“天文学”简介、含义、起源、历史与发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天文学

翻开人类文明史的第一页,天文学就占有显著的地位。巴比伦的泥碑,埃及的金字塔,都是历史的见证。在中国,殷商时代留下的甲骨文物里,有丰富的天文记录,表明在黄河流域,天文学的起源可以追溯到殷商以前更为古远的世代。

几千年来,在人类社会文明的进程中,天文学的研究X畴和天文的概念都有很大的发展。为了说明我们今天对天文这门学科的理解,本文将在第一节里首先介绍一下天文研究的特点。本文的第二节──星空巡礼,是对目前所认识的天文世界的几笔速写。在第三节里,我们举出伽利略-牛顿时代天文学的一次飞跃,来对照当前天文研究的形势,希望借此探讨天文学发展的规律,并强调说明一次新的飞跃正近在眼前。

我们不准备、也不可能用这篇短文囊括天文学悠久的历史和丰富的内容(这是本书这一整卷的任务),而只是对它的特征、现状和趋向作一个概括性的描述。为使读者对天文学的轮廓有一个认识,本文的第四节,用简单的图解方式介绍当前天文学科各分支之间的相互关系。

天文学研究的特点

天文学是一门古老的学科。它的研究对象是辽阔空间中的天体。几千年来,人们主要是通过接收天体投来的辐射,发现它们的存在,测量它们的位置,研究它们的结构,探索它们的运动和演化的规律,一步步地扩展人类对广阔宇宙空间中物质世界的认识。

作为一颗行星,地球本身也是一个天体。但是,从学科的分野来说,“天”是相对于“地”的。地面上实验室里所熟悉的那些科学实验方法,很多不能搬到天文学领域里来。我们既不能移植太阳,也无法解剖星星,甚至不可能到我们所瞩目的研究对象那边,例如,到银河系核心周围去看一看。从这个意义上来说,天文学的实验方法是一种“被动”的方法。也就是说,它只能靠观测(“观察”和“测量”)自然界业已发生的现象来收集感性认识的素材,而不能像其他许多学科那样,“主动”地去影响或变革所研究的对象,来布置自己的实验。

观测,主要依靠观测,是天文学实验方法的基本特点。不断地创造和改革观测手段,也就成为天文学家的一个致力不懈的课题。宇宙中的天体何止“恒河沙数”,而同类型的天体离开我们愈远看起来也愈暗弱。因此,观测设备的威力愈益提高,研究暗弱目标的能力就愈益增强,人的眼界就愈益深入到前所未能企及的天文领域,同时也就愈益扩展到遥远的空间深处。

天文观测尽管可以看作是一种“被动”的实验,但是,在浩瀚无际的宇宙空间中,从犹如沧海一粟的地球上所能进行的实验,无论是多么“主动”,多么“精确”,然而在规模上,在内容和条件的多样化上,都不可能同天文世界中大自然本身所演出的“实验”相比拟。因此,天文观测尽管带有它所不可避免的“被动”性和由此而来的粗略性,却仍然是、而且将永远是人类考察自然、认识自然的一个必不可少的方面。

认识自然是改造(或利用)自然的前提,而改造自然,也就是生产实践,又往往是认识自然的动力。天文学,作为一门以认识自然为主题的自然科学,同生产实践之间正是存在着这种辩证关系。与此同时,二者又各有自己的发展规律。天文学的发展规律,概括来说,总是表现为针对每一时期中学科本身的主要矛盾(也包括由生产课题向学科提出的矛盾),沿着观测──理论──观测的途径螺旋上升。

在这样螺旋上升的发展过程中,天文学和其他学科一样,并不是孤立地前进,而是随时

都同许多邻近学科互相借鉴,互相渗透的。它从应用光学、无线电电子学以及各种工程、技术中汲取养料,创造独特的观测手段,而天文观测手段的每一发展,又都给应用科学带来有益的东西。天文学借助于数学来分析天文观测结果和进行理论演算,反过来,由于天文学上的应用而发展起来的数学方法,又丰富了数学的内容。物理学各个分支以及力学、化学等的研究成果,是天文工作的理论基础,而天文学的各种发现以及天体的理论研究,又多次地反过来为物理学和其他有关学科开辟新的研究前沿。这说明各种学科之间的辩证关系,也正是包括天文学在内的各门科学的共同特点。

天文学的发展对于人类的自然观发生重大的影响。哥白尼的日心学说(见日心体系)曾经使自然科学从神学中解放出来。康德和拉普拉斯关于太阳系起源的星云学说,在十八世纪形而上学的自然观上打开了第一个缺口。在当今的天文学前沿上,辩证法与形而上学、唯物主义与唯心主义的斗争,仍然在持续地进行。

天文学研究中的一个重大课题是各类天体的起源和演化。在我们所观测到的天体中,百万岁的年龄算是很年轻的。太阳的年龄约为五十亿岁,是一个中年的恒星。可是,人类的文明史迄今不过几千年,而一个天文学家毕其一生也不过几十年的岁月。因此我们所能研究的天文现象,在天体的生命史中只相当于一刹那的过程。从“一刹那”的观测来探讨百亿年的演变,应当说是天文学研究的又一个特点。

天文学家虽然无法进行长达亿年的观测,但是可以观测到数以亿计的天体。一个天体的物理特征,除了反映出它的基本结构以外,还反映它所处的演化阶段,就像一个人的各种特征可以反映出他的年龄一样。此外,天体的信息是通过辐射(比如光)传给我们的。对于遥远的天体,光在旅途中要经历漫长的时间,比如说对于离我们一亿光年的天体,光要用一亿年才送到它的信息,而我们看到的则是它一亿年前的形象。这样,我们所观测到的许许多多天体,展示给我们的是时间上各不相同的“样本”。特别是我们目前所看到的河外(银河系以外的)天体,代表从百万年直到上百亿年前的各种“样本”,包含着上百亿年的演化线索。因此,通过统计分类和理论探讨,我们就可以建立起天体演化的模型。

这样,天文学是在极其“短暂”的千百年时间里,以基本上“被动”的观测方法,面向广阔无边的宇宙空间,探索各类天体在漫长时间历程中的存在和演变。它不断地从同代科学技术的宝库中,充实自己的实验武器和理论武器,同时也不断地以自己的成就丰富这个宝库。在科学相对真理的长河中,天文学循着观测──理论──观测的发展途径,不断把人的视野伸展到宇宙的新的深处。

星空巡礼

现在我们环顾一下目前所认识的天文世界。

太阳和太阳系太阳是太阳系的中心天体,占有太阳系总质量的99.86%。太阳系的

其他成员:行星、小行星、彗星、流星,都绕着太阳旋转。

从天文学的角度看,地球贵在是一个适于生物存在和繁衍的行星。虽然我们相信宇宙间还会有千千万万个能够繁殖生命的星球,但以目前的科学水平,我们还不能发现它们。作为行星,地球只是太阳系的一个普通成员。它的直径约13,000公里,与太阳相距约1.5亿公里,每年绕太阳公转一周。它的物理结构和化学组成虽然都有自己的特点,但并不特殊。连地球在内,太阳系内已经知道的有九个行星,从离太阳最近的算起,依次为水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星。它们都沿着同一方向自西向东绕着太阳

相关文档
最新文档