吸波材料5

合集下载

多功能吸波材料

多功能吸波材料

多功能吸波材料
多功能吸波材料是一种具有多种功能的吸波材料,除了基本的吸波性能外,还具有其他的物理、化学或力学性能。

这些材料在军事、电子、通信、航空航天等领域有广泛的应用。

多功能吸波材料的主要类型包括:
1.隐身材料:这种材料不仅具有吸波性能,还能实现隐身效果。

它通过减少对电磁波的反射和散射,使雷达等探测设备难以发现目标。

例如,歼10战斗机的机身上就使用了吸波材料,具有一定的隐形功能。

2.导电吸波材料:这种材料具有导电性能,可以将吸收的电磁波能量转化为热能,并通过导电层排放到外部环境中。

导电吸波材料广泛应用于电磁兼容(EMC)领域,如电子设备的屏蔽和防护。

3.耐高温吸波材料:这种材料具有较高的耐热性,可在高温环境下保持吸波性能。

它主要用于航空航天、导弹等高温环境下的吸波应用。

4.耐腐蚀吸波材料:这种材料具有较高的耐腐蚀性,可在恶劣环境下保持吸波性能。

它主要用于海洋、化工等腐蚀环境中的吸波应用。

5.结构吸波材料:这种材料将吸波性能与结构性能相结合,既具有吸波功能,又可作为结构部件使用。

例如,吸波混凝土、吸波玻璃等。

总之,多功能吸波材料具有多种功能,可以满足不同领域和应用场景的需求。

随着科技的发展,多功能吸波材料的研究和应用将不断拓展。

吸波材料

吸波材料
吸波材料简介
姓名:吕羚源 学号:1080730113
主要内容
1 2 3 4
5
6
吸波材料的产生背景 什么是吸波材料 ? 吸波材料的性能要求 分类及其几种吸波材料 吸波材料的应用 未来发展方向
吸波材料的产生背景
军事上 日常生活中
建筑上
信息干扰
什么是吸波材料 ?
吸波材料
介质损耗 电磁波 其他形式损耗
分类及其几种吸波材料
导电高分子吸波材料
导电高分子吸波材料主要是利用某些具有共扼主链的高分子聚合 物, 通过化学或电化学方法与掺杂剂进行电荷转移作用来设计其 导电结构, 实现阻抗匹配和电磁损耗, 从而吸收雷达波。导电高 分子材料的导电机理不同于金属、半导体的自由电子、电子-空穴 导电机理, 而是具有多种载流子类型的导电机理 (HHS 理论)。导 电高分子材料具有良好的导电性, 不仅能通过反射损耗, 也能通 过吸收损耗达到吸收微波能量的效果, 并且在较宽广的频率范围 内都具有良好的吸收作用,可以阻碍表面能传递,使其衰减 ,减 小电磁波的能量。
吸波材料
什么是吸波材料 ?
两个基本条件:
阻抗匹配波原理
当电磁波作用在吸波材料上时 D =ε0εE, B =μ0μH.
吸波材料的两个基本参数 复介电常数ε=ε′- jε″ 复磁导率μ=μ′- jμ″ ε′ μ′ ε″ μ″ 电场作用下的极化程度变量 磁场作用下的磁化程度变量 电场作用下材料电偶矩产生重排引起损耗的量度 磁场作用下材料磁偶矩产生重排引起损耗的量度
分类及其几种吸波材料
陶瓷类吸波材料
陶瓷材料具有优良的力学性能和热物理性能特别是耐高温、强度 高、蠕变低、膨胀系数小、耐腐蚀性强和化学稳定性好、能削弱 红外信号等优点,可以用于高温轻质部件的电磁波吸收,陶瓷吸 波材料主要包括铁氧体吸波材料、 碳化硅和碳化硅纤维以及钛酸 钡等,碳化硅是制备多波段吸波材料的主要成分,有可能实现轻 质、薄层、宽频带和多频段吸收,属于典型的耐高温陶瓷吸波材 料。

吸波材料用途

吸波材料用途

吸波材料用途
吸波材料常被用于各个领域,例如降低噪声、抑制干扰等。

主要用途有:
(1)电子信息领域。

吸波材料可用于手机、MP3、GPS等的声学介质中,减少回声、降低噪声,提高音质和效果。

(2)汽车领域。

吸波材料可以用于汽车中,减少发动机和其他散热片的噪音,让汽车行驶的更安静舒适。

(3)建筑领域。

吸波材料可用于墙壁,可以防止室内外的声音传播,提高室内空间的隔声性能。

(4)家居领域。

吸波材料可用于空调、电视、衣柜等家具的制作,减少在室内传播的噪声,提供安静舒适的环境。

(5)航空航天领域。

当飞机进入高速飞行状态时,会产生大量噪声,吸波材料可以帮助飞机减少噪声。

(6)医疗领域。

吸波材料可以用于医院的隔声,减少病房之间传播的噪声,提供安静舒适的病房环境。

(7)机械制造领域。

吸波材料可以用于各种机械装置,以减少机械设备的噪声污染,提高工作效率。

- 1 -。

吸波材料在5 g中的应用

吸波材料在5 g中的应用

吸波材料在5 g中的应用
吸波材料在5G中的应用主要涉及到电磁辐射和干扰的问题。

1. 电磁辐射:5G技术采用的频段更高,频率更高,电磁波的能量也更强。

这意味着在高速数据传输和更快的响应时间方面有很多优点,但也增加了辐射问题。

吸波材料可以降低电磁波辐射的强度,从而减少对人体和环境的潜在危害。

2. 干扰:5G网络需要更多的基站和天线来提供更好的覆盖范围和数据传输速度。

然而,这些基站和天线可能会干扰周围的通信设备和无线电频谱。

吸波材料可以降低这些干扰信号,从而使无线电频谱更可靠和可预测。

总的来说,吸波材料的应用可以帮助5G网络更好地满足人们对更快速率、更快的响应时间和更广泛的覆盖的需求,同时也保护人类健康和环境安全。

2024年吸波材料市场环境分析

2024年吸波材料市场环境分析

2024年吸波材料市场环境分析1. 市场概况吸波材料是一种能够吸收电磁波能量的材料,广泛应用于无线通信、电子设备和电磁兼容等领域。

随着无线通信、雷达技术和电子设备的快速发展,吸波材料市场也呈现出良好的增长势头。

本文将对吸波材料市场的环境进行分析。

2. 市场需求吸波材料在通信、电子设备和电磁兼容领域中起着重要作用。

随着5G技术的普及和应用,通信领域对吸波材料的需求将大幅增加。

此外,汽车、航空航天和军事领域也对吸波材料有着不可或缺的需求。

吸波材料具有良好的电磁波吸收性能,可以有效减少电磁干扰和电磁泄漏,提升设备的稳定性和性能。

3. 市场竞争吸波材料市场竞争激烈,存在大量国内外的吸波材料制造商和供应商。

国内企业在技术研发、生产能力和市场份额方面与国际巨头存在一定差距。

国际吸波材料企业在技术、品牌和渠道方面具备较强竞争优势。

然而,由于吸波材料市场需求的不断增加,国内企业也在不断提升技术创新和产品质量,逐步提高市场竞争力。

4. 市场发展趋势吸波材料市场的发展趋势主要包括以下几个方面:4.1 技术创新随着电子设备的不断更新和发展,吸波材料的技术也在不断创新。

当前,石墨烯、碳纳米管等新型材料被广泛研究和应用,具有更好的吸波性能和成本效益。

未来,随着技术的进一步突破,吸波材料的吸波性能将会进一步提高,市场前景广阔。

4.2 产业链整合吸波材料产业链包括原材料供应、材料加工、成品制造和销售等环节。

目前,各个环节的企业数量众多,行业整合程度较低。

未来,大型企业将加强产业链整合,提高生产效率和降低成本。

4.3 区域市场发展吸波材料市场主要分布在北美、欧洲和亚太地区。

随着亚太地区经济的快速发展和信息技术的普及,亚太地区的吸波材料市场将呈现出较快的增长速度。

同时,新兴市场也将成为吸波材料市场的重要增长点。

5. 市场前景吸波材料市场在未来具有广阔的发展前景。

随着5G技术的普及和应用,通信领域对吸波材料的需求将持续增加。

此外,汽车、航空航天和军事等领域也将对吸波材料有更多的应用需求。

吸波材料有哪些

吸波材料有哪些

吸波材料有哪些吸波材料是一种可以吸收电磁波能量的特殊材料,广泛应用于通信、雷达、航空航天等领域。

吸波材料的主要作用是减少电磁波的反射和散射,从而降低电磁干扰和提高通信和雷达系统的性能。

目前市场上有许多不同类型的吸波材料,下面将介绍一些常见的吸波材料及其特点。

1. 碳基吸波材料。

碳基吸波材料是一种由碳纳米管、石墨烯等碳材料制成的吸波材料。

这类材料具有良好的吸波性能,能够有效吸收宽频段的电磁波。

同时,碳基吸波材料具有质量轻、耐高温、耐腐蚀等优点,适用于航空航天领域。

2. 铁氧体吸波材料。

铁氧体吸波材料是一种由铁氧体颗粒和聚合物基质组成的复合材料。

这类材料具有较高的磁导率和介电损耗,能够有效吸收微波和毫米波段的电磁波。

铁氧体吸波材料在雷达隐身、电磁兼容等方面有着重要的应用。

3. 多孔吸波材料。

多孔吸波材料是一种具有微孔结构的材料,能够通过多次反射和折射来实现对电磁波的吸收。

这类材料具有较宽的吸波频段和较高的吸波性能,适用于通信基站、无线电设备等领域。

4. 复合吸波材料。

复合吸波材料是一种由多种吸波材料组合而成的复合材料,能够充分发挥各种吸波材料的优点,实现对不同频段电磁波的吸收。

复合吸波材料具有较高的吸波性能和较宽的应用范围,是目前吸波材料研究的热点之一。

总的来说,吸波材料在电磁兼容、雷达隐身、通信保密等领域有着重要的应用,不同类型的吸波材料具有不同的特点和适用范围,科研人员和工程师们需要根据具体应用需求选择合适的吸波材料。

随着材料科学和工程技术的不断发展,相信吸波材料将会在未来发挥更加重要的作用。

吸波材料简介.docx

吸波材料简介.docx

绪论 (2)1吸波材科的吸波原理 (2)1. 1加与甩电路及损耗因子 (2)1.2材料的复介电常数与复磁导率 (4)1.2.1复介电常数 (4)1.2.2复磁导率 (5)2当前吸波材料的分类 (5)2.1按材料成型工艺和承载能力 (6)2.2按吸波原理 (6)2.3按材料的损耗机理 (6)2.4按研究时期 (6)3无机吸波剂简介 (6)3. 1铁系吸波剂 (6)3. 1. 1金属铁微粉 (6)3.1.2多晶铁纤维 (6)3. 1.3铁氧体 (6)3.2碳系吸波剂 (7)3. 2.1石墨、乙怏炭黑 (7)3. 2.2碳纤维 (7)3. 2-3碳纳米管 (7)3.3陶瓷系吸波剂 (7)3. 3.1碳化硅 (7)3.3.2碳化硅复合材料 (8)4有机物为主体吸波剂简介 (8)4.1导电高分子类吸波材料 (8)4 2视黄基席夫碱类吸波材料 (8)5其他吸波材料简介 (8)5.1等离子体吸波材料 (8)5.2手性吸波材料 (9)5.3智能化吸波材料 (9)6展望 (9)绪论随着现代科学技术的发展,电碗波辐射对环境的影响口益增大。

在机场,飞机航班因电磁波干 扰无法起飞而谋点;在医院,移动电话常会干扰各种电子诊疗仪器的正常T •作。

因此,治理电磁污 染,寻找一种能抵挡并削弱电磁波辐射的材料一吸波材料,已成为材料科学的一人课题.此外, 在未来高技术、立体化战争中,武器装备随时面临着探测与反探测的严峻挑战。

提岛军事装备的战 术技能,隐身技术已经成为未來高技术战争的重耍研究课题。

吸波材料是隐少技术中的关键环廿, 将吸波材料引入隐巾技术的研究受到世界各国的高度碇视。

本文以吸波材料的吸波原理为主线来阐 述吸波剂的研究进展。

1吸波材料的吸波原理卫1. 1 RC 与RL 电路及损耗因子吸波材料的物理机制是材料对电碗波实现有效吸收•电磁波能帚入射到介质屮被迅速衰减变成 其他形式的能其损耗机制在宏观上町通过简单的应;甩等效电路"以解释•对二端无源网络,复电 压0、复电流I 、复阻抗2分别为:U = [70e ;(wf+^u)> J =心訂(3t+p )2 =2 =也刀(九-®) / /0令阻HiZ = U Q /I Q ,电压与电流相位差<p = — 5,Z = Ze"电压分解示意图二端无源电路的电流、电压的矢彊分解示意图如图1所示,复阻抗与电压、电流的相位关系如表1 所示,二端电路的瞬时功率尸"人平均功率尸分别为:P(t) = I Q U Q COS (3t+(P) P = P(t)dt = costp = IU cos(p(1.4) 对纯电阻.<p = Q,P =IU = I 2U = U 2/R ;对纯电容或电感卩=±? P = 0,不吸收功率.式仃.4) 可写为 _ 一P =I L U 或 P = IU 丄 (1.5)其中:I” = Icos(p,U"=Ucos(p,I ”为仃功电流(损耗电流),Z7”为仃功电色,Z ± =lsin(p 为无功 电流:(/丄=几曲卩,为无功电压,仅Z “或U”对尸何贡献,式(1.5)中的P 叫无功功率(氏).有 功功率为(1.1) (1-2) (1.3)P 冇="〃或P 冇=U(1.6)二端电路复阻抗Z可写为Z = Ze J(p = Z (cos (p + jsin <p) = r + jx (1.7)令甲=TT/2—5 (其中6为损耗角),则由式(1.5) (1.6) (1.7)得P tanS =金=% < =仏丄=%丄=;⑴8)其中tan6为损耗因子。

吸波材料参数

吸波材料参数

吸波材料参数吸波材料是一种能够有效吸收电磁波能量的材料,广泛应用于电磁兼容、无线通信、雷达隐身等领域。

吸波材料的性能参数对其吸波性能有着重要影响,下面将对吸波材料的参数进行详细介绍。

1. 工作频率范围。

吸波材料的工作频率范围是指其能够有效吸收电磁波的频率范围。

通常来说,吸波材料的工作频率范围越宽,其在不同频段的吸波性能就越好。

因此,选择吸波材料时需要根据实际应用的频率范围来进行合理选择。

2. 吸波性能。

吸波性能是评价吸波材料性能的重要参数,通常用反射损耗和吸收损耗来描述。

反射损耗是指电磁波在材料表面的反射损耗,吸收损耗是指电磁波在材料内部的吸收损耗。

一般来说,吸波材料的反射损耗和吸收损耗越大,其吸波性能就越好。

3. 厚度。

吸波材料的厚度对其吸波性能有着重要影响。

一般来说,吸波材料的厚度越大,其在低频段的吸波性能就越好,而在高频段的吸波性能则会受到影响。

因此,在实际应用中需要根据具体频率范围和吸波要求来选择合适的厚度。

4. 温度稳定性。

吸波材料的温度稳定性是指其在不同温度下的吸波性能稳定程度。

一般来说,吸波材料的温度稳定性越好,其在复杂环境下的吸波性能就越可靠。

因此,在一些特殊应用场景中,需要选择具有良好温度稳定性的吸波材料。

5. 加工性能。

吸波材料的加工性能对其在实际应用中的加工和成型有着重要影响。

良好的加工性能能够保证吸波材料在成型过程中不会出现裂纹、气泡等缺陷,从而保证其吸波性能。

因此,在选择吸波材料时需要兼顾其加工性能。

综上所述,吸波材料的参数包括工作频率范围、吸波性能、厚度、温度稳定性和加工性能等。

合理选择吸波材料的参数,能够有效提高其在电磁兼容、无线通信、雷达隐身等领域的应用性能,为相关领域的发展提供有力支持。

吸波材料用途

吸波材料用途

吸波材料用途
吸波材料的主要用途是用于吸收或减少回波,从而提高空气动力学系统中气动效率及可靠性。

吸波材料可以被用于以下几种环境:
1、航空、航天、军事等高科技行业。

在航空、航天、军事等高科技行业,吸波材料将被用于飞机、宇宙飞船、导弹等,其中涉及多种船体及元件,对回波影响很大,吸波材料能够有效减少回波,提高气动性能及可靠性。

2、熔体过滤器系统。

熔体过滤系统是一种过滤材料和过滤器的组合,它在高温下运行,需要一种可以有效抑制回波的吸波材料,从而降低回波对系统的影响。

3、汽车工业。

汽车的性能及可靠性,将受到带有回波的空气动力学参数的影响,采用适当的吸波材料可以有效减少回波,提高汽车的气动性能及可靠性。

4、石油、化工及钢铁工业。

在石油、化工及钢铁工业,吸波材料可以用于烟囱、燃烧室、引气及其他热处理设备,有效减少回波,防止热量散失,提高热处理设备的效率及可靠性。

5、建筑材料领域。

在建筑材料中,吸波材料可以用于不同的场合,包括建筑外墙、中空玻璃及门窗等,有助于减少外界的噪音,改善建筑环境。

以上就是吸波材料的主要用途。

可以看出,吸波材料在航空、航
天、军事、汽车、石油、化工及钢铁、建筑材料等领域中发挥着重要作用,弥补了传统材料无法完成的任务。

吸波材料简介

吸波材料简介

吸波材料简介1、定义所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。

在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。

2、吸波原理分类吸波材料的损耗机制大致可以分为以下几类:其一,电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。

其二,电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。

电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。

其三,磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。

此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。

3、材料种类随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。

在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。

因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。

吸波材料按材料分类主要分为:铁氧体吸波材料,是利用磁性材料的高频下损耗和磁导率的散射来吸收电磁波的能力。

金属超微粉吸波材料,金属材料因居里点高(770K)而耐高温,Ms可达铁氧体的3-4倍,金属自然共振频率比铁氧体高得多,有更好的吸收性能,但是块状金属吸波材料会受到金属趋肤效应的限制。

随着金属或合金的粒度减小,材料对电磁波的吸收性能逐步增加,反射性能逐渐减弱。

多晶铁纤维吸波材料,多晶铁纤维吸波材料包括Fe、Ni、Co其合金纤维,具有较高的磁导率和导电率。

纳米吸波材料,当颗粒尺寸减小到10-100nm时,粒子的物理和化学性能发生巨大的变化,粒子表面原子所占比例变大,不同能级跃迁就可以吸收不同波段的能量,与聚氨乙烯混合组成复合吸收体,就可以对毫米波、远红外、近红外有很强的吸收,可谓是宽频带吸波材料。

微波吸波材料

微波吸波材料

微波吸波材料
微波吸波材料是广泛应用于无线通信、雷达系统和微波设备领域的一种材料。

它具有吸收和隔离微波信号的能力,可以减少系统中的干扰和反射。

微波吸波材料的主要作用是吸收微波,将其转化为热能,并防止微波信号的反射和传输。

以下是常见的微波吸波材料:
1. 碳基材料:碳纳米管是一种常见的碳基吸波材料,具有优异的微波吸收性能。

其特点是结构独特,导电性好,表面积大,可以吸收较宽频率范围的微波信号。

2. 磁性材料:磁性材料可以通过调控其磁性性质来实现对微波信号的吸收。

例如,铁氧体是一种具有高磁导率和频率选择性的材料,可以吸收高频率的微波信号。

3. 复合材料:复合材料由两种或多种材料的组合构成,可以获得更好的吸波性能。

常见的复合材料包括由金属和绝缘材料组成的复合膜,可以实现宽频率范围内的吸波效果。

4. 气凝胶:气凝胶是一种具有低密度和多孔性的无机材料,具有良好的吸波性能。

由于其高比表面积和多孔结构,可以有效吸收微波信号。

5. 金属/非金属复合材料:金属/非金属复合材料是通过将金属纳米颗粒或圆柱体嵌入非金属基底中制备而成的。

这种复合材料可以调节金属颗粒的形状和排列方式以控制微波吸收性能。

微波吸波材料的选择取决于应用的具体要求。

一般来说,应根据所需吸波频率范围、吸波性能、材料成本和加工复杂性等因素进行选择。

除了材料本身的特性外,材料的制备方法和结构设计也对吸波性能有重要影响。

因此,在设计和选择微波吸波材料时,需要综合考虑各种因素,以获得最佳的吸波效果。

2024年吸波材料市场前景分析

2024年吸波材料市场前景分析

2024年吸波材料市场前景分析引言吸波材料是一种能够吸收电磁波的材料。

随着无线通信、雷达技术和电子设备的日益发展,对吸波材料的需求不断增加。

本文将对吸波材料市场的前景进行分析和展望。

市场概况在现代通信技术和军事装备中,电磁波的控制和管理起着至关重要的作用。

吸波材料可有效地吸收电磁波并转化为热能,从而降低电磁辐射对设备和环境的影响。

吸波材料广泛应用于无线通信、国防军事、航空航天等领域。

市场驱动因素1. 5G技术的推广随着5G技术的不断普及,对吸波材料的需求大幅增加。

5G技术需要更高的频率和更大的带宽,这对吸波材料的性能提出了更高的要求。

2. 军事装备的升级军事领域对吸波材料的需求一直较高。

随着军事装备的升级和现代化的需求,吸波材料的应用范围将进一步扩大。

3. 环保意识的提高吸波材料能够有效地控制电磁辐射,减少对人体和环境的危害。

随着环保意识的提高,吸波材料的市场需求也将有所增加。

市场竞争态势吸波材料市场存在一定的竞争。

目前,国内外各大公司已经进入该领域,推出了各种类型的吸波材料产品。

在竞争激烈的市场环境下,企业应不断提高产品质量和技术水平,并进行市场定位和差异化经营。

市场发展趋势1. 材料技术的创新目前,吸波材料的技术还存在一定的局限性,如吸波频率范围窄、吸波效果有限等。

未来,随着材料科学和技术的进步,有可能出现更先进的吸波材料,以满足不同领域的需求。

2. 智能化和多功能化随着科技的发展,吸波材料也越来越智能化和多功能化。

智能吸波材料能够根据环境和需求自动调整吸波效果,多功能吸波材料能够同时满足多种频率的吸波需求。

3. 新兴市场的发展随着新兴市场的崛起,吸波材料的需求也将不断增加。

例如,电动汽车、物联网等领域对吸波材料的需求将持续增长。

市场前景展望吸波材料市场具有良好的发展前景。

吸波材料的应用范围广泛,需求量大,市场持续增长。

同时,随着技术进步和新兴市场的发展,吸波材料市场的规模和竞争将进一步扩大。

吸波材料有哪些

吸波材料有哪些

吸波材料有哪些吸波材料是一种能够有效吸收电磁波能量的材料,广泛应用于电磁波隔离、电磁波吸收、电磁波屏蔽等领域。

吸波材料的种类繁多,主要包括导电性吸波材料、磁性吸波材料和复合吸波材料等。

下面将分别介绍这些吸波材料的特点和应用。

导电性吸波材料是一类能够有效吸收电磁波能量的材料,其主要成分是导电粉末和基体材料。

导电性吸波材料具有良好的电磁波吸收性能和导电性能,能够有效地吸收电磁波能量并将其转化为热能。

这类材料广泛应用于电磁波隔离、电磁波吸收、电磁波屏蔽等领域,例如在电子设备、通信设备、航空航天等领域中得到了广泛的应用。

磁性吸波材料是一类能够有效吸收电磁波能量的材料,其主要成分是磁性粉末和基体材料。

磁性吸波材料具有良好的磁性和电磁波吸收性能,能够有效地吸收电磁波能量并将其转化为热能。

这类材料广泛应用于电磁波隔离、电磁波吸收、电磁波屏蔽等领域,例如在雷达系统、无线通信系统、医疗设备等领域中得到了广泛的应用。

复合吸波材料是一种由导电性材料和磁性材料复合而成的吸波材料,具有导电性和磁性的双重特性。

复合吸波材料不仅具有良好的电磁波吸收性能,还具有良好的导电性能和磁性能,能够在更广泛的频率范围内有效地吸收电磁波能量。

这类材料广泛应用于电磁波隔离、电磁波吸收、电磁波屏蔽等领域,例如在军事装备、航空航天、电子设备等领域中得到了广泛的应用。

总的来说,吸波材料种类繁多,每种材料都具有独特的特点和应用领域。

导电性吸波材料、磁性吸波材料和复合吸波材料都在电磁波隔离、电磁波吸收、电磁波屏蔽等领域发挥着重要作用,为现代通信、航空航天、电子设备等领域的发展提供了重要支持。

随着科技的不断进步,吸波材料的研究和应用将会得到进一步的推广和发展,为人类社会的进步和发展做出更大的贡献。

吸波材料应用频段

吸波材料应用频段

吸波材料应用频段一、吸波材料的基本概念和原理吸波材料是一种能够吸收电磁波能量的材料,其应用在电磁波吸收、防护、隐身等领域具有重要意义。

吸波材料的主要原理是通过材料本身的特殊结构或组分,将电磁波能量转化为其他形式的能量(如热能),从而减少或消除电磁波的反射和传输。

二、吸波材料的分类和特点根据吸波材料的成分和工作机制,可以将其分为电磁波吸收材料、阻抗匹配材料和多层复合材料等几类。

其中,电磁波吸收材料主要通过吸收电磁波能量将其转化为其他形式的能量,阻抗匹配材料将电磁波从一种介质传输到另一种介质时,通过匹配两种介质的电学性能来减少反射。

多层复合材料则是通过多层次的结构来实现吸波效果。

吸波材料具有以下特点:1. 宽波段工作能力:吸波材料的应用频段通常是比较广泛的,能够覆盖从低频到高频的电磁波。

2. 高吸收能力:吸波材料能够有效地吸收电磁波能量,减少或消除反射和传输。

3. 耐腐蚀性能:吸波材料通常需要在复杂的环境条件下使用,因此具有良好的耐腐蚀性能是必需的。

4. 结构可调性:吸波材料的结构和组分可以进行调整和设计,以满足不同频段和不同形状的需求。

三、吸波材料的应用领域1. 通信领域:吸波材料可用于电磁波隔离、降低通信干扰和提高通信质量。

2. 雷达系统:雷达系统需要精确测量目标的回波信号,吸波材料可降低回波信号的干扰,提高雷达系统的性能。

3. 航空航天领域:吸波材料可以用于飞机的隐身涂层,减少飞机的雷达反射信号,提高飞行安全性。

4. 电子设备:吸波材料可以用于电子设备的EMC(电磁兼容性)设计,减少电磁干扰,提高设备的工作稳定性。

5. 医学领域:吸波材料可用于医学图像和诊断设备中,减少信号的干扰和背景噪声,提高图像和信号的质量。

四、吸波材料的发展趋势和挑战随着科技的不断进步和应用领域的不断拓展,吸波材料也面临着一些挑战和发展的趋势:1. 多功能化:吸波材料逐渐向多功能化方向发展,除具备吸收电磁波的功能外,还能具备导电、导热、防腐蚀等功能,以满足不同领域的需求。

吸波材料实验的常见问题解答

吸波材料实验的常见问题解答

吸波材料实验的常见问题解答吸波材料实验是一项涉及电磁波的实验,它在电子工程、通信领域等具有重要的应用价值。

但是在进行吸波材料实验时,常常会遇到一些问题,今天我们将对这些常见问题进行解答。

问题一:吸波材料如何实现吸收电磁波?吸波材料的吸收机制主要有两种:吸收模型和反射模型。

吸收模型意味着材料可以将电磁波直接吸收,将其转化为热能,从而降低电磁波的传播。

而反射模型则是通过调整材料的结构和成分,使得电磁波在材料与空气之间来回反射,从而产生干涉,最终达到吸收的效果。

问题二:如何选择合适的吸波材料?选择合适的吸波材料需要考虑多个因素。

首先,需要根据实验中所需吸收的频段选择相应的材料,因为不同频段的电磁波对材料的要求是不同的。

其次,需考虑材料的吸波性能,即吸波带宽和吸波效率。

吸波材料的性能评估要依据实验需要和指标进行选择,可通过相关文献和实验经验来指导。

问题三:吸波材料的制备方法有哪些?目前常用的吸波材料制备方法主要有涂层法、复合法、电化学法等。

涂层法是将吸波材料溶解后涂覆在基底材料上,通过涂覆的厚度和成分来实现吸波效果。

复合法是将吸波材料与基底材料进行复合制备,通过二者之间特殊的相互作用来实现吸波效果。

电化学法则是利用电化学反应来控制吸波材料的合成,通过调控电解液的成分和工艺参数来制备吸波材料。

问题四:吸波材料实验中如何进行性能测试?吸波材料的性能测试一般包括吸波带宽、吸波效率和反射损耗等指标。

吸波带宽测试可以通过扫描频率的方式得到,即在频率范围内测量材料对电磁波的吸收情况。

吸波效率测试可以通过对比吸波材料与无吸波材料的反射率来得到,通过计算得出吸波效率。

反射损耗测试则是通过测量电磁波在材料与空气接触面的反射情况来得到。

问题五:如何提高吸波材料的性能?提高吸波材料的性能可以从多个方面着手。

首先,可以通过调整材料的成分和结构来实现对不同频段电磁波的吸收。

其次,可以通过优化制备工艺和技术,提高吸波材料的制备精度和均匀性。

吸波材料概述

吸波材料概述

吸波材料概述
吸波材料是一种能够吸收电磁波的材料。

它的主要作用是将电磁波的能量转化成热能来消耗电磁波,在某些场合可以达到减少电磁波的反射和传播的目的。

吸波材料有许多种类,主要分为有机吸波材料和无机吸波材料两类。

有机吸波材料多用于高频电磁波吸收,包括一些聚合物、导电聚合物和吸波涂料等;无机吸波材料则多用于低频电磁波吸收,主要由铁、镍、铜、炭黑等材料制成。

有机吸波材料的主要成分是聚合物,这些聚合物具有很好的吸收电磁波功能。

常用的有机吸波材料包括:
1、碳纤维:碳纤维是一种具有很好的电磁波吸收性能的有机吸波材料。

它的主要成分是碳纤维复合材料,由于其高强度、低密度等优点,近年来已被广泛应用于电磁波吸收材料领域。

2、聚苯胺:聚苯胺是一种导电聚合物,它具有良好的电磁波吸收性能。

聚苯胺的吸收能力主要是由其空气过滤机的导电特性和柔软的聚合物链结构所引起的。

3、吸波涂料:吸波涂料是一种以含吸波结构的树脂为基础,加入导电颜料及吸波填料后制成的涂料。

吸波涂料具有绝缘性良好、柔软、耐热性强等特性,可以应用于军事领域、无线通信等领域。

无机吸波材料是一种利用金属吸波结构和磁性材料体系的材料。

这些材料可以在低频电磁波范围内发挥较好的吸波效果。

常见的无机吸波材料包括:
1、铁:铁是一种具有良好电磁波吸收能力的无机吸波材料。

其吸收能力主要是由其磁性材料的性质所引起的。

总结起来,吸波材料具有很好的吸收电磁波能力,是电磁波隐身等领域的重要基础材料。

实际应用中可根据需求选用不同类型的吸波材料,以达到最佳的吸收效果。

吸波材料

吸波材料

对人类身体健康损害也产生。
吸波原理
雷达的工作原理
雷达通过发射无线电波,也就是电磁波,电磁波向外辐射,当遇到某一物 体,电磁波被反射回来,雷达接收信号,通过信号处理,判断反射电磁波 物体的形状,速度等信息。
吸波材料的吸波原理
1.阻抗匹配 2.电磁消耗
阻抗匹配
吸波材料反射系数记为R
R = (Z0– Z1) / (Z0+Z1) Zi = μr / εr (i = 0,1)
发展展望
发展能强吸收的吸波材料。 发展能兼容米波、厘米波、毫米波及红外光等多波段的宽频吸波材料; 发展质量轻、厚度薄不影响飞行器机动性能的吸波材料; 发展具有耐高温、耐腐蚀等适应复杂环境的能力,并且具有较高的可维
护性和较长使用寿命的吸波材料。
叶文-冲锋骑士 406647191
隐形飞机的隐形奥秘
吸波材料
目录
1 概况 吸波原理 分类 工程应用
2 3
4 5
发展展望
概况
吸波材料指能吸收、衰减入射的电磁波,并将其电磁能转换成
热能耗散掉或使电磁波因干涉而消失的一类材料。
吸波材料最早用于军事目的,称为“隐身材料”。然而电磁波 的应用极为广泛,它在改善人类生活的同时,其伴生的电磁辐射
电介质型吸波材料的机理是依靠介质的电子极化、离子极化、分子极化等 驰豫、衰减电磁波。
钛酸钡是一种特殊的电介质,其极化强度与电场之间存在电滞效应,被称
为铁电体,铁电体可以利用的吸收机制主要是漏电损耗和驰豫损耗。钛酸 钡还具有很强的压电效应,即当晶体发生机械形变时会产生极化,而在相对 的界面上产生异号的极化电荷,也可以利用来削弱介质内电场。 碳化硅/钛酸钡/有机树脂复合涂层
夜 鹰 隐 形 战 机

吸波材料有哪些

吸波材料有哪些

吸波材料有哪些
吸波材料是指具有良好吸收电磁波能力的材料。

下面将介绍几种常见的吸波材料:
1. 合金吸波材料:合金吸波材料主要是通过使金属电磁波在材料内部多次反射和衰减来实现吸波效果。

常见的合金材料包括镍锌铜合金(Ni-Zn-Cu),镍锌铁合金(Ni-Zn-Fe)等。

2. 碳纤维吸波材料:碳纤维具有良好的导电性和吸波性能,可广泛应用于电磁波吸收领域。

碳纤维吸波材料具有质量轻、耐热性好、耐腐蚀等优点,特别适用于高温和恶劣环境下的吸波需求。

3. 磁性材料吸波材料:磁性材料由于其磁化性能,可吸收电磁波,并将其转化为热能进一步消散。

常用的磁性材料有铅、钙钛矿铁氧体、砷化铁等。

4. 多孔材料吸波材料:多孔材料具有较大的内部表面积,能够提供更多的吸波来源,并增加电磁波与材料之间的相互作用。

常见的多孔材料有泡沫金属、炭黑等。

5. 涂层吸波材料:涂层吸波材料是将吸波材料粉末与粘结剂混合后涂覆在需要吸波的物体表面上。

常见的涂层吸波材料有橡胶基、环氧基、聚氨酯基等。

吸波材料的选择要根据具体的电磁波频率范围和需要吸波的环境条件来确定。

不同的材料具有不同的吸波特性和效果,需要
根据具体的应用需求进行选择和设计。

同时,吸波材料的制备和应用技术也在不断发展和创新,未来将会有更多高性能的吸波材料问世。

吸波材料有哪些

吸波材料有哪些

吸波材料有哪些吸波材料是一种能够有效吸收电磁波的材料,广泛应用于电子通信、雷达、航天航空等领域。

吸波材料的种类繁多,下面将介绍几种常见的吸波材料及其特点。

首先,铁氧体吸波材料是一种常见的吸波材料。

它具有良好的吸波性能,能够有效吸收微波和毫米波,并且具有较宽的工作频率范围。

铁氧体吸波材料通常由铁氧体粉末和聚合物基体混合而成,具有较好的柔韧性和加工性能,适合制备成复合材料或涂覆在表面。

由于其良好的吸波性能和工艺性能,铁氧体吸波材料被广泛应用于电磁波屏蔽、隐身技术等领域。

其次,碳基吸波材料也是一种常用的吸波材料。

碳基吸波材料通常由碳纳米管、石墨烯等碳材料制备而成,具有良好的吸波性能和机械性能。

碳基吸波材料具有较宽的工作频率范围,能够有效吸收微波、毫米波甚至红外波段的电磁波。

由于碳材料具有较好的导电性和导热性,碳基吸波材料还具有良好的抗干扰性能和耐高温性能,适合应用于复杂恶劣环境下的电磁波吸收和屏蔽。

另外,金属基吸波材料也是一类重要的吸波材料。

金属基吸波材料通常由金属粉末和聚合物基体混合而成,具有良好的导电性和磁性。

金属基吸波材料能够有效吸收较高频率的电磁波,对于雷达波段的吸波效果尤为显著。

金属基吸波材料还具有良好的耐腐蚀性能和机械性能,适合应用于航天航空领域的电磁波屏蔽和隐身技术。

此外,复合吸波材料是近年来发展较快的一种吸波材料。

复合吸波材料通常由多种吸波材料复合而成,能够充分发挥各种材料的优点,具有较好的吸波性能和机械性能。

复合吸波材料能够实现多频段、宽频段的吸波效果,适合应用于多种复杂电磁环境下的吸波和屏蔽。

综上所述,吸波材料的种类繁多,每种吸波材料都具有其独特的吸波性能和适用范围。

在实际应用中,可以根据具体的电磁环境和要求,选择合适的吸波材料进行应用,以实现电磁波的有效吸收和屏蔽。

随着科技的不断发展,相信吸波材料在未来会有更广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸波材料(stealth material)隐身材料是实现武器隐身的物质基础。

武器装备如飞机、舰船、导弹等使用隐身材料后,可大大减小自身的信号特征,提高生存能力。

隐身材料按频谱可分为声、雷达、红外、可见光、激光隐身材料、按材料用途可分为隐身涂层材料和隐身结构材料。

声隐身材料包括消声材料,隔声材料,吸声材料及消声、隔声、吸声的复合体。

主要用于新一代潜艇。

雷达隐身材料能吸收雷达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。

如日本研制的一种由电阻抗变换层和低阻抗谐振层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成,在1~20吉赫的雷达波段上吸收率达20分贝以上。

另外,一些由硅、碳、硼、玻璃纤维,以及某些陶瓷与有机聚合物构成的复合材料,有很高的机械强度,可用于制作部分结构件,如飞机蒙皮、雷达天线罩等,同时又具有隐身功能,这类材料称为隐身结构材料。

红外隐射材料主要用于车辆、舰艇、军用飞机及其他军用设施,使这些装备和设施的红外辐射与背景基本达到一致,敌人的红外探测器难以分辨。

用铝粉及含有二价铁离子的材料作为填充料,加到能透过红外线的粘结剂中,可构成红外隐身涂料。

可见光隐身材料通常由铝粉、多属氧化物粉和有机物复合而成,或由掺杂的半导体材料构成,可形成与背景颜色相匹配的迷彩图案,满足可见光隐身的要求。

激光隐身材料用来对抗激光制导武器、激光雷达和激光测距机,要求这些材料对激光的反射率低可吸收率高。

对隐身材料来说,对某种探测手段的隐身性能好,往往对另一种探测手段的隐身性能就不好。

例如,对激光探测的隐身性能好,对红外探测就不能隐身。

这就是隐身材料的相容性问题。

为解决这一问题,研制了兼容型隐身材料,如雷达波、红外兼容隐身材料,红外、激光兼容隐身材料,雷达波、红外、激光等多种兼容的隐身材料等。

这是当前隐身材料的发展方向。

1.雷达吸波材料雷达吸波材料是最重要的隐身材料,其中尤以结构型雷达吸波材料和吸波涂料最为重要,国外目前已实用的主要也是这两类隐身材料。

(1)结构型雷达吸波材料结构型雷达吸波材料是一种多功能复合材料,它既能承载作结构件,具备复合材料质轻、高强的优点,又能较好地吸收或透过电磁波,已成为当前隐身材料重要的发展方向。

国外的一些军机和导弹均采用了结构型RAM,如SRAM导弹的水平安定面,A-12机身边缘、机翼前缘和升降副翼,F-111飞机整流罩,B-1B和美英联合研制的鹞-Ⅱ飞机的进气道,以及日本三菱重工研制的空舰弹ASM-1和地舰弹SSM-1的弹翼等均采用了结构型RAM。

近年来,复合材料的高速发展为结构吸波材料的研制提供了保障。

新型热塑性PEEK(聚醚醚酮)、PES(聚醚砜)、PPS(聚苯硫醚)以及热固性的环氧树脂、双马来酰亚胺、聚酰亚胺、聚醚酰亚胺和异氰酸酯等都具有比较好的介电性能,由它们制成的复合材料具有较好的雷达传输和透射性。

采用的纤维包括有良好介电透射性的石英纤维、电磁波透射率高的聚乙烯纤维、聚四氟乙烯纤维、陶瓷纤维,以及玻纤、聚酰胺纤维。

碳纤维对吸波结构具有特殊意义,近年来,国外对碳纤维作了大量改良工作,如改变碳纤维的横截面形状和大小,对碳纤维表面进行表面处理,从而改善碳纤维的电磁特性,以用于吸波结构。

美国空军研究发现将PEEK、PEK和PPS抽拉的单丝制成复丝分别与碳纤维、陶瓷纤维等按一定比例交替混杂成纱束,编织成各种织物后再与PEEK或PPS制成复合材料,具有优良的吸收雷达波性能,又兼具有重量轻、强度大、韧性好等特点。

据称美国先进战术战斗机(ATF)结构的50%将采用这一类结构吸波材料,材料牌号为APC(HTX)。

国外典型的产品有用于B-2飞机机身和机翼蒙皮的雷达吸波结构,其使用了非圆截面(三叶形、C形)碳纤维和蜂窝夹芯复合材料结构。

在该结构中,吸波物质的密度从外向内递增,并把多层透波蒙皮作面层,多层蒙皮与蜂窝芯之间嵌入电阻片,使雷达波照射在B-2的机身和机翼时,首先由多层透波蒙皮导入,进入的雷达在蜂窝芯内被吸收。

该吸波材料的密度为0.032g/cm,蜂窝芯材在6-18GHz时,衰减达20dB;其它的产品如英国Plessey公司的"泡沫LA-1型"吸波结构以及在这一基础上发展的LA-3、LA-4、LA-1沿长度方向厚度在3.8~7.6cm 变化,厚12mm时重2.8kg/m2,用轻质聚氨酯泡沫构成,在4.6~30GHz内入射波衰减大于10dB;Plessey公司的另一产品K-RAM由含磁损填料的芳酰胺纤维组成,厚5~10mm,重7~15kg/m2,在2~18GHz衰减大于7dB。

美国Emerson 公司的Eccosorb CR和Eccosorb MC系列有较好的吸波性,其中CR-114及CR-124已用于SRAM导弹的水平安定面,密度为1.6~4.6kg/m2,耐热180℃,弯曲强度1050kg/cm2,在工作频带内的衰减为20dB左右。

日本防卫厅技术研究所与东丽株式会社研制的吸波结构,由吸波层(由碳纤维或硅化硅纤维与树脂复合而成)、匹配层(由氧化锆、氧化铝、氮化硅或其它陶瓷制成)、反射层(由金属、薄膜或碳纤维织物制成)构成,厚2mm,10GHz时复介电数为14-j24、样品在7~17GHz内反射衰减>10dB。

在结构吸波材料领域,西方国家中以美国和日本的技术最为先进,尤其在复合材料、碳纤维、陶瓷纤维等研究领域,日本显示出强大的技术实力。

英国的Plesey 公司也是该领域的主要研究机构。

(2)雷达吸波涂料雷达吸波涂料主要包括磁损性涂料和电损性涂料磁损性涂料主要由铁氧体等磁性填料分散在介电聚合物中组成。

目前国外航空器的雷达吸波涂层大都属于这一类。

这种涂层在低频段内有较好的吸收性。

美国Condictron公司的铁氧体系列涂料,厚1mm,在2~10GHz内衰减达10~12dB,耐热达500℃;Emerson公司的Eccosorb Coating 268E厚度1.27mm,重4.9kg/m2,在常用雷达频段内(1~16GHz)有良好的衰减性能(10dB)。

磁损型涂料的实际重量通常为8~16kg/m2,因而降低重量是亟待解决的重要问题。

电损性涂料通常以各种形式的碳、SiC粉、金属或镀金属纤维为吸收剂,以介电聚合物为粘接剂所组成。

这种涂料重量较轻(一般可低于4kg/m2),高频吸收好,但厚度大,难以做到薄层宽频吸收,尚未见纯电损型涂层用于飞行器的报道。

90年代美国Carnegie-Mellon大学发现了一系列非铁氧体型高效吸收剂,主要是一些视黄基席夫碱盐聚合物,其线型多烯主链上含有连接二价基的双链碳-氮结构,据称涂层可使雷达反射降低80%,比重只有铁氧体的1/10,有报道说这种涂层已用于B-2飞机。

(3)电路模拟吸收体和R卡电路模拟吸收体是西方80年代研究的一种吸波机理和方法,它运用等铲电路技术对电阻片的电感、电容等参数进行分析和设计,以衰减大部分入射能量。

与电路模拟吸收体相关的设计问题是频率选择表面(FSS)设计。

电路模拟吸收体可以由吸波材料中周期性金属条、栅、片构成的电阻片制成,也可以采用带有刻蚀成专门设计的格网图案的金属或金属陶瓷涂层的介质薄膜或薄纤维织物,涂层材料和厚度决定电路模拟薄膜网格单元的有效电阻值;网格单元的循环间隔以及薄膜厚度的电性能可决定吸波体的电感和电容值。

这种涂层可采用气相沉积或溅射方法敷于介质薄膜表面。

典型的FSS有振子型、条带型、正交线型、矩型、圆形等形状。

电路模拟吸收体图案比较复杂,一般由多个薄膜层组成。

每层的设计不同且沿整个吸波体厚度变化,层间距离由设计频率确定。

这种吸波体一般用于吸收宽频带电磁波,目前已用于隐身飞机座舱盖、隐身雷达天线罩的设计。

另一类吸波材料是称为R卡的电阻性薄膜和纤维织物。

这些材料由介质基体材料与非常薄的真空沉积层、溅涂金属或金属陶瓷组成。

R卡可利用沉积厚度逐渐变化和/或电阻率逐渐变化的材料构成分级涂层。

R卡用于机翼时,能较好地满足气动外形的要求。

在吸收前缘表面的次行波方面也很有效。

2.红外隐身材料〔1〕红外隐身材料作为热红外隐身材料中最重要的品种,因其坚固耐用、成本低廉、制造施工方便,且不受目标几何形状限制等优点一直受到各国的重视,是近年来发展最快的热隐身材料,如美国陆军装备研究司令部、英国BTRRLC公司材料系统部、澳大利亚国防科技组织的材料研究室、德国PUSH GUNTER和瑞典巴拉居达公司均已开发了第二代产品,有些可兼容红外、毫米波和可见光。

近年来美国等西方国家在探索新型颜料和粘接剂等领域作了大量工作。

新一代的热隐身涂料大多采用热红外透明度[影响] 隐身材料是隐身技术的重要组成部分。

武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。

因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。

隐身材料是实现武器隐身的物质基础。

武器装备如飞机、舰船、导弹等使用隐身材料后,可大大减小自身的信号特征,提高生存能力。

隐身材料按频谱可分为声、雷达、红外、可见光、激光隐身材料、按材料用途可分为隐身涂层材料和隐身结构材料。

声隐身材料包括消声材料,隔声材料,吸声材料及消声、隔声、吸声的复合体。

主要用于新一代潜艇。

雷达隐身材料能吸收雷达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。

如日本研制的一种由电阻抗变换层和低阻抗谐振层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成,在1~20吉赫的雷达波段上吸收率达20分贝以上。

另外,一些由硅、碳、硼、玻璃纤维,以及某些陶瓷与有机聚合物构成的复合材料,有很高的机械强度,可用于制作部分结构件,如飞机蒙皮、雷达天线罩等,同时又具有隐身功能,这类材料称为隐身结构材料。

红外隐射材料主要用于车辆、舰艇、军用飞机及其他军用设施,使这些装备和设施的红外辐射与背景基本达到一致,敌人的红外探测器难以分辨。

用铝粉及含有二价铁离子的材料作为填充料,加到能透过红外线的粘结剂中,可构成红外隐身涂料。

可见光隐身材料通常由铝粉、多属氧化物粉和有机物复合而成,或由掺杂的半导体材料构成,可形成与背景颜色相匹配的迷彩图案,满足可见光隐身的要求。

激光隐身材料用来对抗激光制导武器、激光雷达和激光测距机,要求这些材料对激光的反射率低可吸收率高。

对隐身材料来说,对某种探测手段的隐身性能好,往往对另一种探测手段的隐身性能就不好。

例如,对激光探测的隐身性能好,对红外探测就不能隐身。

这就是隐身材料的相容性问题。

为解决这一问题,研制了兼容型隐身材料,如雷达波、红外兼容隐身材料,红外、激光兼容隐身材料,雷达波、红外、激光等多种兼容的隐身材料等。

相关文档
最新文档