《机械能守恒定律》题型探究及方法总结
高考物理总复习 6专题六 机械能守恒定律 专题六 机械能守恒定律(讲解部分)
圆弧轨道,最高点O处固定一个竖直弹性挡板(可以把小球弹回且不损失能 量,图中没有画出),D为CDO轨道的中点。BC段是水平粗糙轨道,与圆弧形 轨道平滑连接。现让一个质量为m=1 kg的小球从A点的正上方距水平线 OA高H处的P点自由落下,已知BC段水平轨道长L=2 m,与小球之间的动摩 擦因数μ=0.2。则(取g=10 m/s2)
③ Fl 。
b.当恒力F的方向与位移l的方向成某一角度α时,力F对物体所做的功为W=
④ Fl cos α 。即力对物体所做的功,等于力的大小、位移的大小、力与
位移的夹角的余弦这三者的乘积。
5.功是标量,但有正负。 6.正功和负功的判定 (1)根据力和位移的方向的夹角判断,此法常用于判断质点做直线运动时恒 力的功。恒力做功的公式W=Fx cos α,90°<α≤180°做负功,0≤α <90°做正 功,α=90°不做功。 (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时 变力的功。设力的方向和瞬时速度方向夹角为θ,当0°≤θ<90°时力做正功, 当90°<θ≤180°时力做负功,当θ=90°时,力做的功为零。 (3)从能量的转化角度来进行判断。若有能量转化,则应有力做功。此法常 用于判断两个相联系的物体。 一个系统机械能增加(或减少),一定是除重力和系统内弹力外,有其他力对 系统做正功(或负功)。
(2)a-t图像:由公式Δv=at可知,a-t图线与横轴围成的面积表示物体速度的变 化量。 (3)F-x图像:由公式W=Fx可知,F-x图线与横轴围成的面积表示力所做的 功。 (4)P-t图像:由公式W=Pt可知,P-t图线与横轴围成的面积表示力所做的功。
例2 (2018湖北黄石调研)用传感器研究质量为2 kg的物体由静止开始做 直线运动的规律时,在计算机上得到0~6 s内物体的加速度随时间变化的关 系如图所示。下列说法正确的是 ( )
机械能守恒定律的理解与应用解析版 高考物理复习热点题型
高考物理复习热点题型13 机械能守恒定律的理解与应用目录热点题型一机械能守恒的理解与判断 (1)热点题型二单个物体的机械能守恒问题 (3)机械能守恒定律在圆周运动中的应用 (3)机械能守恒定律在平抛运动中的应用 (5)热点题型三多物体关联的机械能守恒问题 (6)轻绳模型 (7)轻杆模型 (8)轻弹簧模型 (9)非质点类模型 (11)【题型演练】 (12)【题型归纳】热点题型一机械能守恒的理解与判断1.机械能守恒判断的三种方法2.机械能守恒条件的理解及判断(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力或弹力做功”不等于“只受重力或弹力作用”.(2)对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.(3)对于系统机械能是否守恒,可以根据能量的转化进行判断.严格地讲,机械能守恒定律的条件应该是对一个系统而言,外力对系统不做功(表明系统与外界之间无能量交换),系统内除了重力和弹力以外,无其他摩擦和介质阻力做功(表明系统内不存在机械能与其他形式之间的转换),则系统的机械能守恒.【例1】(多选)如图,轻弹簧竖立在地面上,正上方有一钢球,从A处自由下落,落到B处时开始与弹簧接触,此时向下压缩弹簧.小球运动到C处时,弹簧对小球的弹力与小球的重力平衡.小球运动到D处时,到达最低点.不计空气阻力,以下描述正确的有()A.小球由A向B运动的过程中,处于完全失重状态,小球的机械能减少B.小球由B向C运动的过程中,处于失重状态,小球的机械能减少C.小球由B向C运动的过程中,处于超重状态,小球的动能增加D.小球由C向D运动的过程中,处于超重状态,小球的机械能减少【答案】BD【解析】小球由A向B运动的过程中,做自由落体运动,加速度等于竖直向下的重力加速度g,处于完全失重状态,此过程中只有重力做功,小球的机械能守恒,A错误;小球由B向C运动的过程中,重力大于弹簧的弹力,加速度向下,小球处于失重状态,小球和弹簧组成的系统机械能守恒,弹簧的弹性势能增加,小球的机械能减少,由于小球向下加速运动,小球的动能还是增大的,B正确,C错误;小球由C向D运动的过程中,弹簧的弹力大于小球的重力,加速度方向向上,处于超重状态,弹簧继续被压缩,弹性势能继续增大,小球的机械能继续减小,D正确.【变式1】木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块总机械能守恒D.子弹和木块上摆过程中机械能守恒【答案】D.【解析】子弹射入木块过程,系统中摩擦力做负功,机械能减少;而共同上摆过程,系统只有重力做功,机械能守恒.综上所述,整个过程机械能减少,减少部分等于克服摩擦力做功产生的热量.【变式2】如图所示,完整的撑杆跳高过程可以简化成三个阶段:持杆助跑、撑杆起跳上升、越杆下落(下落时人杆分离),最后落在软垫上速度减为零.不计空气阻力,则()A.运动员在整个跳高过程中机械能守恒B.运动员在撑杆起跳上升过程中机械能守恒C.在撑杆起跳上升过程中,杆的弹性势能转化为运动员的重力势能且弹性势能减少量小于运动员的重力势能增加量D.运动员落在软垫上时做减速运动,处于超重状态【答案】CD【解析】运动员持杆助跑阶段运动员对杆做功,机械能不守恒,最后从落在软垫上到速度减为零的过程中阻力做功,机械能也不守恒,故A错误;运动员在撑杆起跳上升过程中,杆从开始形变到杆恢复原状,先是运动员部分动能转化为重力势能和杆的弹性势能,后是弹性势能和运动员的动能转化为重力势能,使用杆的过程中,运动员与杆组成的系统机械能守恒,运动员的机械能不守恒,故B错误;在撑杆起跳上升过程中,运动员的动能和杆的弹性势能转化为运动员的重力势能,所以杆的弹性势能减少量一定小于运动员的重力势能增加量,故C正确;运动员落在软垫上时做减速运动,加速度的方向向上,因而运动员处于超重状态,故D正确.热点题型二单个物体的机械能守恒问题1.机械能守恒定律的表达式2.求解单个物体机械能守恒问题的基本思路机械能守恒定律在圆周运动中的应用【例2】(2019·安徽名校联考)如图所示,在竖直平面内有一固定光滑轨道,其中AB 是为R 的水平直轨道, BCD 是圆心为O 、半径为R 的34圆弧轨道,两轨道相切于B 点.在外力作用下,一小球从A 点由静止开始做匀加速直线运动,到达B 点时撤除外力.已知小球刚好能沿圆轨道经过最高点C ,重力加速度大小为g 求:(1)小球在AB 段运动的加速度的大小; (2)小球从D 点运动到A 点所用的时间. 【答案】 (1)52g (2)(5-3)R g【解析】 (1)设小球在C 点的速度大小为v C ,根据牛顿第二定律有mg =m v 2CR ①小球从B 点到C 点机械能守恒,设B 点处小球的速度为v B ,有12mv 2B =12mv 2C +2mgR ② 小球在AB 段由静止开始做匀加速运动,设加速度大小为a ,由运动学公式有v 2B =2aR ③ 由①②③式得a =52g .④(2)设小球在D 处的速度为v D ,下落到A 点时的速度为v ,根据机械能守恒有12mv 2B =12mv 2D +mgR ⑤ 12mv 2B =12mv 2⑥ 设从D 点到A 点所用的时间为t ,由运动学公式得 gt =v -v D ⑦由③④⑤⑥⑦式得t =(5-3)R g. 【方法技巧】守恒表达式的选用技巧(1)在处理单个物体机械能守恒问题时通常应用守恒观点和转化观点,转化观点不用选取零势能面. (2)在处理连接体问题时,通常应用转化观点和转移观点,都不用选取零势能面.【变式1】(2019·山东济南模拟)如图所示,由光滑细管组成的轨道固定在竖直平面内,AB 段和BC 段是半 径为R 的四分之一圆弧,CD 段为平滑的弯管.一小球从管口D 处由静止释放,最后能够从A 端水平抛出 落到地面上.关于管口D 距离地面的高度必须满足的条件( )A .等于2RB .大于2RC .大于2R 且小于52RD .大于52R【答案】B【解析】由机械能守恒定律得mg (H -2R )=12mv 2A ,因细管可以提供支持力,所以到达A 点的速度大于零即可,即v A =2gH -4gR >0,解得H >2R ,故选B.【变式2】一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R ,圆轨道2的半径是轨道1的1.8倍,小球的质量为m ,若小球恰好能通过轨道2的最高点B ,则小球在轨道1上经过A 处时对轨道的压力为( )A .2mgB .3mgC .4mgD .5mg 【答案】C【解析】小球恰好能通过轨道2的最高点B 时,有mg =m v 2B1.8R ,小球在轨道1上经过A 处时,有F +mg =m v 2AR ,根据机械能守恒定律,有1.6mgR +12mv 2B =12mv 2A ,解得F =4mg ,由牛顿第三定律可知,小球对轨道的压力F ′=F =4mg ,选项C 正确. 机械能守恒定律在平抛运动中的应用【例3】.如图,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 【答案】(1)0.25 m (2)2310 m/s【解析】(1)设环到b 点时速度为v b ,圆弧轨道半径为r ,小环从a 到b 由机械能守恒有 mgr =12mv 2b①环与bc 段轨道间无相互作用力,从b 到c 环做平抛运动 h =12gt 2② s =v b t③ 联立可得r =s 24h④ 代入数据得r =0.25 m.(2)环从b 点由静止下滑至c 点过程中机械能守恒,设到c 点时速度为v c ,则 mgh =12mv 2c⑤ 在bc 段两次过程中环沿同一轨迹运动,经过同一点时速度方向相同 设环在c 点时速度与水平方向间的夹角为θ,则环做平抛运动时 tan θ=v yv b⑥ v y =gt⑦联立②③⑥⑦式可得 tan θ=22⑧ 则环从b 点由静止开始滑到c 点时速度的水平分量v cx 为v cx =v c cos θ⑨ 联立⑤⑧⑨三式可得 v cx =2310 m/s.【变式1】如图所示,在高1.5 m 的光滑平台上有一个质量为2 kg 的小球被一细线拴在墙上,球与墙之间有 一根被压缩的轻质弹簧.当烧断细线时,小球被弹出,小球落地时的速度方向与水平方向成60°角,则弹簧 被压缩时具有的弹性势能为(g 取10 m/s 2)( )A .10 JB .15 JC .20 JD .25 J 【答案】A【解析】由h =12gt 2和v y =gt 得:v y =30 m/s ,落地时,tan 60°=v y v 0可得:v 0=v ytan 60°=10 m/s ,由机械能守恒得:E p =12mv 20,可求得:E p =10 J ,故A 正确.【变式2】取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相 等.不计空气阻力,该物块落地时的速度方向与水平方向的夹角为 ( )A.π6B.π4C.π3D.5π12 【答案】B【解析】设物体水平抛出的初速度为v 0,抛出时的高度为h ,则12mv 20=mgh ,则v 0=2gh .物体落地的竖直速度v y =2gh ,则落地时速度方向与水平方向的夹角tan θ=v y v 0=2gh 2gh =1,则θ=π4,选项B 正确.热点题型三 多物体关联的机械能守恒问题 1.多物体机械能守恒问题的解题思路2.多个物体的机械能守恒问题,往往涉及“轻绳模型”“轻杆模型”以及“轻弹簧模型”. 轻绳模型三点提醒①分清两物体是速度大小相等,还是沿绳方向的分速度大小相等. ②用好两物体的位移大小关系或竖直方向高度变化的关系.③对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳连接的系统,机械能则可能守恒. 【例4】(2019·黑龙江哈尔滨六中模拟)如图所示,物体A 的质量为M ,圆环B 的质量为mA 、B 通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时,圆环与定滑轮之间的绳子处于水平状态,长度l =4 m ,现 从静止开始释放圆环,不计定滑轮和空气的阻力,重力加速度g 取10 m/s 2,若圆环下降h =3 m 时的速度v =5 m/s ,则A 和B 的质量关系为( )A.M m =3529B.M m =79C.M m =3925D.M m =1519 【答案】 A【解析】 圆环下降3 m 时的速度可以沿绳方向和垂直绳方向进行分解,故可得v A =v cos θ,又由几何关系可知cos θ=hh 2+l2,解得v A =3 m/s.当圆环下降的高度h =3 m 时,由几何关系可知,物体A 上升的高度h ′=h 2+l 2-l =1 m .将A 、B 看作一个系统,则该系统只有重力做功,机械能守恒,则由机械能守恒定律可得mgh -Mgh ′=12mv 2+12Mv 2A ,代入数据求解可得M m =3529,选项A 正确.【变式】如图所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )A .2R B.5R 3 C.4R 3 D.2R 3【答案】C【解析】如图所示,以A 、B 整体为系统,以地面为零势能面,设A 的质量为2m ,B 的质量为m ,根据机械能守恒定律有2mgR =mgR +12×3mv 2,A 落地后B 将以速度v 做竖直上抛运动,即有12mv 2=mgh ,解得h=13R .则B 上升的高度为R +13R =43R ,故选项C 正确.轻杆模型三大特点①平动时两物体线速度相等,转动时两物体角速度相等.②杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.③对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒. 【例5】.(2019·山东烟台模拟)如图所示,可视为质点的小球A 和B 用一根长为0.2 m 的轻杆相连,两球质量均为1 kg ,开始时两小球置于光滑的水平面上,并给两小球一个大小为2 m/s ,方向水平向左的初速度,经过一段时间,两小球滑上一个倾角为30°的光滑斜面,不计球与斜面碰撞时的机械能损失,重力加速度g 取10 m/s 2,在两小球的速度减小为零的过程中,下列判断正确的是( )A .杆对小球A 做负功B .小球A 的机械能守恒C .杆对小球B 做正功D .小球B 速度为零时距水平面的高度为0.15 m 【答案】D【解析】由于两小球组成的系统机械能守恒,设两小球的速度减为零时,B 小球上升的高度为h ,则由机械能守恒定律可得mgh +mg (h +L sin 30°)=12·2mv 20,其中L 为轻杆的长度,v 0为两小球的初速度,代入数据解得h =0.15 m ,选项D 正确;在A 球沿斜面上升过程中,设杆对A 球做的功为W ,则由动能定理可得-mg (h +L sin 30°)+W =0-12mv 20,代入数据解得W =0.5 J ,选项A 、B 错误;设杆对小球B 做的功为W ′,对小球B ,由动能定理可知-mgh +W ′=0-12mv 20,代入数据解得W ′=-0.5 J ,选项C 错误.【变式】(2015·高考全国卷Ⅱ)如图所示,滑块a 、b 的质量均为m ,a 套在固定竖直杆上与光滑水平地面相 距h ,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a 、b 可视为质点,重 力加速度大小为g .则 ( )A .a 落地前,轻杆对b 一直做正功B .a 落地时速度大小为2ghC .a 下落过程中,其加速度大小始终不大于gD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg 【答案】 BD【解析】 由于刚性杆不伸缩,滑块a 、b 沿杆方向的分速度相等,滑块a 落地时,速度方向竖直向下,故此时滑块b 的速度为零,可见滑块b 由静止开始先做加速运动后做减速运动,对滑块b 受力分析,可知杆对滑块b 先做正功,后做负功,选项A 错误;因系统机械能守恒,则杆对滑块a 先做负功,后做正功,做负功时,滑块a 的加速度小于g ,做正功时,滑块a 的加速度大于g ,选项C 错误;杆对滑块a 的弹力刚好为零时,a 的机械能最小,此时对滑块b 受力分析,可知地面对b 的支持力刚好等于mg ,根据牛顿第三定律,b 对地面的压力大小为mg ,选项D 正确;由机械能守恒定律,可得mgh =12mv 2,即v =2gh ,选项B正确. 轻弹簧模型轻弹簧模型“四点”注意①含弹簧的物体系统在只有弹簧弹力和重力做功时,物体的动能、重力势能和弹簧的弹性势能之间相互转化,物体和弹簧组成的系统机械能守恒,而单个物体和弹簧机械能都不守恒.②含弹簧的物体系统机械能守恒问题,符合一般的运动学解题规律,同时还要注意弹簧弹力和弹性势能的特点.③弹簧弹力做的功等于弹簧弹性势能的减少量,而弹簧弹力做功与路径无关,只取决于初、末状态弹簧形变量的大小.④由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零).【例6】(2019·河北定州中学模拟)如图所示,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C 球放在水平地面上.现用手控制住A ,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A 的质量为4m ,B 、C 的质量均为m ,重力加速度为g ,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A 后,A 沿斜面下滑至速度最大时C 恰好离开地面.下列说法正确的是( )A .斜面倾角α=60°B .A 获得的最大速度为2g m 5kC .C 刚离开地面时,B 的加速度最大D .从释放A 到C 刚离开地面的过程中,A 、B 两小球组成的系统机械能守恒 【答案】B【解析】C 刚离开地面时,对C 有kx 2=mg ,此时B 有最大速度,即a B =a C =0,则对B 有F T -kx 2-mg =0,对A 有4mg sin α-F T =0,由以上方程联立可解得sin α=12,α=30°,故A 错误;初始系统静止,且线上无拉力,对B 有kx 1=mg ,可知x 1=x 2=mgk ,则从释放A 至C 刚离开地面时,弹性势能变化量为零,由机械能守恒定律得4mg (x 1+x 2)sin α=mg (x 1+x 2)+12(4m +m )v B m 2,由以上方程联立可解得v B m =2gm5k,所以A 获得的最大速度为2gm5k,故B 正确;对B 球进行受力分析可知,刚释放A 时,B 所受合力最大,此时B 具有最大加速度,故C 错误;从释放A 到C 刚离开地面的过程中,A 、B 、C 及弹簧组成的系统机械能守恒,故D 错误.【变式】如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( )A .圆环的机械能守恒B .弹簧弹性势能变化了3mgLC .圆环下滑到最大距离时,所受合力为零D .圆环重力势能与弹簧弹性势能之和保持不变 【答案】B【解析】圆环沿杆下滑的过程中,圆环与弹簧组成的系统动能、弹性势能、重力势能之和守恒,选项A 、D 错误;弹簧长度为2L 时,圆环下落的高度h =3L ,根据机械能守恒定律,弹簧的弹性势能增加了ΔE p =mgh =3mgL ,选项B 正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C 错误. 非质点类模型【例7】(2019·苏北四市调研)如图所示,固定在地面的斜面体上开有凹槽,槽内紧挨放置六个半径均为r 的 相同小球,各球编号如图.斜面与水平轨道OA 平滑连接,OA 长度为6r .现将六个小球由静止同时释放,小 球离开A 点后均做平抛运动,不计一切摩擦.则在各小球运动过程中,下列说法正确的是 ( )A .球1的机械能守恒B .球6在OA 段机械能增大C .球6的水平射程最小D .六个球落地点各不相同 【答案】BC【解析】当所有球都在斜面上运动时机械能守恒,当有球在水平面上运动时,后面球要对前面的球做功,小球机械能不守恒,选项A 错误;球6在OA 段由于球5的推力对其做正功,其机械能增大,选项B 正确;由于球6离开A 点的速度最小,所以其水平射程最小,选项C 正确;当1、2、3小球均在OA 段时,三球的速度相同,故从A 点抛出后,三球落地点也相同,选项D 错误.【变式】.有一条长为L =2 m 的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g 取10 m/s 2)( )A .2.5 m/sB .522 m/sC . 5 m/sD .352 m/s【答案】B【解析】设链条的质量为2m ,以开始时链条的最高点为零势能面,链条的机械能为 E =E p +E k =-12×2mg ×L 4sin θ-12×2mg ×L 4+0=-14mgL (1+sin θ)链条全部滑出后,动能为E ′k =12×2mv 2重力势能为E ′p =-2mg L2由机械能守恒可得E =E ′k +E ′p即-14mgL (1+sin θ)=mv 2-mgL解得v =12gL (3-sin θ)=12×10×2×(3-0.5) m/s =522 m/s 故B 正确,A 、C 、D 错误.【题型演练】1.(2019·北京模拟)将一个物体以初动能E 0竖直向上抛出,落回地面时物体的动能为E 02.设空气阻力恒定,如果将它以初动能4E 0竖直上抛,则它在上升到最高点的过程中,重力势能变化了( ) A .3E 0 B .2E 0 C .1.5E 0 D .E 0 【答案】A【解析】设动能为E 0,其初速度为v 0,上升高度为h ;当动能为4E 0,则初速度为2v 0上升高度为h ′.由于在上升过程中加速度相同,根据v 2=2gh 可知,h ′=4h 根据动能定理设摩擦力大小为f ,则f ×2h =E 02,因此f ×4h=E 0.因此在升到最高处其重力势能为3E 0所以答案为A.2.(2019·无锡模拟)如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )A .斜劈对小球的弹力不做功B .斜劈与小球组成的系统机械能守恒C .斜劈的机械能守恒D .小球重力势能减少量等于斜劈动能的增加量 【答案】B【解析】不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,小球重力势能减少量等于斜劈和小球的动能增加量,系统机械能守恒,B 正确,C 、D 错误;斜劈对小球的弹力与小球位移间夹角大于90°,故弹力做负功,A 错误.3.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A .一样大B .水平抛的最大C .斜向上抛的最大D .斜向下抛的最大 【答案】A.【解析】不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等,故只有选项A 正确.3.(2019·苏北四市联考)某踢出的足球在空中运动轨迹如图所示,足球视为质点,空气阻力不计.用v 、E 、 E k 、P 分别表示足球的速率、机械能、动能和重力的瞬时功率大小,用t 表示足球在空中的运动时间,下列图象中可能正确的是( )【答案】D【解析】足球做斜上抛运动,机械能守恒,重力势能先增加后减小,故动能先减小后增加,速度先减小后增加,A 、B 项错误;以初始位置为零势能面,踢出时竖直方向速度为v y ,则E k =E -E p =E -mgh =E -mgv y t +12mg 2t 2,C 项错误;速度的水平分量不变,竖直分量先均匀减小到零,后反向均匀增大,故根据P =Gv 可知,重力的功率先均匀减小后均匀增加,D 项正确.5.(2019·安徽第三次联考)如图所示,光滑轨道由AB 、BCDE 两段细圆管平滑连接组成,其中AB 段水平, BCDE 段为半径为R 的四分之三圆弧,圆心O 及D 点与AB 等高,整个轨道固定在竖直平面内,现有一质量为m 、初速度v 0=10gR2的光滑小球水平进入圆管AB ,设小球经过轨道交接处无能量损失,圆管孔径远小于R ,则(小球直径略小于圆管内径)( )A .小球到达C 点时的速度大小v C =3gR2B .小球能通过E 点且抛出后恰好落至B 点C .无论小球的初速度v 0为多少,小球到达E 点时的速度都不能为零D .若将DE 轨道拆除,则小球能上升的最大高度与D 点相距2R 【答案】B【解析】对小球从A 点至C 点过程,由机械能守恒有12mv 20+mgR =12mv 2C ,解得v C =32gR2,选项A 错误;对小球从A 点至E 点的过程,由机械能守恒有12mv 20=12mv 2E +mgR ,解得v E =2gR 2,小球从B 点抛出后,由平抛运动规律有x =v E t ,R =12gt 2,解得x =R ,则小球恰好落至B 点,选项B 正确;因为圆管内壁可提供支持力,所以小球到达B 点时的速度可以为零,选项C 错误;若将DE 轨道拆除,设小球能上升的最大高度为h ,由机械能守恒可知12mv 20=mgh ,解得h =54R ,选项D 错误. 6.(2019·兰州模拟)如图所示,竖直面内光滑的34圆形导轨固定在一水平地面上,半径为R .一个质量为m 的小球从距水平地面正上方h 高处的P 点由静止开始自由下落,恰好从N 点沿切线方向进入圆轨道.不考虑空 气阻力,则下列说法正确的是 ( )A .适当调整高度h ,可使小球从轨道最高点M 飞出后,恰好落在轨道右端口N 处B .若h =2R ,则小球在轨道最低点对轨道的压力为5mgC .只有h 大于等于2.5R 时,小球才能到达圆轨道的最高点MD .若h =R ,则小球能上升到圆轨道左侧离地高度为R 的位置,该过程重力做功为mgR 【答案】BC【解析】若小球从M 到N 做平抛运动,则有R =v M t ,R =12gt 2,可得v M =gR2,而球到达最高点M 时速度至少应满足mg =m v 2R ,解得v =gR ,故A 错误;从P 点到最低点过程由机械能守恒可得2mgR =12mv 2,由向心力公式得F N -mg =m v 2R ,解得F N =5mg ,由牛顿第三定律可知小球对轨道的压力为5mg ,故B 正确;由机械能守恒得mg (h -2R )=12mv 2,代入v =gR 解得h =2.5R ,故C 正确;若h =R ,则小球能上升到圆轨道左侧离地高度为R 的位置,该过程重力做功为0,故D 错误.7.如图所示,有一光滑轨道ABC ,AB 部分为半径为R 的14圆弧,BC 部分水平,质量均为m 的小球a 、b 固定在竖直轻杆的两端,轻杆长为R ,不计小球大小.开始时a 球处在圆弧上端A 点,由静止释放小球和轻杆,使其沿光滑轨道下滑,则下列说法正确的是( )A .a 球下滑过程中机械能保持不变B .b 球下滑过程中机械能保持不变C .a 、b 球滑到水平轨道上时速度大小为2gRD .从释放a 、b 球到a 、b 球滑到水平轨道上,整个过程中轻杆对a 球做的功为mgR2【答案】D【解析】a 、b 球和轻杆组成的系统机械能守恒,A 、B 错误;由系统机械能守恒有mgR +2mgR =12×2mv 2,解得a 、b 球滑到水平轨道上时速度大小为v =3gR ,C 错误;从释放a 、b 球到a 、b 球滑到水平轨道上,对a 球,由动能定理有W +mgR =12mv 2,解得轻杆对a 球做的功为W =mgR2,D 正确.8.(2019·苏北四市调研)如图所示,固定在竖直面内的光滑圆环半径为R ,圆环上套有质量分别为m 和2m 的小球A 、B (均可看做质点),且小球A 、B 用一长为2R 的轻质细杆相连,在小球B 从最高点由静止开始沿圆环下滑至最低点的过程中(已知重力加速度为g ),下列说法正确的是( )A .A 球增加的机械能等于B 球减少的机械能 B .A 球增加的重力势能等于B 球减少的重力势能C .A 球的最大速度为 2gR 3D .细杆对A 球做的功为83mgR 【答案】AD【解析】系统机械能守恒的实质可以理解为是一种机械能的转移,此题的情景就是A 球增加的机械能等于B 球减少的机械能,A 对,B 错;根据机械能守恒定律有:2mg ·2R -mg ·2R =12×3mv 2,所以A 球的最大速度为4gR 3,C 错;根据功能关系,细杆对A 球做的功等于A 球增加的机械能,即W A =12mv 2+mg ·2R =83mgR ,故D 对.9.(2019·青岛检测)一半径为R 的半圆形竖直圆柱面,用轻质不可伸长的细绳连接的A 、B 两球悬挂在圆柱面边缘两侧,A 球质量为B 球质量的2倍,现将A 球从圆柱边缘处由静止释放,如图所示.已知A 球始终不离开圆柱内表面,且细绳足够长,若不计一切摩擦,求:(1)A 球沿圆柱内表面滑至最低点时速度的大小; (2)A 球沿圆柱内表面运动的最大位移.。
机械能守恒定律-典型例题的解题技巧
一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。
(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。
所涉及到的题型有四类:(1)阻力不计的抛体类。
(2)固定的光滑斜面类。
(3)固定的光滑圆弧类。
(4)悬点固定的摆动类。
(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。
那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。
例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。
例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。
例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。
高中物理必修二第七章-机械能守恒定律知识点总结
机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
机械能守恒定律题型总结
机械能守恒定律题型总结(总9页) -本页仅作为预览文档封面,使用时请删除本页-机械能守恒定律及其应用专题训练题型一:机械能守恒的条件和判断1.如图所示,一轻质弹簧固定于O点,另一端系一重物,将重物从与悬挂点等高的地方无初速度释放,让其自由摆下,不及空气阻力,重物在摆向最低点的位置的过程中()A.重物重力势能减小 B.重物重力势能与动能之和增大C.重物的机械能不变 D. 重物的机械能减少2.关于物体的机械能是否守恒的叙述,下列说法中正确的是()A.做匀速直线运动的物体,机械能一定守恒;B.做匀变速直线运动的物体,机械能一定守恒;C.外力对物体所做的功等于零时,机械能一定守恒;D.物体若只有重力做功,机械能一定守恒.3.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中 ().A.圆环机械能守恒 B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mgh D.弹簧的弹性势能最大时圆环动能最大4.在下面列举的各例中,若不考虑阻力作用,则物体机械能发生变化的是()A.用细杆栓着一个物体,以杆的另一端为固定轴,使物体在光滑水平面上做匀速率圆周运动B.细杆栓着一个物体,以杆的另一端为固定轴,使物体在竖直平面内做匀速率圆周运动C .物体沿光滑的曲面自由下滑D .用一沿固定斜面向上、大小等于物体所受摩擦力的拉力作用在物体上,使物体沿斜面向上运动答案:B5.如图所示,两质量相同的小球A 、B ,分别用线悬线在等高的O 1、O 2点,A 球的悬线比B 比球的悬线长,把两球的悬线均拉到水平后将小球无初速释放,则经过最低点时(悬点为零势能)( )A .A 球的速度大于B 球的速度 B .A 球的动能大于B 球的动能C .A 球的机械能大于B 球的机械能D .A 球的机械能等于B 球的机械能答案:ABD6.如图所示的装置中,木块M 与地面间无摩擦,子弹m 以一定的速度沿水平方向射入木块并留在其中,然后,将弹簧压缩至最短,现将木块、子弹、弹簧作为研究对象,从子弹开始射入木块到弹簧压缩至最短的过程中系统( )A. 机械能守恒B. 产生的热能等于子弹动能的减少量C. 机械能不守恒D. 弹簧压缩至最短时,动能全部转化成热能题型二:链条(绳)类型:(1)不能把绳或链条当作质点处理,在绳或链条上速度大小相等,此种情况下应用机械能守恒,一定要选择零势能面;链条的动能和势能之和不变(2)常采用守恒观点:E2=E1或Ek2+Ep2=Ek1+Ep1BA7.如图所示,光滑的水平桌面离地面高度为2L,在桌的边缘,一根长L的匀质软绳,一半搁在水平桌面上,另一半自然悬挂在桌面上,放手后,绳子开始下落,试问,当绳子下端刚触地时,绳子的速度是多大?8.如图所示,总长L的光滑匀质铁链跨过一个光滑轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,刚铁链刚脱离滑轮的瞬间速度为多少?零势面v9.如图所示,有一条长为L的均匀金属链条,一半长度在光滑斜面上,斜面倾角为θ,另一半长度沿竖直方向下垂在空中,当链条从静止开始释放后链条滑动,求链条刚好全部滑出斜面时的速度是多大。
机械能守恒定律常考题型及解题方法
机械能守恒定律常考题型及解题方法要点一机械能守恒的判断(系统摩擦力做功,系统机械能一定不守恒)例1.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对跟踪训练1.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大要点二机械能守恒定律的简单应用(熟练理解“守恒”)例2.如图所示,一轻杆可绕O点的水平轴无摩擦地转动,杆两端各固定一个小球,球心到O轴的距离分和r2,球的质量分别为m1和m2,且m1>m2,r1>r2,将杆由水平位置从静止开别为r始释放,不考虑空气阻力,求小球m1摆到最低点时的速度是多少?跟踪训练2.如图所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?要点三应用机械能守恒定律处理竖直平面内的圆周运动(整体分析)例3.如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0 m的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为半径r=0.69 m的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m=0.01 kg的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到曲面N的某一点上,取g=10 m/s2.问:(1)发射该钢珠前,弹簧的弹性势能E p多大?(2)钢珠落到圆弧N上时的动能E k多大?(结果保留两位有效数字)跟踪训练3.如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF 是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合的点.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放.(g取10 m/s2)(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.课堂分组训练A组机械能守恒的判断1.[多选]一个轻质弹簧,固定于天花板的O点处,原长为L,如图所示.一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,在此过程中()A.由A到C的过程中,物块的机械能守恒B.由A到B的过程中,物块的动能和重力势能之和不变C.由B到C的过程中,弹性势能的变化量与克服弹力做的功相等D.由A到C的过程中,重力势能的减少量等于弹性势能的增加量2.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()A.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mghD.弹簧的弹性势能最大时圆环动能最大3.[多选]如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始运动过程中()A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒B组机械能守恒的简单应用4.如图是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系物体A、B,且m A=2m B,从图示位置由静止开始释放A物体,当物体B到达半圆顶点时,求绳的张力对物体B所做的功.C组应用机械能守恒定律处理竖直平面内的圆周运动5.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点).a 站在地面上,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态.当演员b摆至最低点时,a刚好对地面无压力,则演员a的质量与演员b的质量之比为()A.1∶1 B.2∶1 C.3∶1 D.4∶16.为了研究过山车的原理,物理兴趣小组提出了下列设想:如图所示,取一个与水平方向夹角为30°,长L=0.8 m的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道都是光滑的.其中AB与BC轨道以微小圆弧相接,竖直圆轨道的半径R=0.6 m.现使一个质量m=0.1 kg的小物块从A点开始以初速度v0沿倾斜轨道滑下,g取10 m/s2.问:(1)若v0=5.0 m/s,则小物块到达B点时的速度为多大?(2)若v0=5.0 m/s,小物块到达竖直圆轨道的最高点时对轨道的压力为多大?(3)为了使小物块在竖直圆轨道上运动时能够不脱离轨道,v0大小应满足什么条件?7. 如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。
《机械能守恒定律》
(2)判定各个力是否做功,并分析是否符合机 械能守恒的条件 (3)视解题方便选取零势能参考平面,并确定 研究对象在始、末状态时的机械能。 (4)根据机械能守恒定律列出方程,或再辅之以其 他方程,进行求解。
h1
B
h2
机械能守恒定律
1、内容:在 只有重力或弹力做功 的物体系统 内, 动能和势能可以互相转化,而总的机械能 保持不变 2、条件:系统内只有重力或弹力做功
思 考 与 讨 论
下列实例中,哪些情况机械能是守恒的?说明理由
v
光滑水平面上 运动的小球, 把弹簧压缩后 又被弹回来。
在空中运动的篮球 (不计阻力)
第七章
机械能守恒定律
麦克斯韦滚摆
生活中的物理
勇气实验
问题:你看到了什么现象?能够得到什么结论?
实 验 探 究 检 验 猜 想
猜想:
在只有重力做功的情况下,动能与重力势能互相转化, 物体总的机械能保持不变?
思考与讨论:
1、创设的物理情境是什么? 2、如何验证猜想?
3、需要测量或记录的数据?
4、需要的实验器材?用细线悬挂起来,线长为L,最大偏角为θ。 如果小球运动过程中忽略空气阻力,那么: (1)小球运动到最低点O时的速度大小为多少? (2)小球运动到最右端C点时,C点与O点的高度差为多少?
小结:应用机械能守恒定律的解题步骤
(1)确定研究对象,进行正确的受力分析
一个沿着光滑斜 面下滑的物体。
跳伞员利用降落伞在 空中匀速下落
机械能守恒定律
1、内容:在只有重力或弹力做功的物体系统内,动 能和势能可以互相转化,而总的机械能保持不变。
2、条件:系统内只有重力(或弹力)做功。
说明:⑴只受重力或弹力; ⑵除重力和弹力外,受其它力,但其它力不做功;
机械能守恒定律的教学方法总结
机械能守恒定律的教学方法总结机械能守恒定律是物理学中重要的基本定律之一,对于学生理解和掌握这个定律非常关键。
本文将总结一些有效的教学方法,帮助教师更好地教授机械能守恒定律。
一、引入实际案例在教学中,引入实际案例是非常有帮助的方法。
可以从日常生活或者实验中选择合适的案例,通过生动的故事或者实际操作来引发学生的兴趣,并将机械能守恒定律与实际情境联系起来。
例如,可以讲述一个小球从高处自由落下,经过不同路径后到达地面的案例。
通过分析小球在不同路径中的动能和势能的转换过程,引导学生理解机械能守恒的原理。
二、可视化展示使用可视化的教学工具,如动画、实验演示等,能够帮助学生更直观地理解机械能守恒定律。
可以设计一些动画来模拟不同物体在机械能转化中的过程,或者利用实验演示装置展示不同物体的机械能守恒情况。
通过观察和讨论,学生可以更好地理解机械能守恒的原理和应用。
三、解题演练解题演练是巩固学生知识的有效方法。
教师可以设计一些例题,引导学生通过运用机械能守恒定律来解答问题。
可以从简单到复杂,逐步提高题目的难度。
同时,鼓励学生进行思考和讨论,可以互相交流答案和解题思路,促进学生之间的合作学习。
解题演练不仅帮助学生巩固知识,还培养了他们的实际运用能力。
四、拓展实验为了进一步加深学生对机械能守恒定律的理解,可以设计一些拓展实验。
通过实际操作和观察,学生可以亲手验证机械能守恒定律,并观察不同条件下机械能转化的情况。
例如,可以设计一个运动小车从斜坡上滑下的实验,通过测量小车在不同位置的势能和动能,验证机械能守恒的规律。
拓展实验能够激发学生对物理学的兴趣,增加他们的实验技能和动手能力。
综上所述,机械能守恒定律的教学可以通过引入实际案例、可视化展示、解题演练和拓展实验等多种方法进行。
在教学中,教师应根据学生的实际情况和学习水平,选择合适的教学方法来提升学生的理解和掌握能力。
通过多样化的教学方法,可以激发学生的兴趣,提高他们的学习效果,使他们更好地理解和应用机械能守恒定律。
部编版高中物理必修二第八章机械能守恒定律题型总结及解题方法
(名师选题)部编版高中物理必修二第八章机械能守恒定律题型总结及解题方法单选题1、如图所示,分别用力F1、F2、F3将质量为m的物体,由静止开始沿同一光滑斜面以相同的加速度,从斜面底端拉到斜面的顶端.用P1、P2、P3分别表示物体到达斜面顶端时F1、F2、F3的功率,下列关系式正确的是()A.P1=P2=P3B.P1>P2=P3C.P1>P2>P3D.P1<P2<P3答案:A由于物体沿斜面的加速度相同,说明物体受到的合力相同,由物体的受力情况可知拉力F在沿着斜面方向的分力都相同;由v2=2ax可知,物体到达斜面顶端时的速度相同,由瞬时功率公式P=Fvcosθ可知,拉力的瞬时功率也相同,即P1=P2=P3故选A。
2、如图所示,在水平地面上方固定一水平平台,平台上表面距地面的高度H=2.2m,倾角θ= 37°的斜面体固定在平台上,斜面底端B与平台平滑连接。
将一内壁光滑血管弯成半径R=0.80m的半圆,固定在平台右端并和平台上表面相切于C点,C、D为细管两端点且在同一竖直线上。
一轻质弹簧上端固定在斜面顶端,一质量m=1.0kg的小物块在外力作用下缓慢压缩弹簧下端至A点,此时弹簧的弹性势能E p=2.8J,AB长L=2.0m。
现撤去外力,小物块从A点由静止释放,脱离弹簧后的小物块继续沿斜面下滑,经光滑平台BC,从C点进入细管,由D点水平飞出。
已知小物块与斜面间动摩擦因数μ=0.80,小物块可视为质点,不计空气阻力及细管内径大小,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8。
求小物块到达D点时细管内壁对小物块的支持力大小;()A.42NB.45NC.48ND.55N答案:D小物块从A点到C点的过程,由动能定理可得W弹+mgLsinθ−μmgLcosθ=12mv2C−0弹簧弹力做功数值等于弹簧弹性势能的变化量数值,故W弹=2.8J 解得小物块达到C点速度为v C=2m/s 小物块从C点到D点的过程,由机械能守恒得2mgR=12mv2D−12mv2C在D点,以小物块为研究对象,由牛顿第二定律可得F N−mg=m v2D R解得细管内壁对小物块的支持力为F N=55N故选D。
验证机械能守恒定律实验总结
验证机械能守恒定律1.实验目的学会用打点计时器验证机械能守恒定律的实验方法和技能2.实验原理在物体自由下落的过程中,只有重力对物体做功,遵守机械能守恒定律,即重力势能的减少量等于动能的增加量。
在实验误差范围内验证221mv mgh =(必须初速度为零) 或 21222121mv mv mgh -= (v1≠0) 测定第n 点的瞬时速度的方法是:测出第n 点的相邻前、后两段相等时间T 内下落的距离s n 和s n+1,由公式v n =T 2s s 1n n ++,或由v n =Td d n n 211-+-算出,如图所示。
(注意单位用国际单位,看清计数点还是计时点,注意有无有效数字的要求)3.实验器材铁架台(带铁夹)、电磁打点计时器、重锤(带纸带夹子)、纸带、复写纸片、直尺、导线、低压交流电源4.实验步骤(1)按右上图装置把打点计时器固定在支架上,并将打点计时器接在4~6V 的交流电源上. (如果用电火花打点计时器电压:220v 交流电)(2)将大约0.5 m 长的纸带用小夹子固定在重锤上后穿过打点计时器,用手竖直提起纸带使重锤停靠在打点计时器附近.(3)先接通电源,再松开纸带,让重物自由下落,计时器就在纸带上打下一系列的点.(4)换上新的纸带,重做几次上面的实验.5.注意事项(1) 安装打点计时器时,必须使两纸带限位孔在同一竖直线上,以减小摩 擦阻力.(2) 实验时,必须保持提起的纸带竖直,手不动,待接通电源:让打点计时器工作稳定后再松开纸带,以保证第一点是一个清晰的点.(3) 测量高度h 时,应从起始点算起,为减小h 的相对误差,选取的计数点要离起始点远些,纸带不宜过长,有效长度可60~80 cm .(4) 因为是通过比较mv 2/2和mgh 是否相等验证机械能是否守恒,故不需要测量重锤的质量.如果实验要求计算势能和动能的具体数据,那就必须要知道物体的质量。
(5)本实验中因重物和纸带在下落的过程中要克服阻力做功,故动能的增加量ΔE k 一定略小于重力势能的减少量,这是不可避免的,属于系统误差.(6)不用测量g,直接用g=9.8m/s 2(7)我们要求重物作自由落体运动,而阻力是不可避免地存在的,为了减少阻力对实验的影响,应采用密度较大的重物。
机械能
名师点拨 各类发动机铭牌上的额 定功率指的是该发动机 正常工作时的最大输出 功率, 功率,并不是任何时候发 动机的实际输出功率都 等于额定功率. 等于额定功率.实际输出 功率可在零和额定功率 之间取值, 之间取值,发动机的功率 即是牵引力的功率. 即是牵引力的功率.在功 率一定的条件下, 率一定的条件下,牵引力 跟车辆的行驶速度成反 比.
答案
(1)W (1)WG=0
mgl·sin WN=mgl·sinθcosθ
mgl·sin Wf=-mgl·sinθcosθ (2)0
11
变式练习1 变式练习1
如图所示, 如图所示,物体沿弧形
轨道滑下后进入足够长的水平传送 带,传送带以图示方向匀速运转,则 传送带以图示方向匀速运转, 传送带对物体做功情况可能是( 传送带对物体做功情况可能是( A.始终不做功 A.始终不做功 C.先做正功后不做功 C.先做正功后不做功 ) B.先做负功后做正功 B.先做负功后做正功 D.先做负功后不做功 D.先做负功后不做功
4
(2)弹力做功的特点:对接触面间的弹力, (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运 弹力做功的特点 动方向垂直,弹力对物体不做功;对弹簧的弹力做的功, 动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段 没有给出相关的公式,对它的求解要借助其他途径如动能定理、 没有给出相关的公式,对它的求解要借助其他途径如动能定理、 机械能守恒、功能关系等. 机械能守恒、功能关系等. (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关, (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关, 摩擦力做功的特点 它可以做负功,也可以做正功.做正功时起动力作用,如用传 它可以做负功,也可以做正功.做正功时起动力作用, 送带把货物由低处运送到高处,摩擦力就充当动力. 送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力的 大小不变、方向变化(摩擦力的方向始终和速度方向相反) 大小不变、方向变化(摩擦力的方向始终和速度方向相反)时, 摩擦力做功可以用摩擦力乘以路程来计算, 摩擦力做功可以用摩擦力乘以路程来计算,即W=Ffl.
机械能附其守恒定律知识点总结与题型归纳
功和能、机械能守恒定律第1课时 功 功率考点1.功1.功的公式:W=Fscos θ0≤θ< 90°力F 对物体做正功, θ= 90°力F 对物体不做功,90°<θ≤180° 力F 对物体做负功。
特别注意:①公式只适用于恒力做功②F 和S 是对应同一个物体的;③某力做的功仅由F 、S 决定, 与其它力是否存在以及物体的运动情况都无关。
2.重力的功:W G =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。
3.摩擦力的功(包括静摩擦力和滑动摩擦力)摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功, 一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - f ΔS 4.弹力的功(1)弹力对物体可以做正功可以不做功,也可以做负功。
(2)弹簧的弹力的功——W = 1/2 kx 12 – 1/2 kx 22(x 1、x 2为弹簧的形变量) 5.合力的功——有两种方法:(1)先求出合力,然后求总功,表达式为 ΣW =ΣF ×S ×cos θ(2)合力的功等于各分力所做功的代数和,即 ΣW =W 1 +W 2+W 3+……6.变力做功: 基本原则——过程分割与代数累积 (1)一般用动能定理W 合=ΔE K 求之;(2)也可用(微元法)无限分小法来求, 过程无限分小后,可认为每小段是恒力做功 (3)还可用F-S 图线下的“面积”计算.(4)或先寻求F 对S 的平均作用力F , S F W7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点,做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化例1.物体在合外力作用下做直线运动的v 一t 图象如图所示。
下列表述正确的是 A .在0—1s 内,合外力做正功B .在0—2s 内,合外力总是做负功C .在1—2s 内,合外力不做功D .在0—3s 内,合外力总是做正功考点2.功率 1. 定义式:tWP =,所求出的功率是时间t 内的平均功率。
诠析“探究机械能守恒定律实验”的要点问题
诠析“探究机械能守恒定律实验”的要点问题探究机械能守恒定律是力学实验中的一个重点实验,对于该实验的学习应重点把握以下要点:一、实验要点1. 实验的思路.在只有重力做功的自由落体运动中,物体的重力势能和动能相互转化,但总的机械能守恒,若物体某时刻即时速度为v,下落高度为h,恒有:■mv2=mgh .故可借助打点记时器,通过纸带测出重物某时刻下落高度h和该时刻的即时速度,即可验证机械能守恒定律.2. 如何求出某点的瞬时速度v?图1是竖直纸带由下而上实际打点后的情况。
从o点开始依次取计数点1,2,3,……,图中h1,h2,h3,……分别为o与计数点1、2、3……的距离。
根据做匀加速运动的物体在某一段时间t 内的平均速度等于该时间中间时刻的瞬时速度可求出某点的瞬时速度va.如计数点点1的瞬时速度:v1=■。
依次类推可求出点2,3,……处的瞬时速度v2,v3,…….3. 如何确定重物下落的高度?图3中h1、h2、h3、……分别为纸带从o点下落的高度.二、注意事项:1. 该实验中选取被打点纸带应注意两点:一是第一点o为计时起点,o点的速度应为零.怎样判别呢?因为打点计时器每隔0.02s 打点一次,在最初的0.02s内物体下落距离应为0.002m,所以应从几条纸带中选择第一、二两点间距离接近两年2mm 的纸带进行测量;二是在纸带上所选的点就是连续相邻的点,每相邻两点时间间隔 t=0.02s.2. 因为不需要知道物体在某点动能和势能的具体数值,所以不必测量物体的质量 m,而只需验证■vn2=ghn就行了.3. 打点计时器要竖直架稳,使其两限位孔在同一竖直平面内,以尽量减少重物带着纸带下落时所受到的阻力作用.4. 实验时,必须先接通电源,让打点计时器正常工作后才能松开纸带让重物下落.5. 测量下落高度时,都必须从起始点算起,不能弄错.为了减小测量 h值的相对误差,选取的各个计数点要离起始点适当远些.三、热点题型热点一基本物理量的测量与计算【例1】小明用图2的装置来验证机械能守恒定律,问:(一)实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v和下落高度h.某同学利用实验得到的纸带,设计了以下四种测量方案:a. 用刻度尺测出物体下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度v.b. 用刻度尺测出物体下落的高度h,并通过v=■计算出瞬时速度.c. 根据做匀变速直线运动的规律纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度,并通过计算出高度h.d. 用刻度尺测出物体下落的高度h,根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v.以上方案中只有一种正确,正确的是 .(填入相应的字母)(二)完成下列相关问题:(1)在下列器材中:电磁打点计时器、铁架台、带铁夹的重物、复写纸、纸带、秒表、导线、开关、天平,其中不必要的器材是;缺少的器材是 .(2)实验中得到了甲、乙、丙三条实验纸带,如图3,则应选纸带好.(3)图4是选出的一条纸带,其中o是起始点,a、b、c是打点计时器连续打下的3个点.用毫米刻度尺测量o到a、b、c各点的距离,并记录在图中,问:①这三个数据中不符合有效数字读数要求的是,应记作 cm.②现用重锤在ob段的运动来验证机械能守恒,g=10m/s2,则该段重锤重力势能的减少量为,而动能的增加量为,(均保留3位有效数字,重锤质量为m).由于系统误差总是使重力势能的减少量(填大于、等于或小于)动能的增加量,原因是 .解析:(一)物体下落的时间由打点计时器记录,无需测出,由于空气阻力、摩擦阻力等的影响,重物实际下落的加速度小于重力加速度g,故用v=gt和v=■计算某点的瞬时速度时会使动能增量测量值偏大,故选项a、b都错.由匀变速直线运动的规律知纸带上某点的瞬时速度等于这点前后相邻两点间的平均速度;纸带开始打出的点比较密集,测出的时间误差很大,实验中的加速度是小于实验当地的g,故不能用公式h=■gt2来计算第一点到某点的距离,而是用刻度尺来测量,故选项c错误.通过上述分析可知选项d对.(二)(1)其中不必要的器材是秒表,天平;缺少的器材是低压交流电源和刻度尺.(2)实验时纸带静止释放做自由落体运动,则第一个点与第二个点间的距离是h=■gt2=■×9.8×0.022mm=1.96mm;因此应选甲纸带好.(3)①不符合有效数字读数要求的是oc,应记作15.70 cm.②重力势能的减少量为ep=mghob=1.24m.重物在b点的瞬时速度为vb=■=■=1.55m/s.动能的增加量为ek=ek=■■=1.20m.由以上计算可知重力势能的减少量大于动能的增加量,原因是因为有摩擦,减少的重力势能一部分转化为内能.点评:本实验主要测量的物理量有:①某点的瞬时速度;②两个计数点之间距离的测量;③纸带加速度的计算;④物体通过某两个计数点重力势能的变化量和动能的变化量.热点二用图像探究机械能守恒定律【例2】小明用图1的实验装置来验证机械能守恒定律,他从打出的纸带中选出了一条比较理想的纸带,舍去开始密集的点,得到了如图5所示的一条纸带,然后根据纸带得到了下表中的数据:其中?驻hi=hi-h1是h2、h、h4、h5、h6与h1之间的高度差;?驻vi2=vi2-v12计数点2、3、4、5各点瞬时速度平方与计数点1瞬时速度的平方差,问:(1)完成表中所缺的数据;(2)根据表中的数据得到了如图6所示的δv2—h图像,由该图像可得出的结论是 .(3)由图像可求得该地的重力加速度g= .解析:(1)δh4=h5-h1=67.2-5.8=61.4mm.(2)由mg·δh=■mδvi2可知δh∝δvi2,因此由图像可得:在只有重力做功的条件下物体的机械能守恒.(3)由mg·δh=■mδvi2可知图像的斜率为:k=■=■.为求直线斜率可在直线上取两个距离较远的点,如(0.58,30.0×10-3)和(1.00,52.0×10-3),则直线的斜率为:k=■=0.052,则当地重力加速度为:g=■=9.62m/s2.点评:用图像来探究机械能守恒定律时,一定要把握以下几种作图象所依据的原理:①从静止开始采用“守恒式”:0+mghoc=■mvc2+0;②从静止开始采用“增减式”:■mδvc2=mg·δhoc;③不从静止开始采用“守恒式”:■m■+mghbc=■m■+0;④不从静止开始采用“增减式”:■m(■-■)=mg·δhbc .热点三如何用连接体来探究机械能守恒定律【例3】如图7所示,两质量分别为m1、m2的小物块a和b(b 包括挡光片质量),分别系在条垮过定滑轮的软绳两端,已知m1>m2,现要用此装置验证机械能守恒定律。
高考物理一轮复习第六单元机械能第3讲机械能守恒定律及其应用练习(含解析)新人教版
第3讲机械能守恒定律及其应用1 重力做功与重力势能(1)重力做功的特点:重力做功与路径无关,只与初、末位置的高度差有关。
(2)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。
②定量关系:物体从位置A到位置B的过程中,重力对物体做的功等于物体重力势能的减少量,即W G=-ΔE p。
③重力势能的变化量是绝对的,与参考面的选取无关。
湖南长沙雅礼中学月考)(多选)质量为m的物体,从静止开始以2g的加速度竖直向下运动h高度,下列说法正确的是()。
A.物体的重力势能减少2mghB.物体的机械能保持不变C.物体的动能增加2mghD.物体的机械能增加mgh【答案】CD2 弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能。
(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大。
(3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式可表示为W=-ΔE p。
【温馨提示】弹性势能是由物体的相对位置决定的。
同一根弹簧的伸长量和压缩量相同时,弹簧的弹性势能相同。
(2018江苏南京10月模拟)如图所示,在光滑水平面上有一物体,它的左端固定连接一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是()。
A.弹簧的弹性势能逐渐减少B.弹簧的弹性势能逐渐增加C.弹簧的弹性势能先增加再减少D.弹簧的弹性势能先减少再增加【答案】D3 机械能守恒定律(1)内容:在只有重力或弹力做功的系统内,动能与势能可以互相转化,而总的机械能保持不变。
(2)机械能守恒定律的三种表达形式及应用①守恒观点:a.表达式,E k1+E p1=E k2+E p2或E1=E2。
b.意义,系统初状态的机械能等于末状态的机械能。
47.机械能守恒定律题型总结
机械能守恒定律一.知识聚焦1.定义:物体由于做机械运动而具有的能叫机械能,用符号E 表示,它是动能和势能(包括重力势能和弹性势能)的统称.2.表达式:E =Ek +Ep.机械能是标量,没有方向,只有大小,可有正负(因势能可有正负).3.机械能具有相对性:因为势能具有相对性(需确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是地面),所以机械能也具有相对性.只有在确定的参考系和零势能参考平面的情况下,机械能才有确定的物理意义二.经典例题例1 下列物体中,机械能守恒的是( )A .做平抛运动的物体B .被匀速吊起的集装箱C .光滑曲面上自由运动的物体D .物体以45g 的加速度竖直向上做匀减速运动 解析 物体做平抛运动或沿光滑曲面自由运动时,不受摩擦力,在曲面上弹力不做功,只有重力做功,机械能守恒,所以A 、C 项正确;匀速吊起的集装箱,绳的拉力对它做功,不满足机械能守恒的条件,机械能不守恒;物体以45g 的加速度向上做匀减速运动时,由牛顿第二定律F -mg =m(-45g),有F =15mg ,则物体受到竖直向上的大小为15mg 的外力作用,该力对物体做了正功,机械能不守恒. 答案 AC例2 如图所示,在水平台面上的A 点,一个质量为m 的物体以初速度v 0被抛出,不计空气阻力,求它到达B 点时速度的大小.解析 物体抛出后的运动过程中只受重力作用,机械能守恒,若选地面为参考面,则mgH +12mv 20=mg(H -h)+12mv 2B 解得v B =v 20+2gh若选桌面为参考面,则12mv 20=-mgh +12mv 2B 解得它到达B 点时速度的大小为v B =v 20+2gh答案 v 20+2gh例3 如图所示,斜面的倾角θ=30°,另一边与地面垂直,高为H ,斜面顶点上有一定滑轮,物块A和B 的质量分别为m 1和m 2,通过轻而柔软的细绳连结并跨过定滑轮.开始时两物块都位于与地面垂直距离为12H 的位置上,释放两物块后,A 沿斜面无摩擦地上滑,B 沿斜面的竖直边下落.若物块A 恰好能达到斜面的顶点,试求m 1和m 2的比值.滑轮的质量、半径和摩擦均可忽略不计.解析 设B 刚下落到地面时速度为v ,由系统机械能守恒得m 2g H 2-m 1g H 2sin 30°=12(m 1+m 2)v 2① A 物体以v 上滑到顶点过程中机械能守恒12m 1v 2=m 1g H 2sin 30°②由①②得m 1m 2=1∶2 答案 1∶2例4 质量为m 的物体,从静止开始以2g 的加速度竖直向下运动h 高度,下列说法中正确的是( )A .物体的重力势能减少2mghB .物体的机械能保持不变C .物体的动能增加2mghD .物体的机械能增加mgh解析 因重力做了mgh 的功,由重力做功与重力势能变化关系可知重力势能减少mgh ,合力做功为2mgh ,由动能定理可知动能增加2mgh ,除重力之外的力做功mgh ,所以机械能增加mgh ,A 、B 错,C 、D 对.答案 CD例5用弹簧枪将一质量为m 的小钢球以初速度v 0竖直向上弹出,不计空气阻力,当小钢球的速度减为v 04时,钢球的重力势能为(取弹出钢球点所在水平面为参考面)( )A.1532mv 20B.1732mv 20C.132mv 20D.49mv 20 答案 A解析 由12mv 20=Ep +12m(v 04)2得 Ep =1532mv 20. 三、基础演练1.关于机械能守恒,下列说法正确的是( )A .物体匀速运动,其机械能一定守恒B .物体所受合外力不为零,其机械能一定不守恒C .物体所受合外力做功不为零,其机械能一定不守恒D .物体沿竖直方向向下做加速度为5 m/s 2的匀加速运动,其机械能减少答案 D2.如图所示,在抗洪救灾中,一架直升机通过绳索,用恒力F 竖直向上拉起一个漂在水面上的木箱,使其由水面开始加速上升到某一高度,若考虑空气阻力而不考虑空气浮力,则在此过程中,以下说法正确的有( )A .力F 所做功减去克服阻力所做的功等于重力势能的增量B .木箱克服重力所做的功等于重力势能的增量C .力F 、重力、阻力,三者合力所做的功等于木箱动能的增量D .力F 和阻力的合力所做的功等于木箱机械能的增量答案 BCD解析 对木箱受力分析如右图所示,则由动能定理:WF -mgh -WF f =ΔEk ,故C 对.由上式得:WF -WF f =ΔEk +mgh ,即WF -WF f =ΔEk +ΔEp =ΔE ,故A 错,D 对.3.如图所示,细绳跨过定滑轮悬挂两物体M 和m ,且M>m ,不计摩擦,系统由静止开始运动过程中( )A .M 、m 各自的机械能分别守恒B .M 减少的机械能等于m 增加的机械能C .M 减少的重力势能等于m 增加的重力势能D .M 和m 组成的系统机械能守恒解析:M 下落过程,绳的拉力对M 做负功,M 的机械能不守恒,减少;m 上升过程,绳的拉力对m 做正功,m 的机械能增加,A 错误.对M 、m 组成的系统,机械能守恒,易得B 、D 正确;M 减少的重力势能并没有全部用于m 重力势能的增加,还有一部分转变成M 、m 的动能,所以C 错误.答案:BD4.(2009年营口质检)如图13所示,在地面上以速度v0抛出质量为m 的物体,抛出后物体落到比地面低h 的海平面上.若以地面为零势能面而且不计空气阻力, 则①物体到海平面时的势能为mgh ②重力对物体做的功为mgh ③物体在海平面上的动能为12mv20+mgh ④物体在海平面上的机械能为12mv20 其中正确的是( )A .①②③B .②③④C .①③④D .①②④解析:以地面为零势能面,物体到海平面时的势能为-mgh ,①错,重力对物体做功为mgh ,②对;由机械能守恒,12mv20=Ek -mgh ,Ek =12mv20+mgh ,③④对,故选B. 答案:B5.如图14所示,一轻质弹簧竖立于地面上,质量为m 的小球,自弹簧正上方h 高处由静止释放,则从小球接触弹簧到将弹簧压缩至最短(弹簧的形变始终在弹性限度内)的过程中,下列说法正确的是( )A .小球的机械能守恒B .重力对小球做正功,小球的重力势能减小C .由于弹簧的弹力对小球做负功,所以弹簧的弹性势能一直减小D .小球的加速度先减小后增大解析:小球与弹簧作用过程,弹簧弹力对小球做负功,小球的机械能减小,转化为弹簧的弹性势能,使弹性势能增加,因此A 错误,C 错误;小球下落过程中重力对小球做正功,小球的重力势能减小,B 正确;分析小球受力情况,由牛顿第二定律得:mg -kx =ma ,随弹簧压缩量的增大,小球的加速度a 先减小后增大,故D 正确.答案:BD6.利用传感器和计算机可以测量快速变化的力,如图16所示是用这种方法获得的弹性绳中拉力F 随时间的变化图象.实验时,把小球举高到绳子的悬点O 处,然后让小球自由下落.从图象所提供的信息,判断以下说法中正确的是( )A .t1时刻小球速度最大B .t2时刻小球动能最大C .t2时刻小球势能最大D .t2时刻绳子最长解析:小球自由下落的过程中,t1时刻绳子的拉力为零,此时速度不是最大,动能也不是最大,最大速度的时刻应是绳子拉力和重力相等时,即在t1、t2之间某一时刻,t2时刻绳子的拉力最大,此时速度为零,动能也为零,绳子的弹性势能最大,而小球的势能不是最大,而是最小,t2时刻绳子所受拉力最大,绳子最长.答案:D四.能力提升1.如图7-8-7所示,某人以拉力F 将物体沿斜面拉下,拉力大小等于摩擦力,则下列说法中正确的是( )A .物体做匀速运动B .合力对物体做功等于零C .物体的机械能守恒D .物体的机械能减小答案 C2.下列四个选项的图中,木块均在固定的斜面上运动,其中图A 、B 、C 中的斜面是光滑的,图D 中的斜面是粗糙的,图A 、B 中的F 为木块所受的外力,方向如图中箭头所示,图A 、B 、D 中的木块向下运动,图C 中的木块向上运动.在这四个图所示的运动过程中机械能守恒的是( )答案 C解析 依据机械能守恒条件:只有重力做功的情况下,物体的机械能才能保持守恒,由此可见,A 、B 均有外力F 参与做功,D 中有摩擦力做功,故A 、B 、D 均不符合机械能守恒的条件.3.(2010年山东名校联考)一质量为m 的物体,以13g 的加速度减速上升h 高度,不计空气阻力,则( ) A .物体的机械能不变 B .物体的动能减小13mgh C .物体的机械能增加23mgh D .物体的重力势能增加mgh 解析:设物体受到的向上的拉力为F.由牛顿第二定律可得:F 合=F -mg =-13mg ,所以F =23mg.动能的增加量等于合外力所做的功-13mgh ;机械能的增加量等于拉力所做的功23mgh ,重力势能增加了mgh ,故B 、C 、D 正确,A 错误.答案:BCD4.(2010年成都模拟)如图10所示,质量相等的A 、B 两物体在同一水平线上,当A 物体被水平抛出的同时,B 物体开始自由下落(空气阻力忽略不计),曲线AC 为A 物体的运动轨迹,直线BD 为B 物体的运动轨迹,两轨迹相交于O 点,则两物体( )A .经O 点时速率相等B .在O 点相遇C .在O 点具有的机械能一定相等D .在O 点时重力的功率一定相等解析:由机械能守恒定律可知,A 、B 下落相同高度到达O 点时速率不相等,故A 错.由于平抛运动竖直方向的运动是自由落体运动,两物体从同一水平线上开始运动,将同时达到O 点,故B 正确.两物体运动过程中机械能守恒,但A 具有初动能,故它们从同一高度到达O 点时机械能不相等,C 错误.重力的功率P =mgvy ,由于两物体质量相等,到达O 点的竖直分速度vy 相等,故在O 点时,重力功率一定相等,D 项正确.答案:BD五、个性天地1.如图7-8-8所示,翻滚过山车轨道顶端A 点距地面的高度H =72 m ,圆形轨道最高处的B 点距地面的高度h =37 m .不计摩擦阻力,试计算翻滚过山车从A 点由静止开始下滑运动到B 点时的速度.(g 取10 m/s 2)答案 26.5 m/s解析 取水平地面为参考平面,在过山车从A 点运动到B 点的过程中,对过山车与地球组成的系统应用机械能守恒定律,有mgh +12mv 2=mgH 可得过山车运动到B 点时的速度为v =2g (H -h )=2×10×(72-37) m /s≈26.5 m/s2.某人站在离地面h =10 m 高处的平台上以水平速度v 0=5 m/s 抛出一个质量m =1 kg 的小球,不计空气阻力,g 取10 m/s 2,问:(1)人对小球做了多少功?(2)小球落地时的速度为多大?答案 (1)12.5 J (2)15 m/s解析 (1)人对小球做的功等于小球获得的动能,所以W =12mv 20=12×1×52 J =12.5 J[来源:] (2)根据机械能守恒定律可知 mgh +12mv 20=12mv 2 所以v =v 20+2gh =52+2×10×10 m/s =15 m/s3.如图7-8-9所示,光滑的水平轨道与光滑半圆轨道相切,圆轨道半径R =0.4 m .一个小球停放在水平轨道上,现给小球一个v 0=5 m/s 的初速度,求:(g 取10 m/s 2)(1)小球从C 点飞出时的速度.(2)小球到达C 点时,对轨道的作用力是小球重力的几倍?(3)小球从C 点抛出后,经多长时间落地?(4)落地时速度有多大?答案 (1)3 m/s (2)1.25倍 (3)0.4 s (4)v 0解析 (1)小球运动至最高点C 过程中机械能守恒,有12mv 20=2mgR +12mv 2Cv C =v 20-4gR =52-4×10×0.4 m/s =3 m/s(2)对C 点由向心力公式可知FN +mg =m v 2C RFN =m v 2C R-mg =1.25mg 由牛顿第三定律可知小球对轨道的压力为小球重力的1.25倍.(3)小球从C 点开始做平抛运动由2R =12gt 2知 t = 4R g = 4×0.410s =0.4 s (4)由于小球沿轨道运动及做平抛运动的整个过程机械能守恒,所以落地时速度大小等于v 0.4 如图6所示,作平抛运动的小球的初动能为6J ,不计一切阻力,它落在斜面上P 点时的动能为:( )A. 12JB. 10JC. 14JD. 8J解析:把小球的位移分解成水平位移s 和竖直方向的位移h 。
专题16 机械能守恒定律的理解与应用(解析版)-2021届高考物理热点题型归纳与变式演练
2021届高考物理一轮复习热点题型归纳与变式演练专题16 机械能守恒定律的理解与应用【专题导航】目录热点题型一机械能守恒的理解与判断 (1)热点题型二单物体的机械能守恒问题 (2)热点题型三连接体的机械能守恒问题 (5)类型一轻绳连接的物体系统 (6)类型二轻杆连接的物体系 (7)类型三轻弹簧连接的物体系 (9)热点题型四用机械能守恒定律解决非质点问题 (11)热点题型五机械能守恒定律的综合应用 (14)【题型归纳】热点题型一机械能守恒的理解与判断【题型要点】1.利用机械能守恒定律判断(直接判断)分析动能和势能的和是否变化。
2.用做功判断若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒。
3.用能量转化来判断若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒。
【例1】(2020·湖南衡阳市第二次联考)2019年春晚在开场舞蹈《春海》中拉开帷幕.如图1所示,五名领舞者在钢丝绳的拉动下以相同速度缓缓升起,若五名领舞者的质量(包括衣服和道具)相等,下面说法中正确的是()A.观众欣赏表演时可把领舞者看做质点B.2号和4号领舞者的重力势能相等C.3号领舞者处于超重状态D.她们在上升过程中机械能守恒【答案】B【解析】观众欣赏表演时要看领舞者的动作,所以不能将领舞者看做质点,故A错误;2号和4号领舞者始终处于同一高度,质量相等,所以重力势能相等,故B正确;五名领舞者在钢丝绳的拉动下以相同速度缓缓升起,所以处于平衡状态,故C错误;上升过程中,钢丝绳对她们做正功,所以机械能增大,故D错误.【变式1】(多选)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是()A.运动员到达最低点前重力势能始终减小B.蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D.蹦极过程中,重力势能的改变量与重力势能零点的选取有关【答案】ABC【解析】在运动员到达最低点前,运动员一直向下运动,根据重力势能的定义可知重力势能始终减小,故选项A正确;蹦极绳张紧后的下落过程中,弹力方向向上,而运动员向下运动,所以弹力做负功,弹性势能增加,故选项B正确;对于运动员、地球和蹦极绳所组成的系统,蹦极过程中只有重力和弹力做功,所以系统机械能守恒,故选项C正确;重力做功是重力势能转化的量度,即W G=-ΔE p,而蹦极过程中重力做功与重力势能零点的选取无关,所以重力势能的改变量与重力势能零点的选取无关,故选项D错误.【变式2】如图所示,P、Q两球质量相等,开始两球静止,将P上方的细绳烧断,在Q落地之前,下列说法正确的是(不计空气阻力)()A.在任一时刻,两球动能相等B.在任一时刻,两球加速度相等C.在任一时刻,系统动能与重力势能之和保持不变D.在任一时刻,系统机械能是不变的【答案】D【解析】细绳烧断后,由于弹簧处于伸长状态,通过对P、Q两球受力分析可知a P>a Q,在任一时刻,两球的动能不一定相等,选项A、B错误;系统内有弹力做功,弹性势能发生变化,系统的动能与重力势能之和发生变化,选项C错误;Q落地前,两球及弹簧组成的系统只有重力和弹簧的弹力做功,整个系统的机械能守恒,选项D正确.热点题型二单物体的机械能守恒问题【要点诠释】机械能守恒问题的各种表达形式【特别提醒】用“守恒形式”时,需要规定重力势能的参考平面。
机械能守恒典型例题带详解【范本模板】
第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。
解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。
(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。
在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。
由以上两式解得104204220⨯==g v h m=10m. 点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。
本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。
例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。
解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==.根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。
解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。
重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。
机械能守恒定律题型
机械能守恒定律题型一、题型概述机械能守恒定律是物理学中的重要定律之一,也是高中物理考试中常见的题型之一。
该题型主要考察学生对机械能守恒定律的理解和应用能力。
二、机械能守恒定律的基本概念机械能守恒定律是指在一个封闭系统内,当只有重力做功和弹力做功时,系统的机械能守恒不变。
其中,机械能包括动能和势能两部分。
三、题目类型及解题思路1. 物体从高处自由落下,在某一高度上撞击地面后反弹,求反弹高度。
解题思路:根据机械能守恒定律,物体在自由落下过程中失去的势能全部转化为动能,并且在撞击地面后全部转化为势能。
因此可以列出以下方程:mgh = 1/2mv^21/2mv^2 = mgh'h' = (v^2)/(2g)其中,m为物体质量,g为重力加速度,h为初始高度,v为物体落地时的速度,h'为反弹高度。
2. 物体沿斜面从高处滑下,在底部撞击地面后弹起,求弹起的最高点。
解题思路:根据机械能守恒定律,物体在滑下过程中失去的势能全部转化为动能,并且在撞击地面后全部转化为势能。
因此可以列出以下方程:mgh = 1/2mv^21/2mv^2 = mgh'h' = h + (v^2)/(2g)其中,m为物体质量,g为重力加速度,h为初始高度,v为物体滑到底部时的速度,h'为弹起的最高点。
3. 物体沿水平面从A点以初速度v0匀速运动到B点,在B点突然受到一个水平方向上的恒定力F作用,求物体运动到C点时的速度。
解题思路:由于恒定力F只做功用于物体的动能,并且系统没有发生机械能的损失或增加,因此可以列出以下方程:1/2mv0^2 + 0 = 1/2mvc^2 + Fd其中,m为物体质量,v0为初始速度,vC为物体运动到C点时的速度,d为BC之间的距离。
四、注意事项1. 在解题过程中要注意单位换算,保证方程中的所有物理量都使用相同的单位。
2. 在列方程时要注意选择参照系,通常选择重心系或质心系为参照系。
第八章-机械能守恒定律章末复习-知识点和题型总结-2023年高一物理期末高效复习专题
第八章机械能守恒定律章末复习[知识点]一:动能和势能的转化1.动能与重力势能间的转化只有重力做功时,若重力做正功,则重力势能转化为动能,若重力做负功,则动能转化为重力势能,转化过程中,动能与重力势能之和保持不变.2.动能与弹性势能间的转化被压缩的弹簧把物体弹出去,射箭时绷紧的弦把箭弹出去,这些过程都是弹力做正功,弹性势能转化为动能.二.机械能动能、重力势能和弹性势能统称为机械能,在重力或弹力做功时,不同形式的机械能可以发生相互转化.三:机械能守恒定律1、在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.2.守恒定律表达式(1)E k2-E k1=E p1-E p2,即ΔE k增=ΔE p减.(2)E k2+E p2=E k1+E p1.(3)E2=E1.四.守恒条件物体系统内只有重力或弹力做功.1.对机械能守恒条件的理解(1)从能量转化的角度看,只有系统内动能和势能相互转化,无其他形式能量之间(如内能)的转化.(2)从系统做功的角度看,只有重力和系统内的弹力做功,具体表现在:①只受重力作用,例如:所有做抛体运动的物体(不计空气阻力时)机械能守恒.②系统内只有重力和弹力作用,如图甲、乙、丙所示.甲乙丙图甲中,小球在摆动过程中线的拉力不做功,如不计空气阻力,只有重力做功,小球的机械能守恒.图乙中,A、B间,B与地面间摩擦不计,A自B上端自由下滑的过程中,只有重力和A、B间的弹力做功,A、B组成的系统机械能守恒.但对B来说,A对B的弹力做功,这个力对B来说是外力,B的机械能不守恒.图丙中,不计空气阻力,球在摆动过程中,只有重力和弹簧与球间的弹力做功,球与弹簧组成的系统机械能守恒.但对球来说,机械能不守恒.2.判断机械能守恒的方法(1)做功分析法(常用于单个物体)分析物体受力⇒明确各力做功情况⇒⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫只有重力、弹簧弹力做功有其他力做功,但W其他=0⇒机械能守恒(2)能量分析法(常用于多个物体组成的系统)分析能量种类⇒只有动能、重力势能、弹性势能⇒机械能系统守恒五.机械能守恒定律和动能定理的比较两大规律比较内容机械能守恒定律动能定理表达式E1=E2ΔE k=-ΔE pΔE A=-ΔE B W=ΔE k 应用范围只有重力或弹力做功时无条件限制物理意义其他力(重力、弹力以外)所做的功是机械能变化的量度合外力对物体做的功是动能变化的量度关注角度 守恒的条件和始末状态机械能的形式及大小动能的变化及改变动能的方式(合外力做功情况)[考点题型]考点题型一:机械能的概念和计算1.(2021·湖南郴州·高一期末)用拉力将一个重为5N 的物体匀速提升4m ,在这个过程中,不计阻力,下列说法正确的是( )A .物体的重力做了20J 的功B .拉力对物体做了20J 的功C .物体动能减少了20JD .物体的机械能减少了20J2.(2021·北京市延庆区教育科学研究中心高一期末)一位同学在实验室的地面上用一个质量为1kg 的小车以一定的速度挤压弹簧,当小车的动能为20J 时,弹簧的弹性势能恰好是10J ,如果以距地面3m 高的天花板为零势面,则此时小车、弹簧和地球构成的系统总机械能是( )(g =10m/s 2)A .30JB .0JC .60JD .-30J 3.(2021·黑龙江·尚志市尚志中学高一期末)起重机以4g的加速度将质量为m 的物体匀减速地沿竖直方向提升高度h ,已知重力加速度为g ,空气阻力不计,则( )A .物体克服重力做功为mghB .起重机钢索的拉力对物体做功为34mghC .物体的动能减少了34mghD .物体的机械能减少了34mgh考点题型二:机械能守恒定律的条件4.(2021·广东广州·高一期末)如图所示,拉力F 将物体沿斜面向下拉,已知拉力大小与摩擦力大小相等,则下列说法中正确的是()A.物体的动能增加B.物体的动能保持不变C.物体的总机械能增加D.物体的总机械能保持不变5.(2020·辽宁·朝阳县柳城高级中学高一期末)关于机械能是否守恒的论述,正确的是()A.沿水平面运动的物体,机械能一定守恒B.做匀速运动的物体,机械能一定守恒C.合外力对物体做功等于零时,物体的机械能一定守恒D.只有重力对物体做功时,机械能一定守恒6.(2021·湖南湘西·高一期末)如图所示,下列关于机械能守恒的判断正确的是()A.甲图中,火箭加速升空的过程中,机械能守恒B.乙图中物体在拉力F作用下沿斜面匀速上升,机械能守恒C.丙图中小球在水平面内做匀速圆周运动,机械能守恒D.丁图中轻弹簧将地面上A、B两小车弹开,两小车组成的系统机械能守恒考点题型三:机械能与曲线运动7.(2021·陕西·宝鸡市陈仓区教育体育局教学研究室高一期末)如图所示,在地面上以速度v0斜向上抛出质量为m的物体,抛出后物体落在比地面低h的湖面上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机械能守恒定律》题型探究及方法总结
湖北省襄樊市第四中学 任建新 441021
题型一 机械能守恒的判断
例1 下面列举的各个实例中,那些情况下机械能是守恒的( )
①一小球在粘滞性较大的液体中匀速下落;②用细线拴着一个小球在竖直平面内做圆周运动;③用细线拴着一个小球在光滑水平面内做匀速圆周运动;④拉着一个物体沿光滑的斜面匀速上升;⑤一物体沿光滑的固定斜面向下加速运动
A .②③⑤
B .①②④
C .①③④
D .②③④
解析 ①④中的物体匀速运动,必然是有外力与重力或重力的分力相平衡,且在该力方向上发生了位移,故机械能不守恒;②③⑤中的物体在运动过程中只有重力做功,满足机械能守恒.答案 A .
解后思悟
对机械能守恒的条件应从以下几个方面来理解:(1)只是系统内动能和势能的相互转化,没有其它形式能(如热能)转化;(2)只有重力做功的具体表现:①只受重力(或弹簧弹力),例如所有做抛体运动的物体;②受其它力,但其它力不做功,例如光滑斜面上下滑动的物体,竖直平面内圆周运动等;③其它力做功,但做功的代数和为零,物体初、末状态机械能不变. 题型二 两个及以上物体组成的系统机械能守恒问题
例2
如图1所示,质量均为m 的小球A 、B 、C ,用两条长为l 的细绳相连,置于高为h 的光
滑水平桌面上,l >h ,A 球刚跨过桌边,若A 球、B 球相继下落着地后均不再反弹,则C 球离开桌边时的速度大小是
_____. 解析 在A 、B 、C 三球动过程中,除A 、B 两球与地面
碰撞有机械能损失外,过程的其余时间里,因没有摩擦力和其他外力做功,机械能守恒.即A 球从桌边下落到着地之前,A 的重力势能的减少等于A 、
B 、
C 三球动能的增加.A 落地后,B 从桌边下落期间,B 的重力势能的减少又等于B 、C 两球动能的增加.由此即可求出C 球的速度.
设A 球落地时速率为v 1,从A 球开始运动到落地的过程中,A 、B 、C 三球组成的系统机械能守恒,所以mgh =21 (3m )v 12得:v 1= gh 3
2 从A 球落地到B 球落地的过程中,B 、C 两球组成的系统机械能守恒.所以mgh + 21(2m )v 12=21 (2m )v 22得:v 2= gh 3
5,即为C 球离开桌边时速度的大小. 解后思悟
如何选择研究对象,是解题最基础的一步,也是最关键的一步.对多个物体组成的系统,研究对象的选取要慎重,要灵活.根据实际需要,有时选用整个系统为研究对象,有时选用系统中的某一部分为研究对象.
在具体应用过程中,守恒定律的表述如下:(1)用系统状态量的增量表述:ΔE =0,即研究过程中系统的机械能增量为零;(2)用系统动能增量和势能增量间的关系表述:ΔE K =-ΔE P ,即系统动能的增加等于它势能的减少;(3)ΔE A =-ΔE B ,即系统中相互作用的A 物体机械能的增加,等于B 物体机械能的减少.
图1
解答此题的容易犯的错误是没有注意到A 、B 两球与地面碰撞过程有机械能损失,却以为整个过程中机械能都是守恒的.
【备用例题】
如图1所示,固定在竖直面内的半径为R 的1/4光滑圆弧轨道AB 底端的切线水平,并和水平光滑轨道BC 连接.一根轻杆两端和中点分别固定有相同的小铁球(铁球可看作质点),静止时两端的小铁球恰好位于A 、B 两点.释放后杆和小球最终都滑到水平面上,这时它们的速度大小为多少
解析 A 、B 、C 三个小球组成的系统机械能守恒,由机械能守恒定律,2321
2v m mgR R mg ⋅⨯=+⋅,解得
v =gR .
解后思悟 如何选择研究对象,是解题最基础的一步,也是最关键的一步.对多个物体组成的系统,研究对象的选取要慎重,要灵活.根据实际需要,有时选用整个系统为研究对象,有时选用系统中的某一部分为研究对象.
在具体应用过程中,守恒定律的表述如下:(1)用系统状态量的增量表述:ΔE =0,即研究过程中系统的机械能增量为零;(2)用系统动能增量和势能增量间的关系表述:ΔE K =-ΔE P ,即系统动能的增加等于它势能的减少;(3)ΔE A =-ΔE B ,即系统中相互作用的A 物体机械能的增加,等于B 物体机械能的减少.
题型三 机械能守恒与速度的分解相结合问题
例3
一半径为R 的半圆形竖直圆柱面,用轻质不可伸长的细绳连接的A 、B 两球,悬挂在圆柱面边缘两侧,A 球质量为B 球质量的2倍,现将A 球从圆柱边缘处
由静止释放,如图2所示,已知A 始终不离开球面,且细绳足够长,若不计一切摩擦.
(1)求A 球沿圆柱面滑至最低点时速度的大小. (2)求A 球沿圆柱面运动的最大位移.
解析 (1)设A 球沿圆柱面滑至最低点时速度的大小为v A ,将此速度分别沿着细绳和垂至于细绳方向分解,如图3所示.则沿着细绳方向的分速度大小等于B 球此时上升的速度.对A 、B 系统,由机械能守恒定律可得:2
221
221
22B mv mv mgR mgR +=- 又因为v A =2v B 解得gR v 5222-=
(2)当A 球的速度为0时,A 球沿圆柱面运动的位移最大,设为s ,则据机械能守恒定律可得:04222
2=--⋅mgs s R R s mg 解得R s 3=
解后思悟 图3
图2 C 图
10 图1
处理此类问题尤其关键的是正确进行速度分解,从而确定相牵连的物体之间的速度关系,其次,无论速度如何分解,物体的动能是与物体此时的合速度相对应,将分速度代入21mv 2是最容易犯的错误.。