避雷器参数

合集下载

避雷器参数及选型原则

避雷器参数及选型原则

金属氧化物避雷器的选择避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。

1、无间隙金属氧化物避雷器的选择选择的一般要求如下:(1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。

(2)、按照被保护的对象确定避雷器的类型。

(3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。

(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。

(5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。

(6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。

(7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。

(8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。

(9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。

(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。

(11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。

2、主要特性参数选择(1)、持续运行电压Uc中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。

在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc仍可按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障二;「三2h及以上切除故障3〜10kV 1.0〜1.1U L, 35〜66kV Uc》U L至于10s〜2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。

避雷器的工作原理及参数

避雷器的工作原理及参数

避雷器的工作原理及参数避雷器是一种用来保护电力系统和电气设备免受雷电侵害的装置。

它能将过电压引入大地,防止电力设备电气设备因雷击而损坏。

其基本工作原理是利用非线性元件的电压-电流特性,引导过电压,保护设备不受损害。

避雷器的主要参数有额定电流、额定暂时工频应力、额定耐受永久工频电流和额定残余电流。

首先,额定电流(In)是指避雷器能承受的最大瞬时电流。

雷电产生的能量很大,所以避雷器需要能承受高电流的冲击。

其次,额定暂时工频应力(Up)是指额定电流通过避雷器时的最高电压。

这个参数衡量了避雷器内部元件的电压抗力。

第三,额定耐受永久工频电流(Iimp)是指避雷器能承受的长工频电流。

当有持续时间长的过电压时,避雷器需要能承受相应的电流。

最后,额定残余电流(Ires)是指避雷器通过额定电流后,保持其运行状态时,残余电流的最大值。

这个参数表明避雷器在引导过电压后,能否保持稳定。

避雷器工作的过程中,当雷电侵入电力系统中,会产生过电压。

在正常情况下,避雷器处于断路状态,不导通电流。

但当过电压发生时,避雷器会迅速导通,将过电压引导到地下。

避雷器内部的非线性元件,如气体放电管和金属氧化物层压电阻器(MOA),起到了关键作用。

当过电压上升时,气体放电管开始放电,将电流导向地下。

在气体放电管导通期间,金属氧化物层压电阻器也会参与导电,共同形成电流通路。

避雷器还会根据电力系统的特性进行分级。

通常分为三个等级:耐受等级(Uc),根据避雷器能够承受的冲击电压等级;放电等级(Up),根据避雷器能够引导的过电压等级;动作等级(Imax),根据避雷器能够承受的最大瞬时电流等级。

值得注意的是,避雷器还有其它参数,如交流耐压、直流耐压、泄放电流和接地电阻等。

这些参数都是根据特定情况和需求来进行设计的。

总结起来,避雷器的工作原理是利用非线性元件的电压-电流特性,引导过电压,保护电力系统和电气设备免受雷电侵害。

其主要参数包括额定电流、额定暂时工频应力、额定耐受永久工频电流和额定残余电流。

避雷器参数定义

避雷器参数定义

避雷器参数定义1、标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

2、额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。

3、额定放电电流Isn:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。

4、最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

5、电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

6、响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。

7、数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。

8、插入损耗Ae:在给定频率下保护器插入前和插入后的电压比率。

9、回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数。

10、最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

11、最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

12、在线阻抗:指在标称电压Un下流经保护器的回路阻抗和感抗的和。

通常称为“系统阻抗”。

13、峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。

14、漏电流:指在75或80标称电压Un下流经保护器的直流电流。

避雷器分类/避雷器价格/避雷器分类避雷器有高压和低压避雷器之分,本节介绍的是低压配电系统中的避雷器(电涌保护器SPD)1. 电涌保护器器的种类名目繁多的避雷器在我国的市场上已经超过了上百种,如何对不同品牌、不同型号的避雷器进行分类也许就摆在我们面前。

20kv避雷器参数

20kv避雷器参数

避雷器参数
1
型式
复合绝缘金属氧化物避雷器
复合绝缘金属氧化物避雷器
2
额定电压
kV
34
34
3
持续运行电压
kV
27.2
27.2
4
标称放电电流
kA
5(峰值)
5(峰值)
5陡波冲击电流下残压峰值(5kA, Nhomakorabea/3μs)
kV
≤95
≤95
6
雷电冲击电流下残压峰值(5kA,8/20μs)
kV
≤85
≤85
7
操作冲击电流下残压峰值(250A,30/60μs)
3.5
3.5
18
压力释放能力
kA/s
25/0.2
25/0.2
kV
≤75
≤75
8
直流1mA参考电压
kV
≥48
≥48
9
75%直流1mA参考电压下的泄漏电流
μA
≤20
≤20
10
工频参考电压(有效值)
kV
34
34
11
工频参考电流(峰值)
mA
1
1
12
持续电流
全电流
≤1000μA
165-168
165-168
阻性电流
≤200
40-42
40-42
13
长持续时间冲击耐受电流
A
400(峰值)
400(峰值)
14
4/10μs大冲击耐受电流
kA
65(峰值)
65(峰值)
15
动作负载
KA
63.8-66.4
63.8-66.4
16

避雷器的参数定义

避雷器的参数定义

避雷器的参数定义
一、额定电压UN被保护系统的额定电压一致。

在信息技术系统中,此参数表示选定的
二、保护器的类型表示交流或直流电压的有效值。

三、额定放电电流为向保护器施加8/20μs的标准雷电波脉冲10次,保护最大冲击电流峰值耐受。

四.额定电压Uc可长时间施加在保护器的指定端部,而不会引起保护器特性的改变和保护元件的激活的最大电压有效值。

四、最大放电电流Imax对保护器施加8/20μs的标准雷电波脉冲一次,然后保护器最大冲击电流峰值耐受。

五、电压保护等级:下列试验中保护器的最大值为额定放电电压的1kv/μs斜率流动的残余压力。

六、响应时间TA特殊保护元件在某一时刻的动作灵敏度和击穿时间主要反映在保护器上内部变化取决于Du/dt或di/dt的斜率。

七、数据传输速率vs表示每秒传输多少比特值。

BPS是数据传输系统的正确选择
八、利用避雷器的参考值,避雷器的数据传输速率取决于系统的传输方式。

九、插入损耗AE以给定频率插入保护器前后的电压比。

十、回波损耗ar表示在保护装置反射点反射的前波的比例。

它是保护设备的直接措施系统阻抗兼容性参数。

十一、最大纵向放电电流是指每根线路对地施加一次8/20μs
的标准雷电波时的火用保护器最大冲击电流耐受峰值。

十二、指线与线之间施加8/20μs标准雷电波脉冲一次时的最大横向放电电流火用保护装置承受的最大冲击电流峰值。

十三、在线阻抗是指在额定电压UN下流过保护器的回路阻抗和感性电抗之和。

它通常被称为“系统阻抗”。

十四、峰值放电电流分为两种类型:额定放电电流isn和最大放电电流Imax。

35kv金属氧化物避雷器技术参数

35kv金属氧化物避雷器技术参数

35kv金属氧化物避雷器技术参数35kV金属氧化物避雷器是一种用于保护电力设备免受雷击和过电压损害的重要设备。

它具有很高的技术参数,以下将会对其技术参数进行详细介绍。

1. 额定电压:35kV金属氧化物避雷器的额定电压为35kV,这是指避雷器能够正常工作的最高电压。

超过这个电压,避雷器可能会损坏或无法正常工作。

2. 额定放电电流:避雷器的额定放电电流是指在额定电压下,避雷器能够承受的最大放电电流。

这个参数决定了避雷器对雷击过电压的抵抗能力,一般情况下,额定放电电流越大,避雷器的抵抗能力越强。

3. 高压持续时间:35kV金属氧化物避雷器能够承受的高压持续时间是指在额定电压下,避雷器能够承受的最长时间。

这个参数决定了避雷器的工作稳定性和耐久性,一般情况下,高压持续时间越长,避雷器的工作寿命越长。

4. 耐受重复雷击次数:避雷器的耐受重复雷击次数是指在一定时间内,避雷器能够承受的雷击次数。

这个参数决定了避雷器的使用寿命和可靠性,一般情况下,耐受重复雷击次数越多,避雷器的可靠性越高。

5. 阻止电压:35kV金属氧化物避雷器的阻止电压是指在额定电压下,避雷器能够将过电压降低到的最低电压。

这个参数决定了避雷器对过电压的抑制能力,一般情况下,阻止电压越低,避雷器的保护能力越强。

6. 接地电阻:避雷器的接地电阻是指避雷器接地装置的电阻大小。

接地电阻的大小直接影响到避雷器的接地效果,一般情况下,接地电阻越小,避雷器的接地效果越好。

7. 外形尺寸:35kV金属氧化物避雷器的外形尺寸是指避雷器的物理尺寸。

外形尺寸的大小决定了避雷器在安装和使用过程中的便捷性,一般情况下,外形尺寸越小,避雷器的安装和使用越方便。

8. 重量:避雷器的重量是指避雷器的物理重量。

重量的大小决定了避雷器的搬运和安装难度,一般情况下,重量越轻,避雷器的搬运和安装越方便。

9. 安装方式:35kV金属氧化物避雷器的安装方式包括室内安装和室外安装两种。

室内安装适用于小型电力设备,室外安装适用于大型电力设备。

避雷器参数讲解(图文)民熔

避雷器参数讲解(图文)民熔

避雷器参数1.标称电压Un被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

2.额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。

3.额定放电电流Isn:给保护器施加波形为8/20μs 的标准雷电波冲击10 此时,保护器所耐受的最大冲击电流峋值。

4.最大放电电流 Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

5电压保护等级上升:保护器在下列试验中的最大值:点火电压的1kV/ys斜率;额定放电电流的残余电压。

6响应时间TA:主要反映保护器中特殊保护元件的动作灵敏度和击穿时间。

在一定时间内的变化取决于Du/dt或di/dt的斜率。

7数据传输速率vs:表示每秒传输的比特数,单位为BPS,是数据传输系统中正确选择防雷装置的参考值,防雷装置的数据传输速率取决于系统的传输方式。

8插入损耗AE:在给定频率下插入保护器前后的电压比。

9回波损耗ar:表示保护设备(反射点)反射的前波所占的比例,是直接衡量保护设备是否与系统阻抗兼容的参数。

10最大纵向放电电流:当8/20us波形的标准雷电波对地一次时,保护器能承受的最大冲击电流的峰值。

11最大横向放电电流:在线路间施加波形为8/20μs的标准雷电波一次时,保护器能承受的最大冲击电流的峰值。

12线路阻抗UN为流过线路阻抗的总和。

它通常被称为“系统电阻13峰值放电电流:有两种:额定放电电流LSN和最大放电电流Imax。

13泄漏电流:指在75或80额定电压UN 下流过保护器的直流电流。

从安全运行的角度看,避雷器额定电压的选择还应遵循以下原则:1)避雷器的额定电压应高于安装现场可能出现的工频暂态电压。

在110kV及以上中性点接地系统中,可按上述方法选择。

②在110kV及以下的中性点非直接接地系统中,电力部门规程规定在单相接地情况下允许运行2h,有时甚至在断续地产生弧光接地过电压情况下运行2h以上才能发现故障,这类系统的运行特点对氧化锌避雷器在额定电压下安全运行10s构成严重威胁。

避雷器的主要参数

避雷器的主要参数

1、标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

2、额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。

3、额定放电电流Isn:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。

4、最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

5、电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

6、响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。

7、数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。

8、插入损耗Ae:在给定频率下保护器插入前和插入后的电压比率。

9、回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数。

10、最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

11、最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

12、在线阻抗:指在标称电压Un下流经保护器的回路阻抗和感抗的和。

通常称为“系统阻抗”。

13、峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。

14、漏电流:指在75或80标称电压Un下流经保护器的直流电流。

220kv避雷器技术参数

220kv避雷器技术参数

220kv避雷器技术参数220kV避雷器是一种用于保护电力系统设备免受雷电冲击的重要装置。

它具有多项技术参数,这些参数决定了其在电力系统中的性能和可靠性。

一个重要的技术参数是额定电压。

220kV避雷器的额定电压是220千伏,这意味着它能够承受220千伏的电压冲击而不损坏。

这是由于避雷器内部的绝缘材料和设计结构能够有效隔离和耐受高电压。

避雷器的额定放电电流也是一个重要的技术参数。

额定放电电流表示避雷器能够在雷电冲击时将电流导向地面的能力。

220kV避雷器通常具有较高的额定放电电流,通常在数千安培以上,以确保雷电冲击通过避雷器安全地分散到大地中。

除了额定电压和额定放电电流,220kV避雷器还具有额定残压。

额定残压是指避雷器在雷电冲击后,电压恢复到正常状态所需的时间。

较低的额定残压意味着避雷器能够迅速恢复到正常工作状态,从而减少对电力系统的影响。

220kV避雷器还具有额定击穿电压。

额定击穿电压是指避雷器能够承受的最大电压,超过这个电压,避雷器将无法正常工作。

因此,220kV避雷器的额定击穿电压需要与电力系统的额定电压相匹配,以确保其能够有效地保护设备。

在设计和制造220kV避雷器时,还需要考虑其他技术参数,如绝缘等级、耐久性和维护周期等。

绝缘等级是指避雷器能够承受的最高绝缘电压,耐久性是指避雷器能够长期稳定工作的能力,而维护周期是指避雷器需要进行定期检查和维护的时间间隔。

220kV避雷器的技术参数包括额定电压、额定放电电流、额定残压、额定击穿电压、绝缘等级、耐久性和维护周期等。

这些参数决定了避雷器在电力系统中的性能和可靠性,对于保护设备免受雷电冲击具有重要作用。

未来,随着电力系统的发展和需求的增加,220kV 避雷器的技术参数也将不断提升,以应对更高的电压和更强的雷电冲击。

避雷器参数选择参考

避雷器参数选择参考

避雷器参数选择参考
1.避雷器选型总体原则
避雷器选型的一般参照如下:
1.1.根据被保护对象来选择避雷器类型。

1.2.估算流过避雷器的雷电放电电流的幅值,依此选择避雷器的标
称放电电流。

1.3.按系统中长期作用于避雷器上的最高电压来确定避雷器的持
续运行电压。

1.4.按照被保护设备额定雷电冲击耐受电压值和操作冲击耐受电
压值,依据绝缘配合系数的要求,考虑绝缘裕度,从而确定避雷器的雷电冲击保护水平及操作冲击保护水平。

2.避雷器的额定电压:施加在避雷器端子间最大允许工频电压的有
效值,按照此电压所设计的避雷器,能够在所规定的动作负载试验中确定的暂时过电压下正常地工作。

2.1IEC标准规定,避雷器在注入标准规定的能量后,必须能耐
受相当于额定电压数值的暂时过电压至少10s。

2.2避雷器额定电压选择:
避雷器额定电压可按(下)式选择U r≥kU t (1)
式中:Ur:避雷器额定电压,kV;
K:切除短路故障时间系数,10s 及以内切除故障k=1.0,10s
以上切除故障k=1.3;
Ut:暂时过电压,kV。

3.避雷器的标称放电电流的选取
避雷器的标称放电电流分lkA、1.5kA、2.5kA、5kA、10kA和20kA 共6个等级。

在确定避雷器的额定电压之后,参照《交流电力系统金属氧化物避雷器使用导则》中的避雷器分类表,可查出相对应的避雷器标称放电电流等级。

一般保护110kV一220kV设备用避雷器选10kA;保护35kV 以下设备用避雷器选5kA;变压器中性点用避雷器选1.5kA。

避雷器的主要参数、民熔

避雷器的主要参数、民熔

避雷器参数1额定电压UN:保护系统的额定电压一致。

在信息技术系统中,此参数表示应选择的保护器类型。

表示交流或直流电压的有效值。

2额定电压Uc:在不改变保护器特性和保护动作的情况下,可长时间施加在保护器的指定端保护元件的最大电压有效值。

三。

额定放电电流为n:当8/20μs的标准雷电波向保护器施加10次时,保护装置应受到保护保护器的最大冲击电流是直的。

4最大放电电流Imax:对保护器施加8/20μs的标准雷电波冲击一次时,应保护最大放电电流Imax保护器的最大冲击电流是直的。

5电压保护等级上升:保护器在下列试验中的最大值:1kV/US的跳闸电压斜率:额定电流残压。

6响应时间TA:主要反映保护器中特殊保护元件的动作灵敏度和击穿时间,在一定时间内的变化取决于Du/dt或di/dt 的斜率。

7数据传输速率vs:表示每秒传输的比特数,单位为BPS,是数据传输系统中正确选择防雷装置的参考值,防雷装置的数据传输速率取决于系统的传输方式。

8插入损耗AE:在给定频率下,插入保护器前后的电压之比。

9回波损耗ar:表示保护设备(反射点)反射的前波所占的比例。

直接称重保护装置是否与系统阻抗兼容的参数。

10最大纵向放电电流:一次对地施加波形为8/20μs的标准雷电波时,保护器能承受的最大冲击电流的峰值。

11最大横向放电电流:指在线路间施加波形为8/20μs的标准雷电波一次时,保护器所能承受的最大冲击电流的峰值。

12在线阻抗:指在额定电压UN下流过保护器的回路阻抗和感应电抗之和。

通常称为系统阻抗。

13峰值放电电流:有额定放电电流isn和最大放电电流imaxo14两种,泄漏电流:是指在75或80额定电压UN下流过保护器的直流电流。

气体放电管主要技术参数:1当直流放电电压低于100V/s时,放电管开始放电的平均电压称为直流放电电压。

由于放电的分散性,直流放电电压是一个数值范围。

2脉冲放电电压在规定上升梯度的瞬态电压脉冲作用下,放电管开始放电的电压值称为冲击放电电压。

避雷器的电气参数避雷器的电气参数

避雷器的电气参数避雷器的电气参数

避雷器的电气参数避雷器是一种用于保护电力系统设备免受过电压冲击的重要设备。

它通过将过电压引到地线上消耗,来保护设备的安全运行。

避雷器的电气参数是评估其性能和适用性的重要指标。

本文将介绍避雷器的几个主要电气参数。

1. 静态电气参数1.1 额定电压(Rated Voltage)避雷器的额定电压是指在标准工作条件下,避雷器所能承受的最大电压。

它是避雷器在额定电压下可持续工作的电压范围。

额定电压一般以伏特(V)表示。

1.2 额定放电电流(Rated Discharge Current)额定放电电流是指在额定电压下,避雷器能够正常工作并将过电压引到地线上的最大电流。

额定放电电流一般以千安(kA)表示。

1.3 额定短时运行电流(Rated Short-duration Power Frequency Withstand Current)额定短时运行电流是指在额定电压下,避雷器能够承受的短时过电流冲击的最大电流。

这个参数一般用于评估避雷器的抗击穿性能。

额定短时运行电流一般以千安(kA)表示。

2. 动态电气参数2.1 保护电平(Protective Level)保护电平是指避雷器在工作过程中,将过电压引到地线之前的最大电压。

保护电平越低,表示避雷器对过电压的保护能力越强。

保护电平一般以伏特(V)表示。

2.2 非线性电阻特性(Nonlinear Resistor Characteristic)避雷器内部的非线性电阻特性是避雷器正常工作的关键。

它决定了避雷器对过电压的抑制能力。

一般来说,非线性电阻特性越好,避雷器的抑制能力越强。

2.3 无闪络电压(Non-Fracture Voltage)无闪络电压是指避雷器在额定电压下,不会发生闪络现象的最小电压。

闪络是指避雷器内部电弧产生的现象,会对设备造成损害。

无闪络电压越高,表示避雷器的绝缘性能越好。

3. 温度特性避雷器的性能随温度的变化而变化。

典型的温度特性参数包括温升、温度系数和温度抗干扰能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.保护模式:SPD可连接在L(相线)、N(中性线)、PE(保护线)间,如L-L、L-N、L-PE、N-PE,这些连接方式称为保护模式,它们与供电系统的接地型式有关。

按GB50054-95《低压配电设计规范》规定,供电系统的接地型式可分为:TN-S系统(三相五线)、TN-C系统(三相四线)TN-C-S系统(由三相四线改为三相五线)、IT系统(三相三线)和TT系统(三相四线,电源有一点与地直接连接,负荷侧电气装置外露可导电部分连接的接地极与电源接地极无电气联系)。

2.额定电压U n,是制造厂商对SPD规定的电压值。

在低压配电系统中运行电压(标称电压)有220V AC、380V AC等,指的是相对地的电压值也称为供电系统的额定电压,在正常运行条件下,在供电终端电压波动值不应超过±10%,这些是制造商在规定U n值时需考虑的。

在IEC60664--1中定义了实际工作电压(Working V oltage):在额定电压下,可能产生(局部地)在设备的任何绝缘两端的最高交流电压有效值或最高直流电压值(不考虑瞬态现象)。

3.最大连续工作电压U C,指能持续加在SPD各种保护模式间的电压有效值(直流和交流)。

U C不应低于低压线路中可能出现的最大连续工频电压。

选择230/400V三相系统中的SPD时,其接线端的最大连续工作电压Uc不应小于下列规定:TT系统中U C≥1.5 U O;TN、TT系统中U C≥1.1 U O;IT系统中U C≥U O;注1:在TT系统中Uc≥1.1Uo是指SPD安装在漏电保护器的电源侧;Uc ≥1.5Uo是指SPD安装在漏电保护器的负荷侧。

注2:U O是低压系统相线对中性线的电压,在230/400V三相系统中Uo=230V。

对以MOV(压敏电阻)为主的箝压型SPD而言,当外部电压小于U C时,MOV呈现高阻值状态。

如果SPD因电涌而动作,在泄放规定波形的电涌后,SPD 在U C电压以下时应能切断来自电网的工频对地短路电流(后续电流)。

这一特性在IEC标准中称为可自复性。

上边提到的U C≥1.5Uo、U C≥1.1Uo、Uc≥Uo等标准引自IEC60364-5-534,从我国供电系统实际出发,此值应增大一些,有专家认为原因是国外配电变电所接地电阻规定为1-2Ω,而我国规定为4-10Ω,因而在发生低压相线接地故障时另两相对地电压常偏大且由于长时间过流很易烧毁SPD。

但SPD的U C值定的偏大又会因产生残压较高而影响SPD的防护效果。

也有些专家认为,虽然变电所接地电阻较大,但在输电线路中实现了多次接地,多次接地的并联电阻要低于变电所的接地电阻值,因此U C≥1.1U O即可满足要求。

由于后者分析较接近实际,在有关国家标准出台前,仍以IEC标准为准。

4.点火电压,开关型SPD火花放电电压,是在电涌冲击下开关型SPD电极间击穿电压。

5.残压U res ,当冲击电流通过SPD 时,在其端子处呈现的电压峰值。

U res 与冲击电涌通过SPD 时的波形和峰值电流有关。

为表征SPD 性能,经常使用U res / U as =残压比这一概念,残压比一般应小于3,越小则表征着SPD 性能指数越好。

6.箝位电压U as ,当浪涌电压达到U as 值时,SPD 进入箝位状态。

过去认为箝位电压即标称压敏电压,即SPD 上通过1mA 电流时在其两端测得的电压。

而实际上通过SPD 的电流可能远大于测试电流1mA ,这时不能不考虑SPD 两端已经抬高的U res (残压)对设备保护的影响。

从压敏电压至箝位电压的时间比较长,对MOV 而言约为100ns 。

7.电压保护水平U P (保护电平),一个表征SPD 限制电压的特性参数,它可以从一系列的参考值中选取(如0.08、0.09、……1、1.2、1.5、1.8、2……8、10KV 等),该值应比在SPD 端子测得的最大限制电压大,与设备的耐压一致。

Up 、Un 、Uc 之间关系参见图1。

8.限制电压测量值,当一定大小和波形的冲击电流通过SPD 时在其端子测得的最大电压值。

9.短时过电压U T ,保护装置能承受的,持续短时间的直流电压或工频交流电压有效值,它比最大连续工作电压U C 要大。

10.电网短时过电压U TOV ,电网上某一部件较长时间的短时过电压,一般称通断操作过电压。

U TOV 一般等于最大连续供电系统实际电压U CS 的1.25到1.732倍。

11.电压降(百分比):ΔU=[(U in —U out )/U in ]×100%其中U in 指双口SPD 输入端电压,U out 指双口SPD 输出端电压,通过电流为阻性负载额定电流。

12.最大连续供电系统电压U CS ,SPD 安装位置上的最大的电压值,它不是谐波也不是事故状态的电压,而是配电盘上的电压变及由于负载和共振影响的电压值升(降),且直接与额定电压U n 相关。

U CS 一般等于U n 的1.1倍。

13.额定放电电流In :8/20μs 电流波形的峰值,一般用于Ⅱ类SPD 试验中不同等级,也可用于Ⅰ、Ⅱ类试验时的预试。

SPD 最大连续供电系统电压 U CS √2 额定电压均方根 U n 额定电压峰值 U n √2 不设防区(非受保护区域) 防护上限 图1 U P 、U n 和U C 相关曲线14.脉冲电流Iimp:由电流峰值Ipeak和总电荷Q定义(见IEC61312中雷电流参数表)。

用于Ⅰ类SPD的工作制测试,规定Iimp的波形为10/350μs,也可称之为最大冲击电流。

15.最大放电电流Imax:通过SPD的电流峰值,其大小按Ⅱ类SPD工作制测试的测试顺序而定,Imax>In,波形为8/20μs。

16.持续工作电流Ic:当对SPD各种保护模式加上最大连续工作电压Uc 时,保护模式上流过的电流。

Ic实际上是各保护元件及与其并联的内部辅助电路流过的电流之和。

17.续流I f:当SPD放电动作刚刚结束的瞬间,跟着来的流过其的由电源提供的工频电流。

续流I f与持续工作电流Ic有很大曲别。

18.额定负载电流:由电源提供给负载,流经SPD的最大持续电流有效值(一般指双口SPD)。

19.额定泄放电流Isn:此值与当地雷电强度、电源系统型式、有无下一级SPD及被保护设备对电涌的敏感程度有关,SPD的Isn决定其尺寸大小和热容量。

20.泄漏电流:由于绝缘不良而在不应通电的路径上流过的电流。

SPD除放电闪隙外,在并联接入电网后都会有微安级的电流通过,常称为漏电流。

当漏电流通过SPD(以MOV为主的)时,会发出一定热量,至使发生温漂或退化,严重时还会造成爆炸,又称热崩溃。

21.温漂:在工作时,SPD产生的工频能量超过SPD箱体及连接装置的散热能力,导致内部元件温度上升,性能下降,最终导致失效。

22.退化:当SPD长时间工作或处于恶劣工作环境时,或直接受雷击电流冲击而引起其性能下降,原技术参数改变。

SPD的设计应考虑退化在各种环境中的期限,并采用运行测试和老化性试验方法(参见有关表格)。

23.响应时间:SPD两端施加的压敏电压到SPD箝位电压的时间(注:如6所说明的MOV从压敏电压到箝位电压的时间约为100ns)24.插入损耗:在特定频率下,接入电网的SPD插入损耗是指实验时在插入点处接通电源立即出现的,插入SPD之前和以后的电压的比值。

一般用dB表示。

25.两端口SPD负载端耐冲击能力:双口SPD能承受的从输出口引入由被保护设备产生的冲击的能力。

26.热稳定性:当进行操作规定试验引起SPD温度上升后,对SPD两端施加最大持续工作电压,在指定环境温度下,在一定时间内,如果SPD温度逐渐下降,则说明SPD具有良好的稳定性。

27.外壳保护能力(IP代码):设备外壳提供的防止与内部带电危险部分接触及外部固体物体和水进入内部的能力。

(具体标准见IEC60529)28.承受短路能力:SPD能承受的可能发生的短路电流值。

29.过电流保护装置:安装在SPD外部的一种防止当SPD不能阻断工频短路电流而引起发热和损坏的过电流保护装置(如熔丝、断路器)。

30.SPD断路器:当SPD失效时,一个能把SPD同电路断开的装置,它能防止当SPD失效时,接地短路故障电流损坏设备,且应能指示SPD失效状态。

31.漏流保护装置(RCD):一种当漏电流或不平衡电流达到一定值时便断开电路接点的机械开关或组件,又称剩余电流保护器。

32.退耦装置:当对SPD施加工频电压并进行冲击试验时,一个阻止冲击反馈到供电网的装置。

33.定型试验:当一个新产品设计定型后,必须进行一系列的试验来建立本身的性能指标及论证是否符合有关标准。

之后,只要设计及性能不变,则不必重做定型试验,而只需做一些相关试验。

34.例行试验:对每个SPD或其部件进行的检查其是否符合设计要求的试验。

35.接收试验:贸易时,由用户和制造商协商同意对SPD或对订购品抽样进行的试36.冲击试验分类36.1.Ⅰ类试验:对样品进行额定放电电流I n,1.2/50μs冲击电压,最大冲击电流I imp的试验(仅对I类SPD)。

36.2.Ⅱ类试验:对样品进行额定放电电流I n,1.2/50μs冲击电压和最大放电电流I max试验(仅对II类SPD)。

36.3.Ⅲ类试验:对样品进行混合波(1.2/50μs,8/20μs)试验。

37.1.2/50μs电压脉冲:一个电压脉冲,其波头时间(从10%峰值上升到90%峰值的时间)为1.2μs;半峰值时间为50μs。

38.8/20μs电流脉冲:一个电流脉冲,其波头时间为8μs,半峰值时间为20μs。

39.混合波:由发生器产生的开路电压波形为1.2/50μs波,短路电流波形为8/20μs电流波。

当发生器与SPD相连,SPD上承受的电压、电流大小及波形由发生器内阻和SPD阻抗决定。

开路电压峰值与短路电流峰值之比为2Ω(相当于发生器虚拟内阻Zf)。

短路电流用I SC表示,开路电压用U OC表示。

40.I类试验中单位能量指标W/R:电流脉冲I imp流过1Ω电阻时,电阻上消耗的能量。

数值上等于电流脉冲波形函数平方的时间积分,W/R=∫i2dt。

41.SPD最大承受能量Emax:SPD未退化时能承受的最大能量,又称SPD 的耐冲击能量。

说明:上述参数及定义主要源自IEC低压配电系统的SPD标准,对应用于信号或数据线的SPD参数将在以后介绍。

相关文档
最新文档