谱与红外光谱相比,各有何特点?答:分子能级跃迁主要有电子能级跃迁、振动能级跃迁和转动能级跃迁。

紫外、可见光谱是由于分子的电子能级跃迁引起的吸收光谱。

由于电子的能级比较大,在产生电子能级跃的同时也会引起分子的振动和转动能级跃,因此其光谱上叠加了振动和转动能级跃的吸收光谱,所以是带状光谱。

红外光谱是由于分子振动能级和转动能级跃迁引起的吸收光谱。

对于一般的中红外光谱,其振动光谱上叠加了转动光谱,因此是带状光谱。

纯转动能级跃引起的远红外光谱,则是线状光谱。

14.俄歇电子能谱图与光电子能谱图的表示方法有何不同?为什么?答:俄歇电子能谱图用微分谱表示,因为俄歇电子产率很低,一次谱不好确定俄歇电子的能量位置,用微分谱可以表现得很清楚。

光电子能谱图用一次谱表示,因为光电子的产率较高,用一次谱就能很清楚表示出来。

15.简述X射线与固体物质相互作用产生的主要信息及据此建立的主要分析方法。

答:X射线与固体物质相互作用产生的主要信息有:弹性散射X射线,非弹性散射X射线,光电子,俄歇电子,荧光X射线,反冲电子,透射X射线,电离,热能等,据此建立的主要分析方法有:X射线衍射分析(XRD),X射线光电子能谱(XPS),X射线激发俄歇电子能谱(XAES),X射线荧光光谱(XRF)。

16.电子与固体作用产生多种粒子信号(如下图),哪些对应入射电子?哪些是由电子激发产生的?答:图中背散射电子流IR 、吸收电流IA和透射电子流IT对应入射电子;二次电子流IS 、X射线辐射强度IX、表面元素发射总强度IE是由电子激发产生的。

17.电子“吸收”与光子吸收有何不同?答:电子吸收是指由于电子能量衰减而引起的强度(电子数)衰减的现象。

电子吸收只是能量衰减到不能逸出样品,而不是真的被吸收了。

光子的吸收是因光子的能量与物质中某两个能级差相等而被吸收,光子被真吸收了,转化成了另外的能量。

18.入射X射线比同样能量的入射电子在固体中穿入深度大得多,而俄歇电子与X光电子的逸出深度相当,这是为什么?答:因为俄歇电子与X光电子的能量差不多,都比较小,在内部经多次散射后能量衰减,难以逸出固体表面,只有表面几个原子层产生的俄歇电子和X光电子才能逸出表面,从而被电子能谱仪检测到。

相关文档
最新文档