微反应技术最新进展及其在精细化学品合成中的应用

合集下载

微反应器在精细化工领域氧化反应中的应用进展

微反应器在精细化工领域氧化反应中的应用进展

微反应器在精细化工领域氧化反应中的应用进展
李绪根;王建芝;刘捷;林笑;张程;喻发全
【期刊名称】《化学与生物工程》
【年(卷),期】2022(39)8
【摘要】氧化反应在精细化学品合成过程中占比最大,超过了50%.然而,许多氧化反应中间体的过度氧化难以控制,导致选择性低,反应放热量大,易发生火灾、爆炸、泄漏等安全事故.微反应器具有独特的结构,可实现强化传质、传热,可精确控制反应温度和反应时间.将微反应器应用于氧化反应可提高氧化反应的转化率和选择性,特别是能有效提高生产安全性.对微反应器在精细化工领域氧化反应中的应用进展进行了综述,包括烷烃氧化、烯烃氧化、醇氧化、醛酮氧化、芳香族化合物氧化、胺氧化等,为微反应器的更广泛应用提供了帮助.
【总页数】9页(P1-9)
【作者】李绪根;王建芝;刘捷;林笑;张程;喻发全
【作者单位】武汉工程大学化工与制药学院
【正文语种】中文
【中图分类】TQ05
【相关文献】
1.浅谈精细化工中微反应器的应用
2.精细化工中微反应器的应用初探
3.微反应器技术在精细化工中的应用
4.微反应器技术在精细化工中的应用
5.微反应器技术在精细化工中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。

精细有机合成的新方法和新技术

精细有机合成的新方法和新技术

精细有机合成的新方法和新技术在有机化学领域,精细有机合成技术一直以来受到广泛的关注。

近年来,随着新材料、新药物的不断涌现,精细有机合成技术也得到了持续的发展和创新。

本文将介绍一些新的精细有机合成方法和技术,包括化学反应过程的精确控制、环境友好的催化剂、氢气合成的先进技术等。

一、精确控制化学反应过程化学反应中,反应物的种类、浓度、溶剂、温度、反应时间等因素会影响反应的速率、选择性和产物质量。

为了得到高质量的产物,精确控制化学反应过程是非常关键的。

其中,反应温度是影响反应速率和选择性的关键因素之一。

低温反应可以提高高反应物间的选择性,而高温反应可以提高反应速率。

一些新的技术和方法已经被应用于温度控制,例如热电效应、微波加热、电子可控陶瓷加热等。

另一个影响化学反应过程的关键因素是反应物浓度。

高浓度可以提高反应速率,但也容易造成争夺反应物而导致副反应的产生。

对反应物浓度的控制是通过使用微量反应来实现的。

微量反应在反应过程中控制了反应物的精确配比,产生了更高的选择性和高质量产物。

微液滴逐个处理技术和微通道技术是常用的微量反应方法。

二、环境友好的催化剂传统催化剂在有机合成的过程中,常常需要大量的溶剂和高温高压条件,这不仅浪费能源,而且产生了大量的废弃物,对环境造成了影响。

因此,环境友好的催化剂显得尤为重要。

近年来,一些新的催化剂被提出并应用于有机合成中,例如绿色催化剂、生物催化剂等。

其中,绿色催化剂是指那些使用天然有机物、小分子化合物、无机盐等环境友好的催化剂。

这些催化剂不仅能够提高反应的速率和选择性,而且可溶于水、酒精、甚至绿色溶剂如DMSO。

这些催化剂在与溶剂的混合中,形成稳定的包裹形态,从而在增加反应速率的同时,促进水解反应,并保证产品纯度。

此外,生物催化剂是一类在正常温度和压力下,利用微生物、酶体细胞等生物体进行的有机合成反应。

这些生物催化剂可以在极度温和的条件情况下,实现高选择性的合成。

三、氢气合成的先进技术氢气是一种环境友好的燃料,因此氢气合成技术已经被广泛研究和应用于有机合成领域。

微通道反应器的高效精细化工时代

微通道反应器的高效精细化工时代

微通道反应器的高效精细化工时代微通道连续流反应器技术基于独特的非金属耐腐材质和卓越的传热-传质性能设计,可有效强化合成反应条件,是对传统化工小试和中试生产装备的重大革新,它打开了新时代高效化学研发和生产的窗口。

让化学反应时间从几小时或几十小时缩短到几十秒到几分钟,同时解决强腐蚀、易爆、高能耗、高溶剂消耗和高污染排放等诸多难题,这正是微通道反应器独有的魅力。

微通道反应器技术已应用于医药、农药和染料中间体合成。

常见的应用领域包括选择性硝化、浆态加氢、重氮偶合、磺化、卤化和氧化等反应,以及在材料和催化剂制备中用于纳米材料合成、特种试剂制备如格氏试剂和过氧化试剂等。

微反应器技术,特别是液相微反应器技术最早于上世纪90年代后期在德国出现。

当时根据原子能技术民用化项目的要求,微型机械加工技术以及微通道结构热交换器被用于处理强放热和高危险化学品。

德国在1997年开发成功微米级高硼硅玻璃微通道反应器用于偶氮偶合反应。

微反应器技术很多年来一直徘徊在研发和科研应用阶段,停留在“微小”的流体通量水平上,主要用于实验室小剂量化学合成路线的研究和筛选。

将微反应器优良的传质和传热效能体现在大规模的产业化装置中,一直是该领域的瓶颈。

但现在已经成为具有生产成本优势的工业化利器。

据统计,在精细化工反应中,大约有20%的反应可以通过采用微流体化工技术,在收率、选择性或安全性等方面得到提高。

微化工技术可用于高效换热、高效混合、强放热反应过程,高附加值精细化学品、剧毒物质、超细/纳米颗粒以及高能炸药的生产过程。

微流体化工技术涉及物理、化学、化工、生物、材料、微电子以及微机械加工等诸多领域,学科交叉性强,其基本原理是通过特殊设计的微结构单元对流经的反应流体进行切割,实现反应流体见以微米时空尺寸,甚至更小进行混合和换热。

与传统化工技术相同,微化工技术也使用反应器、混合器、换热器等单元组件。

但同传统化工工艺相比,微化工工艺微反应工艺实现了对传质传热的真正强化,使化学过程更快的传质传热、更好的时空收率、更安全环保、更经济节能、占地面积小,大大降低投资成本及能耗。

新型精细化学品的制备和应用

新型精细化学品的制备和应用

新型精细化学品的制备和应用新型精细化学品制备和应用的前景随着现代科学技术的不断发展,新型精细化学品的制备和应用正逐渐成为重要的发展方向。

精细化学品是指具有高度纯度和特定结构、性质及用途的化学品。

这类化学品在材料、能源、医药、生物医学等多个领域都有广泛的应用前景。

制备新型精细化学品的九大技术一、新型合成方法传统的化学合成方法往往需要使用有害物质,且容易造成环境污染。

相比之下,新型合成方法则大力推广“无害化、环保化”的理念。

常见的新型合成方法有绿色合成技术、超声波辅助技术、微波辅助技术、电化学合成技术等。

这些技术不仅能够提高合成效率,还能减少对环境的影响。

二、生物酵素技术生物酵素技术是利用生物体内发酵产生的酶,对化学反应进行催化。

与传统化学合成相比较,该技术具有速度快、选择性高等优点,还能将催化反应从高温、高压的条件向常温、常压的条件转化。

三、纳米技术纳米技术是指将物质制备成纳米级粒子的技术。

由于材料的尺寸与形态能够在分子水平上进行调制,因此该技术广泛应用于催化、生物医学、海洋科学、环境保护等领域。

四、微流控技术微流控技术是指利用微流道的小尺度和小流速,对物质进行混合、反应和分析。

这种技术能够大大减少试剂和能源的使用量,同时提高反应效率和准确度。

五、化学反应工程技术化学反应工程技术是指利用生化、物理和数学等多个领域的知识,对化学反应过程进行研究和优化的技术。

通过反应过程的优化,不仅能够大幅提高反应效率,还能减少反应时间和化学废料的产生。

六、高效液相色谱技术高效液相色谱技术是一种常用的分析技术,它可以对样品进行定量分析、结构分析和化学反应机理研究等。

该技术在制备精细化学品中可以对反应动力学、材料分离纯化等方面进行分析和优化。

七、固相萃取技术固相萃取技术是一种将化合物从混合物中分离、纯化和富集的技术。

该技术具有灵敏度高、选择性好、操作方便等优点,可用于微量成分的分离与富集。

八、等离子体技术等离子体技术是一种将气体或液体物质转化为等离子体的技术。

浅析微化工技术在化学反应中的应用进展

浅析微化工技术在化学反应中的应用进展

技术应用与研究Chenmical Intermediate当代化工研究2016·0233浅析微化工技术在化学反应中的应用进展OO彭OOO川(四川晨光工程设计院OO四川成都OO610041)摘要:微化工技术是现代化学项目范围的研究前沿和热点。

由于特点尺度的微型化,增强表面作用,传递功能相对常规尺度的设备提升了2~3个数量级。

展开微化工技术研究旨在加强化工过程安全性、推动过程加强与化工体系小型化,提升能源、资源运用效率,达到节能降耗之目的;其顺利开发和运用将对化学化工区域形成重大影响。

关键词:微化工技术;微反应器;微通道中图分类号:T 文献标识码:ABrief Analysis on the Application Development of Microchemical Technologyin Chemical ReactionPeng chuan(Szechwan Morning Engineering Design Institute, Sichuan Cheng d u 610041)Abstract :Microchemical technology is the research front and hotspot in modern chemistry. As for the micromation of chararacter andscale,increasing surface function and transmission function have increased by 2-3 levels comparing to the conventional scale. The aim of taking microchemical technology research is to increase chemical process safety,promote the process and chemical system miniaturization,increase energy and resources operation efficiency and achieve the aim of energy-saving and cost-reducing. This technology’s success exploitation and application will bring great good influence on chemistry area.Key words: microchemical technology ;microreactor ;microchannels一、微反应器和常规釜式反应器1.常规釜式反应器在传统化工工业中,很多在间歇或半间歇釜式反应器内实施制药、精细化学品与化工中间体的合成,具备灵活操作、容易适应不一样的条件操作,一般适用于批量小、类别多的产品,在精细化学品和生物工程产品的生产中有较强的优势。

微化工技术的应用

微化工技术的应用

微化工技术的应用微化工技术是一种将传统化工过程微型化和集成化的技术。

通过将反应器、分离器、传质器等微型化,可以显著提高反应速率、传质效率和热效率,减少废物排放和能源消耗,从而实现工业生产的高效、环保和可持续发展。

微化工技术已经在多个领域得到应用,本文将以几个典型的应用为例进行介绍。

1. 化学合成中的微化工技术应用在化学合成过程中,微化工技术可以实现反应的快速与高效。

例如,在有机合成中,传统的合成反应需要数小时甚至数天才能完成,而采用微化工技术后,反应时间可以缩短到数分钟甚至数秒钟。

此外,微化工技术还可以实现多相反应的高效进行,减少反应物的浪费和副产物的生成。

通过微化工技术的应用,化学合成过程的效率和选择性得到了显著提高。

2. 药物制造中的微化工技术应用微化工技术在药物制造中具有重要的应用价值。

传统的药物制造过程往往需要多个步骤的反应和分离操作,耗时且效率低下。

而采用微化工技术后,可以将多个步骤的反应和分离操作集成在一个微反应器中,实现一步法合成药物,大大提高了制药过程的效率和产品质量。

此外,微化工技术还可以实现对药物合成过程的实时监测和控制,提高了制药过程的可控性和稳定性。

3. 能源化工中的微化工技术应用能源化工是一个重要的领域,微化工技术在其中的应用也具有重要的意义。

例如,在石油炼制过程中,传统的精馏塔操作存在能耗高、设备大等问题,而采用微化工技术后,可以将精馏过程微型化,减少能耗和设备体积。

另外,微化工技术还可以应用于煤制气和生物质能源的转化过程中,提高能源转化效率和产品选择性。

4. 环境保护中的微化工技术应用微化工技术在环境保护领域也有广泛的应用。

例如,在废水处理中,传统的废水处理工艺存在处理周期长、处理效果差等问题,而采用微化工技术后,可以将废水处理过程微型化,提高处理速度和处理效果。

此外,微化工技术还可以应用于废气处理、固废处理等环境保护领域,实现资源的高效利用和废物的减量化。

微化工技术在化学合成、药物制造、能源化工和环境保护等领域都有广泛的应用,可以提高反应速率、传质效率和热效率,减少废物排放和能源消耗,实现高效、环保和可持续发展。

微通道反应器中精细化学品合成危险工艺研究进展

微通道反应器中精细化学品合成危险工艺研究进展

课题组自2016年开始,开展基于微通道反应器的连续化生产工艺开发等方面的研究工作。

对氯化、溴化、氟化、氧化、重氮化、硝化、加氢及胺化等反应过程进行了深入系统的研究。

本文是在课题组前期研究基础上,对相关领域最新研究成果进行了归纳、总结,并结合作者多年研究心得所撰写,以期为科研工作者了解相关领域的研究现状、发展趋势提供帮助。

摘要:卤化、氧化、重氮化、硝化以及催化加氢是精细化工生产中的重要反应,通常以间歇方式在釜式反应器中进行,存在安全隐患,并且反应效率低。

微通道反应器技术的发展为解决上述问题提供了有效途径,因此,发展基于微通道反应器的安全高效合成工艺成为当前精细化工领域的研究热点之一。

该文综述了近年来微通道反应器中涉及精细化工产品合成危险工艺的研究进展,并指出了微通道反应器存在的不足和今后研究的方向。

结束语与展望本文总结了新型微通道反应器的设计、构建和相关产品在微通道反应器中合成工艺的研究进展,涵盖了放热剧烈、反应物或产物不稳定、物料配比严格、高温高压等危险反应工艺,与国家石化化工行业鼓励推广应用的技术和产品目录的第一条“新型微通道反应器装备及连续流工艺技术”的范畴相契合[92]。

从中发现:(1)微反应器的材质与反应物在反应器内表面的均匀分布以及耐腐蚀性密切相关,从而影响反应能否顺利进行;(2)均相或气-液两相反应可以在经典的毛细管线圈反应器内进行,通过工艺参数的优化可以达到理想的结果,其中停留时间是主要因素;(3)对于光催化反应,微反应器的构型设计应满足尽可能大的受光面积;(4)对于气-液-液三相反应,微反应器的设计首先考虑的是反应物相的充分混合问题,混合器和反应器芯片的构造与构型是优先考虑的因素;(5)采用催化活性组分修饰的毛细管微反应器可以解决经典毛细管反应器不能进行固-液或气-固-液多相催化反应的问题,而且无需催化剂的分离,其中负载催化活性组分的活性和稳定性是优先考虑的问题;(6)填充床反应器上也可进行固-液或气-固-液多相催化反应,催化剂的填充需避免大的压降问题;(7)除了反应温度、反应压力以外,气体流速、液体流速以及停留时间也是获得微通道反应器中相关反应优化工艺的重要参数。

微型反应器的应用前景

微型反应器的应用前景

微型反应器的应用前景微型反应器是一种新型的化学反应器,它以微细的体积、高效的反应、可控的反应条件、安全可靠和环保等诸多优点,在化学制造、药物开发、生物工程以及材料科学等各个领域得到了广泛的应用。

本文将探讨微型反应器的应用前景,从三个方面进行讨论。

一、微型反应器在化学制造领域的应用前景化学制造是传统的应用领域,微型反应器在化学制造中的应用可以提高反应效率,降低废料产生,提高产品的质量和安全性。

由于微型反应器具有小尺寸、可定量控制反应毒性和温度等诸多特点,因此被广泛应用于化学催化、聚合、氢化加氢、脱羧、酯化、酰胺化、酰基化和氧化等反应。

例如,微型反应器在化学催化中应用广泛,可以有效解决传统液相催化反应中分离副反应产物和清洗催化剂等问题,从而提高反应产物的纯度和产量。

此外,微型反应器还可以用于制造无机、有机、金属和半导体等领域的新材料。

二、微型反应器在药物开发领域的应用前景微型反应器在药物开发中的应用越来越受到关注。

首先,微型反应器可以精细调节反应条件和反应速率,从而获得更加稳定和高质量的药物分子。

其次,微型反应器由于其小尺寸和授权设计,可以通过数据分析和仿真技术准确预测和控制不同药物的反应特性,提高药物研发效率和降低研发成本。

此外,微型反应器还可以用于药物质量控制、动物试验、临床前研究以及药物生产等领域。

三、微型反应器在生物工程领域的应用前景生物工程是应用生物学原理和工程技术解决人类社会问题的科学,微型反应器在生物工程领域具有很高的应用前景。

首先,微型反应器可以加速生物学反应过程,减少生物产物的流失和丢失,并实现精细调节反应条件,提高生物产物的质量和效率。

其次,微型反应器具有可靠性和安全性,可以保护生物体系中不稳定的生物样品,使生物反应更加稳定和可持续。

此外,微型反应器还可以用于生物学研究、基因工程、合成生物学以及环境监测等领域。

总的来说,微型反应器作为一种快速、有效、精细和可控的化学反应器,在化学制造、药物开发和生物工程等领域拥有广阔的应用前景。

微化工技术在化学反应中的应用进展

微化工技术在化学反应中的应用进展

微化工技术在化学反应中的应用进展1赵玉潮,张好翠,沈佳妮,陈光文,袁权中国科学院大连化学物理研究所,辽宁大连(116023)E-mail:gwchen@摘 要:微化工技术是当前化学工程领域的研究前沿与热点。

本文就微化工技术在均相、气-液和液-液两相反应体系中的应用,结合具体研究范例阐释微反应器内进行化学反应的可行性。

与传统化工设备相比,微化工技术及其设备具有很大的开发潜力和广泛的应用前景。

关键词:微化学工程;微化工技术;综述;微反应器;微混合器;微通道中图分类号:TQ 032 文献标识码:A随着社会的不断发展和人类生活水平的持续提高,对产品种类与数量的需求不断增加,促进了现代过程工业飞速发展;同时对环保要求日益提高,建设安全、经济、生态和实现可持续发展的要求更为迫切。

21世纪化学工业发展的一个趋势就是安全、清洁、高效、节能和可持续性,尽可能地将原材料全部转化为符合要求的最终产品,实现生产过程的零排放。

要达到这一目标,既可以从化学反应本身着手,通过采用新的催化剂或合成路线来实现,即化学的方法;又可以从化学工程角度出发,采用新的设备或技术,通过强化化工生产过程来实现,即工程的方法(过程强化)[1~3]。

20世纪90年代初,顺应可持续与高技术发展的需要催生了微化工技术的发展[4~9],其主要研究对象为特征尺度在数微米到数百微米间的微化工系统,由于系统尺度的微细化使得各种化工流体的传热、传质性能与常规系统相比有较大程度的提高[10~12],即系统微型化可实现化工过程强化这一目标。

自微反应器面世以来,微反应技术的概念就迅速引起相关领域专家的浓厚兴趣和关注,欧美、日本、韩国和中国等都非常重视这一技术的研究与开发,主要研究机构包括Dupont公司、MIT、美国西北太平洋国家实验室(PNNL)、IMM、FZK、BASF、Bayer、Axiva、Merck、Shell、UOP、京都大学、东京大学、九州大学、Pohang、中科院大连化学物理研究所、清华大学和华东理工大学等。

化学反应工程的新进展与应用

化学反应工程的新进展与应用

化学反应工程的新进展与应用化学反应工程是利用化学反应原理与工程技术相结合的一种综合性学科。

近年来,随着科技的不断发展,化学反应工程在各个领域都得到了广泛的应用和推广。

在本文中,将主要探讨化学反应工程的新进展和应用。

一、微反应器技术微反应器技术是一种将反应器和微机电系统(MEMS)相结合的新型反应工艺。

采取微反应器可以有效地减少废气、废液和废物的产生,大幅度地降低了能耗和生产成本。

同时,微反应器还有很好的流体控制能力和精细的温度控制能力,能够为化学反应提供更加优化的环境,使反应速率更快,产品质量更高。

二、晶体化学反应晶体化学反应是利用晶体的成长过程,使分子彼此相遇并发生化学反应的一种新型化学反应。

此技术可以有效地改变化学反应的程度和速率,同时具有极高的选择性,适合于那些需要高度纯净和高度复杂的化合物的制备。

晶体化学反应还可以应用在基因测序、药物研发等领域。

三、生物催化剂生物催化剂是指可以促进化学反应发生,同时还可以重复使用,并且不破坏反应物的生物体。

生物催化剂可以极大地降低能耗和源的消耗,同时具有更高的废物降解效率和反应温度控制能力。

生物催化剂已经被广泛应用于染料、食品、医药等领域。

四、多相反应多相反应是一种将反应物与催化剂的物理状态尽可能地加以区分和隔离的化学反应,例如气体与液体、固体与液体等。

多相反应技术可以有效地将反应物彼此隔离,从而加速反应速率,提高产品质量和产量。

多相反应也被广泛应用于石油化工、合成材料及新能源开发等领域。

五、绿色化学合成绿色化学合成是一种以环保、低风险、节能和高效为基础的化学合成技术。

绿色化学合成可以有效地减少或避免污染物的产生,降低毒性和危险性,并且在化学合成过程中的能量和原材料消耗得到最大限度的降低。

绿色化学合成在精细化学品、药品、化妆品和食品添加剂等领域得到了广泛的应用。

综上所述,随着新技术和新理念不断涌现,化学反应工程正在不断地向高效、绿色和环保的方向发展。

科技的不断进步和应用,将极大地改善人们的生活质量和环境,带来更多的人类福祉。

连续流微反应技术在药物合成中的应用研究进展

连续流微反应技术在药物合成中的应用研究进展

化工进展CHEMICAL INDUSTRY AND ENGINEERING PROGRESS2019年第38卷第1期连续流微反应技术在药物合成中的应用研究进展程荡1,2,陈芬儿1,2(1复旦大学手性分子催化与合成工程中心,复旦大学化学系,上海200433;2上海市手性药物工业不对称催化工程技术研究中心,上海200433)摘要:基于微反应器的连续流微反应技术在化学制药行业还是相对较新的概念,相比于传统釜式合成方式,该反应技术具有传质传热效率高、本质安全、过程重复性好、产品质量稳定、连续自动化操作和时空效率高等诸多优势,其用于化学药物合成中的研究越来越多。

本文综述了近年来连续流微反应技术在实现从起始原料到终端原料药或制剂的“端-到-端”连续合成制备方面的研究进展,以典型案例分析的方式具体阐明了它的技术优势和重要意义,分析总结了其应用于化学药物合成目前所存在的问题。

总体来说,化学药物合成的工艺路线较长,各步反应间常存在体系兼容性、溶剂置换、分离纯化和加料顺序等方面的问题,造成各单步合成转化之间的工艺衔接和耦合后处理步骤是“端-到-端”多步连续流微反应技术的难点和挑战,亟待进一步发展。

同时指出发展能与微反应器有效耦合的工艺衔接及后处理技术与装备将逐步成为该领域的研究热点。

关键词:微反应器;药物;合成;在线分离纯化;系统集成中图分类号:TQ460文献标志码:A文章编号:1000-6613(2019)01-0556-20Progress in applied research of the continuous-flow micro-reactiontechnology in drug synthesisCHENG Dang 1,2,CHEN Fen ’er 1,2(1Engineering Center of Catalysis and Synthesis for Chiral Molecules,Department of Chemistry,Fudan University,Shanghai 200433,China;2Shanghai Engineering &Technology Research Center of Industrial Asymmetric Catalysis forChiral Drugs,Shanghai 200433,China)Abstract:The continuous-flow micro-reaction technology based on micro-reactors is an emergingtechnology in drug synthesis.It offers many advantages,as compared to the conventional batch-wisesynthesis,including excellent heat -and mass-transfer characteristics,inherent safety,high process reproducibility,consistent product quality,facile automation,and exceptional space-time efficiency.Its advantages are increasingly appreciated by the drug synthesis community.In this review,the recent research progress of end-to-end continuous-flow synthesis and preparation of active pharmaceutical ingredients (APIs)and final dosages from starting materials were highlighted.The technologic advantages and significance of continuous-flow micro-reaction technology were further illustrated by means ofanalyzing typical research examples.The limitations of this technology applied to drug synthesis were特约评述DOI :10.16085/j.issn.1000-6613.2018-1174收稿日期:2018-06-05;修改稿日期:2018-10-09。

化学合成中的新型反应技术

化学合成中的新型反应技术

化学合成中的新型反应技术随着科技的不断进步,新型反应技术在化学合成中的应用也变得越来越重要。

新型反应技术的出现,对于化学合成的效率、安全性、环境友好性等都有着积极的影响。

本文将探讨几种近年来应用广泛的新型反应技术。

1. 微波反应微波反应是指在微波辐射下进行的化学反应。

由于微波能量的高度局部化,使得反应物分子的振动和摩擦产生热量,在短时间内达到高功率,从而升高反应温度和反应速度。

微波反应具有快速、高效、环保等优点。

例如,有机合成中的烷化反应、酯化反应、环化反应等都可以用微波反应实现,反应时间和温度都可以显著降低,反应产物的收率和纯度也可得到提高。

2. 光催化反应光催化反应是指利用特定波长的光源来激发催化剂,从而引发反应的化学反应。

例如,自由基反应、还原反应、氧化反应等都可以通过光催化反应实现。

由于反应过程中需要光催化剂作为催化剂,催化剂可以不被消耗,因此在循环使用和废弃物的处理上都具有环保优势。

同时,光催化反应还具有反应速率快、反应条件温和等优点,在有机合成、废水处理、制氢等领域具有广泛的应用前景。

3. 超临界反应超临界反应是指在高温高压下,将反应物置于临界点以上状态,进行反应的一种化学反应。

由于反应废液在超临界状态下会变得具有流动性且可溶于溶剂,这种反应在分离和纯化产品时非常便利。

同时,超临界反应还可以提供反应条件的可调节性,使得反应温度能够被控制在一个较合适的温度范围内,减少了副反应的产生,提高了反应产物的质量。

4. 固体相反应固体相反应是指反应物处于完全的固态状态下进行的化学反应,其速度受到晶格扩散和某些表面上的化学反应的影响。

固体相反应常被用来研究均匀固态电极反应机理、材料合成等问题。

这种反应的优点是反应条件简单,不需要任何溶剂。

总之,新型反应技术已经成为化学合成领域的研究热点。

微波反应、光催化反应、超临界反应和固体相反应等新型反应技术,都已经被广泛应用于有机合成、材料合成、废水处理、制氢等领域。

微型反应器技术在药物合成中的应用

微型反应器技术在药物合成中的应用

微型反应器技术在药物合成中的应用随着科学技术的不断发展和进步,微型反应器技术在各个领域的应用也越来越广泛。

在药物合成领域中,微型反应器利用其独特的优点正在被越来越多的科学家所重视和应用。

本文将详细介绍微型反应器技术在药物合成中的应用。

一. 微型反应器技术概述微型反应器技术是一种针对小尺寸反应器的制造及应用的技术,主要是利用微制造技术制造微型反应器,将反应液体与气体、固体等介质进行反应,通过对微型反应器的设计和控制,以实现对反应物分子间的相互作用、扩散与传递等因素进行精确控制。

它具有反应速度快、反应效果稳定、热量传递和质量传递效率高、废物排放量少等优点,因此逐渐被应用于药物合成领域,成为一种新型的药物合成工具。

二. 1. 高效催化反应微型反应器技术在催化反应中的应用具有明显优势。

由于微型反应器可以控制反应体系的速度、温度、搅拌等因素,因此可以有效的提高反应效率。

这些优秀的特性为药物合成提供了高效率、稳健且可控的催化反应平台。

同时,微型反应器技术可以通过调整反应条件,实现不同反应物的高效、选择性催化反应,为药物开发提供了更多选择。

2. 生产效益提高药物合成过程中,即使是少量材料的浪费也可能导致药物合成效益的大幅降低。

而微型反应器则可以在小尺寸反应器中高效完成反应,从而降低了药物反应过程中的废物量,不仅可以减少材料浪费,而且可以提高药物合成的效益。

3. 使用寿命增加药物合成需要反复催化,使得催化反应器的使用寿命逐渐缩短。

而微型反应器则可以以小型化的方式完成反应,因此可以大大增加催化反应器的使用寿命,减少维护成本。

4. 更高的安全性和精确性在微型反应器中,药物合成反应体系的占比小,因此可以分享更高的安全性。

同时,微型反应器还可以有效地控制反应中的流速、温度、搅拌等过程,精确的控制反应过程中各项参数,提高了药物合成的精确性。

三. 微型反应器技术发展前景随着微型反应器技术在药物领域中的应用不断扩大,它在药物合成中的价值将会越来越被重视。

微型反应器在生产及化学研究中的应用研究

微型反应器在生产及化学研究中的应用研究

微型反应器在生产及化学研究中的应用研究微型反应器是指一种体积非常小的反应器。

由于其小体积的特点,微型反应器可以有效地缩短化学反应的时间和反应的路程,提高反应速率和反应效率。

因此,在化学研究和生产中,微型反应器已经被广泛应用。

本文主要介绍微型反应器在生产及化学研究中的应用研究。

一、生产中的应用研究1. 化工生产中的应用研究微型反应器在化工生产中的应用研究主要集中在新材料的开发、合成和工程化。

例如,利用微型反应器可以快速合成锂离子电池正极材料LiCoO2,并得到了较好的电化学性能,具有广阔的应用前景。

另外,利用微型反应器可以有效地控制反应条件,提高反应精度和产品纯度。

2. 制药生产中的应用研究微型反应器在制药生产中的应用研究主要集中在新药物的开发、合成和生产工艺的优化。

例如,利用微型反应器可以快速合成药物前体、中间体和主体,提高药物合成效率和质量。

此外,微型反应器还可以被用来研究药物物理化学性质、药物代谢动力学和药物毒理学等方面。

3. 食品生产中的应用研究微型反应器在食品生产中的应用研究主要集中在食品添加剂、香料和色素等的开发和生产。

例如,微型反应器可以被用来合成食品添加剂甜味剂、酸味剂和防腐剂等。

此外,微型反应器还可以被用来研究食品化学反应机理、调味效果和食品成分的变化规律等方面。

二、化学研究中的应用研究1. 反应动力学研究微型反应器可以被用来研究反应动力学规律,如反应速率常数、反应机制和反应路径等。

例如,可以利用微型反应器测定铂催化剂的反应动力学参数,包括反应速率常数、表观活化能和反应活性中心数量等。

此外,微型反应器还可以被用来研究化学反应机理、反应溶液环境、反应条件对反应速率和反应动力学曲线等的影响。

2. 化学分析研究微型反应器可以被用来研究化学反应体系的分析。

例如,利用微型反应器可以在线连续监测多个有机化合物的浓度变化,从而得到反应动力学曲线、反应机制和反应路径等有关信息。

此外,微型反应器还可以被用来研究化学中间体转化情况、生成物分配情况和反应机理等方面。

精细化学品的合成与应用

精细化学品的合成与应用

精细化学品的合成与应用一、引言精细化学品是指具有高纯度、高纯度、高技术含量的化学品,是现代化学工业的重要组成部分。

精细化学品的合成和应用在化学领域具有重要的作用,对社会发展和经济发展有着深远的影响。

二、精细化学品的合成方法1.有机合成方法有机合成是合成精细化学品最基本的方法。

传统有机合成利用有机反应室进行,通过掌握合成路线、反应条件、反应物质质量比等参数,可达到合成较高纯度有机化合物的目的。

同时,还有新型的有机合成方法,如微反应器合成、超声波辅助合成等。

2.纳米科技纳米科技是指制造、探索和研究尺寸小于100纳米的物质,如纳米管、纳米棒和纳米金粒子等。

纳米科技可以在合成过程中控制反应的规律性和微观结构,从而使得所得产物的纯度更高,结晶更精细,其应用领域也更加广泛。

3.生命科学技术生命科学技术,包括基因工程与蛋白质构建等技术,可以帮助合成目标物质,从而提高其合成效率和纯度。

此外,还可以利用蛋白质工程技术制备出具有特殊功能的蛋白质合成物,如酶类。

三、精细化学品的应用领域1.医药化学医药化学是合成精细化学品的重要应用领域,因为药物设计的每个阶段都需要使用此类物质。

在药物合成中,精细化学品在提高药物品质和减少副作用等方面作用重大。

2.电子工业目前,电子工业的发展对具有优异电学性能的精细化学品的需求量较大。

这些工业领域中,常使用有机半导体材料,例如电子荧光器材料、光学记录材料等。

3.材料科学材料科学是利用作为基础材料的“组装体”等材料制备出来的材料以便能够对它们的性能进行设计和修改。

因此,精细化学品可以为材料科学领域的研究提供重要的基础。

四、结论精细化学品的合成和应用对化学领域的发展具有重要的作用,可以用于制造高品质化学品和件产物,同时也可以在医学、工业和科学领域中探索各种新材料的应用。

精细化学品的发展前途非常广阔,人们正通过精细化学品为实现科学、工业和医疗的目的而不断探寻和开发新的方法和技术。

微型反应器技术在有机合成化学中的应用

微型反应器技术在有机合成化学中的应用

微型反应器技术在有机合成化学中的应用有机合成化学是用于制备化合物的一门科学,它涉及到一系列的化学反应。

这些反应需要优化,因为它们通常比较危险,需要高温和高压等条件,并且需要耗费大量的时间和资源。

因此,微型反应器技术的出现改变了有机合成化学的现状。

微型反应器是一种用于处理小规模试验的设备。

它可以在非常短的时间内完成反应,而且具有高效、高稳定性和高可重复性等特点。

微型反应器通常由微型反应器芯和微流体控制系统组成。

微型反应器技术的应用可以分为以下几个方面:1. 合成新化合物微型反应器技术可以用于合成新的化合物。

通过微型反应器技术,可以进行多步反应,并在每个步骤中得到高产率和高选择性的产物。

因此,微型反应器技术可以帮助化学家们发现新的化合物。

2. 加速化学反应的速度微型反应器技术可以加速化学反应的速度。

在微型反应器中,反应物可以更快地溶解,反应也可以更快地进程。

因此,微型反应器技术可以缩短化学反应的时间,提高反应的效率。

3. 优化反应条件微型反应器技术可以优化反应条件。

在微型反应器中,温度、压力和反应物的浓度可以更容易地精确控制。

因此,微型反应器技术可以优化反应条件,提高反应的效果。

4. 减少反应过程中的废物微型反应器技术可以减少反应过程中的废物。

在微型反应器中,反应物可以更充分地利用,废物的数量也会减少。

因此,微型反应器技术可以降低成本和环境污染。

微型反应器技术在实践中的应用有很多。

例如,通过微型反应器技术,可以合成新的药物分子,用于治疗疾病。

这种方法比传统的合成方法更快、更有效,可以为药品研发带来革命性的突破。

除此之外,微型反应器技术还可以应用于有机合成化学之外的其他领域。

例如,在化学传感器和能量储存设备中,微型反应器技术可以用于制备新材料。

总之,微型反应器技术是一种非常有前景的技术,可以应用于有机合成化学的多个领域。

这种技术不仅可以加速反应、提高效率,还可以降低成本和减少环境污染。

微化工技术在化学反应中的应用进展

微化工技术在化学反应中的应用进展

微反应器,即微通道反应器,利用精密加工技术制造的特征尺寸在10到300微米(或者1000微米)之间的微型反应器,微反应器的“微”表示工艺流体的通道在微米级别,而不是指微反应设备的外形尺寸小或产品的产量小。

微反应器中可以包含有成百万上千万的微型通道,因此也实现很高的产量。

下面就对微化工技术的应用进行举例说明1、硝化反应由于硝化是易爆和放热的反应,其传质传热过程就成为硝化反应的主要控制参数,因而很适合在微反应器中进行。

前期的研究主要集中在萘、甲苯q及苯和苯的衍生物的硝化反应。

Antes等_l用NO 为硝化剂,研究了萘在微反应器中的硝化反应。

在常规反应器中,硝化反应需要维持低温;而在微反应器中温度可高达5O℃,NO浓度可过量8倍。

Bums和aalTlshaw研究了不同黏度(2—20cm/s)和温度(60和90℃)下苯的硝化反应。

研究表明,随H:sO浓度增大,反应速率可明显提高,副产物二硝基苯的含量也明显降低。

在甲苯的硝化中,产物中二硝基甲苯的含量提高很大。

当HsO浓度为80%时,二硝基甲苯的转化率随酸/有机相体积比升高而增大。

在相同反应速率下,微反应器中副产物含量比现有工业设备中降低很多。

由于Ⅳ,Ⅳ.二烷基尿素的硝化产物被广泛用作增塑剂,Antes等¨研究了它在微通道反应器中的硝化,结果发现,单硝基尿素衍生物产率可高达100%。

Knapkiewicz等研究了2一异丙氧基苯甲醛在硅玻璃微反应器中的硝化反应,2一异丙氧基_5一硝基苯甲醛的产率从常规反应器中的38%提高到87%,产量达到13g/h。

Chen等在微反应器中一步法合成了地乐酚除草剂,与常规两步法操作相比,反应过程中省去了分离中间的操作,同时减少了溶剂的使用。

在数秒的停留时间下,N一(1.乙基丙基)-3,4一二甲基-2,6.二硝基苯胺的转化率可达100%,选择性可达97%。

2、酯化反应生物柴油为混合脂肪酸的甲酯,在常规反应器中由脂肪酸甘油酯和甲醇经酯交换生成。

浅析微化工技术在化学反应中的应用进展

浅析微化工技术在化学反应中的应用进展
4液一 液 反 应
4 . 1硝 化 反 应
2 . 1强 放 热 自由基 聚 合 反 应 为 了验Байду номын сангаас证 微 反 应 系 统 和 常 规 尺 度 反 应 器 是 否 对 自由 基 聚 合
反应 . 科研 人员 1 w a s a k i 等 在 大 量 研 究 的基 础 上 , 曾 经 设 计 了 一 个 关 于 自由基 聚 合 反 应 在 微 反 应 系 统 和 常 规 尺度 反 应 器 中 的 聚 合 度 分 布 的 实 验 。微 反 应 系 统 以 丙烯 酸 丁酯 的 聚合 反 应 为 例 , 着 重 研 究 了微 反 应 系统 内强 放 热 自由基 聚 合 反 应 的 反 应 特 征 。在 实验过程 中 。 由于 微 反 应 器 良好 的 传 热 性 能 , 导致 反 应 几 乎 能 够 保 持 在 恒 温 条 件 下进 行 。最 终 的 实 验 结果 表 明 , 较 之 常规 尺 度 反 应器 , 在 实 验 中采 用 微 反 应 器 , 不 但 使 最 终 的聚 合 度 分 布 窄 , 而 且 该 反 应 器 中 的 高 聚 合 度 物 质 大 量减 少 。避 免 了 反 应 器 堵 塞 问

1微 反 应 器
化 工 单 元操 作所 需要 的混 合器 、 换热器 、 吸收器 、 萃取器 、 反 应 器 和 控 制 系 统 等 一 起 构 成 了 微 化 工 系 统 。 在 整 个 微 化 工 技 术 中. 微 反 应 器 占据 着 核心 地 位 。学 术 上更 确切 地 应 称 之 为 微 尺度 或 微结 构反 应 器 . 它 的 流动 具 有 微 流 动 特征 。微 化 工 器 件 的 内部 通 道 特 征 尺 度 一 般 处 于 微 尺 度 范 围( 1 0 ~ 5 0 0 m ) , 在 尺 寸 上 远 不 如传统反应器。然而 , 较 之分 子水 平 的 反应 , 该 尺 度 则 显 得 非 常 大. 所 以我 们 便 得 到 这样 的结 论 : 利 用 微 反 应 器 并 不 能 改 变 反 应 机 理 和 本 征 动 力 学 特 性 .然 而 微 反 应 器 则 可 以通 过 改 变 流 体 的 传热 、 传 质 及 流 动 特 性 来 强化 化 工 过 程 的 。如 果 与 常规 尺 度 反 应 器 进 行 比较 .特 征 尺 度 的微 微 细 化 便 足 以在 很 大 程 度 上 改 善 微 反应 系统 . 如 大 比表 面 积 、 大 比相界 面积 、 体 积小 、 直 接 并 行 放 大、 过程连续 、 高度 集 成 、 混合 时 间短 、 能耗 低 、 工 艺绿 色 化 等 。

微型反应器的研究及应用前景

微型反应器的研究及应用前景

微型反应器的研究及应用前景微型反应器是一种基于微纳技术设计的小型反应器,其大小通常在毫米级以下。

与传统大型反应器相比,微型反应器有其特有的优势,如更高的反应速率、更高的热和质量传递效率、更好的空间控制和更小的试剂消耗量等。

这些性质使得微型反应器在化学、生物、医学和制药等领域得到广泛应用。

本文将探讨微型反应器的研究和应用前景。

一、微型反应器的研究现状微型反应器的研究始于20世纪60年代,但直到90年代才有了大量的研究成果。

早期的微型反应器大多是基于微加工技术制备的耦合管道结构,随着技术的发展,微型反应器的种类也不断增加,包括颗粒状、膜状、纳米状等不同形态的反应器。

同时,微型反应器也不再只是用于普通的化学反应,而是逐渐拓展到体外诊断、基因挖掘等生物医学领域,甚至应用到电子器件和光学器件等领域。

由于微型反应器具有高效、低耗、快速和可控的特点,因此,它们得到了广泛的关注和研究。

目前,微型反应器的研究重点包括:材料选择、微加工技术、流体控制和反应器仿真等方面。

材料选择是微型反应器设计中一个至关重要的环节,不同的材料和材料组合可以用于不同的反应,比如耐腐蚀材料可以用于化学反应;流体控制是微型反应器性能的关键之一,可以通过流体力学模拟和控制来实现;反应器仿真则可以用于预测反应器表现和反应分析。

二、微型反应器的应用前景微型反应器在化学、生物和医学领域的应用前景广泛。

以下是几个重要领域的应用示例:1. 化学合成在化学领域,微型反应器的应用可以大大提升反应速率和产率,减少废物生成和能耗,从而实现可持续的化学合成。

几乎所有的有机合成反应都可以在微型反应器中进行,比如催化反应、不对称反应、烃化反应等。

此外,微型反应器还可以用于高压和高温反应,有望成为下一代化学反应技术的新平台。

2. 生物医药在生物医学领域,微型反应器可以用于体外诊断和药物研发。

例如,通过分离、诊断和监测患者血液、尿液或唾液等生物标志物,可以提前预测疾病风险和诊断信号,从而实现早期疾病检测和治疗。

微反应技术

微反应技术

微反应技术微反应技术是一种在微观尺度上进行的化学反应分析方法,其应用在许多领域中取得了显著的成就。

本文将介绍微反应技术的原理、应用以及未来的发展方向。

一、微反应技术的原理微反应技术是利用微流控芯片等微纳米尺度设备对微量样品进行反应和分析的方法。

与传统的宏观反应相比,微反应技术具有时间短、反应效率高、试剂消耗少等优点。

其原理主要包括以下几个方面:1. 微反应器设计:微反应器通常由微流控芯片构成,通过微型通道和微阀门等微结构来实现反应的控制和调节。

微反应器的设计需要考虑流体的混合、传质等问题,以实现高效的反应过程。

2. 微流体控制:微反应技术利用微流体的优势,可以实现对微量液滴、颗粒等进行精确的操控和控制。

通过调节微流体的流速、压力等参数,可以实现对反应过程的精确控制。

3. 微反应条件优化:微反应技术可以通过微观尺度的反应条件优化来实现更高的反应效率和选择性。

例如,可以通过微流体的混合和传质效应来提高反应的速率和均匀性,从而实现更高的产率和纯度。

微反应技术的应用范围非常广泛,涉及到化学、生物、材料等多个领域。

以下是一些典型的应用案例:1. 化学合成:微反应技术可以实现对有机合成反应的快速优化和高效控制。

通过微反应器和微流体控制,可以实现多步反应的连续流程化合成,提高产率和纯度。

2. 生物分析:微反应技术在生物分析领域中有着广泛的应用。

例如,可以利用微流控芯片来进行DNA测序、蛋白质分析等。

微反应技术的高效性和灵活性使得生物分析过程更加快速和精确。

3. 医药研发:微反应技术在药物研发中具有重要的应用价值。

通过微反应技术可以实现对药物合成和筛选的高通量化,加快药物研发的速度和效率。

4. 材料科学:微反应技术在材料科学中也有广泛的应用。

例如,可以利用微反应技术制备纳米材料、薄膜等,实现对材料结构和性能的精确控制。

三、微反应技术的发展趋势随着微纳米技术的不断发展,微反应技术也将在未来取得更大的突破和进展。

以下是微反应技术未来发展的几个趋势:1. 多功能化:未来的微反应技术将更加注重多功能化的设计和实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微反应器在各类有机反应中的应用 (1/2)
反应类型 Grignard 试剂 加成反应 A, B 反应方程式 Taghavi-Moghadam, S.; Kleemann, A.; Golbig, K. G. Org. Process Res. DeV. 2001, 5, 652. 温度/压力 收率/时间 49% yield, (A:B = 65:35 )# 78% yield, (A:B = 95:5 )* 备注 低温
传统间歇工艺放大的问题
We had a small problem with the scale-up out of the laboratory....
Bayer MRT Technology Tony ZHAO Page11
微反应工艺易于放大
途径:
LH 1000
20 000 个通道, 宽度 50 µm: 流量 ~ 1000 l/h
低温(活 性正离子 聚合)
ห้องสมุดไป่ตู้
付克反应 A,B 有机锂反应 ABCDE Swern氧化反 应 A,B,D Peptide合成反 应 A,B,E
S. Suga, A. Nagaki and J. Yoshida, Chem. Commun., 2003, 354. Bayer Patents
-78°C -78°C -70°C -40°C
-20°C -20°C
34, 235.
(54) Watts, P.; Haswell, S. J. Chem. Soc. ReV. 2005,
r.t.
r.t.
Less excess reactants*
常温multistep synthesis
Bayer MRT Technology Tony ZHAO # 代表常规反应器工艺结果; *兰色代表微反应器工艺结果。 微反应技术在有机反应中的优势:A 提高反应速率和收率;B 提高反应选择性:C 安全操 Page15 作和快速放大;D 高通量快速工艺优化平台;E 多步及多元工艺开发。
Bayer MRT Technology Tony ZHAO Page18
模块的独特设计(1/3)--- 多样化设计 混合器
梳式 层叠式 LH系列 射流 单向阀式
反应器
曲径式
夹层式
毛细管式 低温
弹仓式
换热器
同轴
Bayer MRT Technology Tony ZHAO Page19
逆流
盘片式
模块的独特设计(1/3)--- 多样化设计
微?反应器 =(连续化)微通道反应器
Bayer MRT Technology Tony ZHAO Page4
(连续化)微通道反应器
微反应器 = 利用精密加工技术制造的特征尺寸在10-300 微米( 一般低于 1000微米 )的连续化的微型通道反应容器 基本功能组件: 微混合器, 微换热器,微反应器 50 µm
Franckevicius, V.; Knudsen, K. R.; Ladlow, M.; Longbottom, D. A.; Ley, S. V. Synlett 2006, 889.
80°C, 1 bar
常(高) 温高压
80°C, 1 bar 硝化反应 A,B Panke, G.; Schwalbe, T.; Stirner, W.; Taghavi-Moghadam, S.; Wille, G. Synthesis 2003, 2827. 90°C 90°C Claisen重排反 应 A,B,C Org Pro Res & Dev, 2001, 5: 636 - 645. 140~150°C 220~260 °C
Bayer MRT Technology Tony ZHAO Page9
微反应器对反应温度/时间的精确控制
避免平行副反应
温度对于一个化学反应非常重要: • 快反应需要降温否则容易失控甚至爆炸 • 慢反应需要加热以提高反应速率 • 许多反应对温度非常敏感(动力学Vs.热力学控制)
避免后续副反应
Bayer MRT Technology Tony ZHAO Page10
25°C 25°C 25°C 25°C
E/Z = ~3/ 20 min E/Z = 0.5~5 PSD bimodal PSD monomodal; +73% glossiness; +66% transparency 98% conv./ 3 days
常温常 压
偶氮颜料 B,D
常温
催化氢化反应 A,C
微反应技术最新进展及其在精细化学品合成中的应用
拜耳技术工程(上海)有限公司 赵东波 博士
内容概要 微反应(器)技术概述及最新进展 拜耳微反应器系统介绍
模块化设计的特点
最新的技术进展 拜耳微反应技术在药物合成及其他领域的应用实例 微乳液制备 有机合成 (医药、农药、香料和染料等) 微米、纳米颗粒制备 微反应器中试合成 拜耳微反应技术交流和合作
98% conv./ 3.5 h (3.0 g) 75% yield/ 2 h + 8 h 73% yield/ 35 min 80~85% yield, 12~27 h 98% yield, 3~10 min 高温 高温
Bayer MRT Technology # 代表常规反应器工艺结果;*兰色代表微反应器工艺结果。微反应技术在有机反应中的优势: A 提高反应速率和收率;B 提高反应选择性:C 安全操作 Tony ZHAO 和快速放大; D 高通量快速工艺优化平台;E 多步及多元工艺开发。 Page16
Chem & Engineering News[J] 88(9), March 01, 2010.
Bayer MRT Technology Tony ZHAO Page17
拜耳模块化微反应器系统
进料泵 软件控制
取样器
微反应系统
1)主要单元* --- 微混合器、微反应器和微换热器; 2)辅助单元** --- 自动控制系统等 ;3) 外围设备*** --- 进料泵、恒温循环器、监测器以及控制阀等。
传感器
压力 流量 温度 取样阀 光导池
执行器
压力控制 质量流量控制 1/8“ 加热 1/16“
进/出口模块 连接模块 夹紧模块
Bayer MRT Technology Tony ZHAO Page20
1/4“
模块的独特设计(2/3) --- 无管化连接

Pressure: Temperature: Flow range: Materials:
x% yield (54:46)# 92% yield (96:4)* 90% yield, 20 kg/ 24 h# 94% yield, 40 kg/24 h* 19% (72%)yield# 88%yield* #
低温
低温 3~4 min 停留时间 低温
Organic Process Research & Development 2008, 12, 911–920
微反应技术特色
适合的工艺广谱 系统响应快,可以实现“按 需生产”
易于放大、安全性高
工艺筛选、组合化学 精确控制提升选择性/收率 工艺稳定可以达到制药规范 要求的cGMP 节能减排 连续化生产,方便与自动控 制系统整合(在线检测)
工艺流程质量控制 (GMP)
Bayer MRT Technology Tony ZHAO Pagem
微反应器的“微”: • 不是特指微反应设备的外形尺寸小; • 也不是指微反应设备产品的产量小;
• 而是指表示工艺流体的通道在微米级别; • 微反应器中可以包含有成百万上千万的 微型通道,因此也实现很高的产量。
拜耳微反应技术研发进展
2000年,Ehrfeld Mikrotechnik AG 创 立(Ehrfeld 教授)
2004年, Ehrfeld Mikrotechnik BTS 加 入拜耳 2007年, Ehrfeld Mikrotechnik BTS GmbH 获得 DIN EN ISO 9001:2000 质量认证 拜耳埃尔费尔德微技术公司 (Wendelsheim ) Ehrfeld Mikrotechnik BTS (EMB) 2010年3月1日, 与 瑞士Lonza公司开展 合作
微反应器在各类有机反应中的应用(2/2)
反应类型 羟醛缩合 A 反应方程式 0.5 mmol (10% TBAF)Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E. Lab Chip 2001, 1, 100. 温度/压力 25°C 25°C 收率/时间 100% conv./ 24 h 100% conv./ 20 min 备注 常温常 压
L×W×H=24×24×24mm
Fluid A
Fluid B
拜耳LH25 微混合器
Bayer MRT Technology Tony ZHAO Page5
极大的比表面积
1000
100
10
1
0.1
d [mm]
比表面积 / 体积 (m2 / m3)
微反应器 10,000 – 50,000 1,500-4,000 100 - 400 4 - 40
微反应(器)技术的优势
Bayer MRT Technology Tony ZHAO Page8
微反应技术的优势
传质换热效率高 停留时间分布窄
反应条件精确控制
可提高反应选择性/收率 工艺条件快速筛选优化 安全性提高 缩短工艺研发到生产的周期 易于放大 连续生产自动化控制
微反应技术前景预测
Bayer MRT Technology Tony ZHAO Page13
相关文档
最新文档