电容器基本原理

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容器基本原理

电容器的电路符号很形象的表明了它的根本功能:隔直通交。电容器的一切功用都源自于此。对于恒定直流电来说,理想的电容器就像一个断开的开关,表现为开路状态;而对于交流电来讲,理想电容器则为一个闭合开关,表现为通路状态。

在上面的图中详细描述了直流电受电容器阻隔的原因。事实上,电容器并非立刻将直流电阻隔,当电路刚接通时,电路中会产生一个极大的电流值,然后随着电容器不断充电,极板电压逐渐增强,电路中的电流在不断减小,最终电容器电压和电源电压相等且反向,从而达到和电源平衡的状态。

而在交流电方面,为方便记忆,我们可以不太严谨但形象的认为交流电能够“跳过”电容器这道“峡谷”,从而保持“正常传导”。

这里有很关键的一点需要明确:无论是直流环境还是交流环境,理想的电容器内部是

不会有任何电荷(电流)通过的,只是两极板电荷量对比发生了变化,从而产生了电场。

要想了解电容器的各种功用,我们还需要了解一下傅立叶级数。各位苦于微积分的朋友不用头晕,我们不需要去研究那些复杂的数学公式,仅仅是需要一个简单的结论:任何一个波,都可认为是多个不同的波形叠加之产物。即,一个波可以拆分成多个振幅、频率都不相同的波(包括振幅和频率为零的波)。这其实正如一个数字也能被拆分成多个其他数字的组合一样,例如3 = 1+2 = 1+1+1 = 0+3。

振幅或频率为零的波是什么?直线。对于电来说,那就是直流电,即电压恒定不变。正如世界上没有绝对的直线一样,世界上也没有绝对的直流电。尽管人们在追求尽可能理想的直流电,但直流和交流总是同时存在的。直流电中含有交流成分,交流电中也包含直流成分。当直流成分占主导地位时,就认为其乃直流电;当交流成分占主导地位时,就认为是交流电。这很像太极所描述的阴中有阳,阳中有阴。

直流和交流总是共存的

事物的具体应用都是由基本原理派生出的,哪怕你不理解只是死记硬背,同样也能够很容易得理解它的具体应用。毕竟,对于基本原理来说,往往仅仅需要知其然即可,例如1+1=2。对于电容器来说,我们需要明白两点:隔直通交和不走电荷。

基于电容器隔直通交和不走电荷的原理,其应用方式也就应运而生了。在目前我们在电脑板卡上常见的电容器应用主要有:电源滤波、耦合与去藕、信号滤波。

电容器的应用:电源滤波

正如之前所说,世界上没有绝对的直流电,为了给设备提供尽可能理想化的直流供电,我们需要一些途径将交流成分尽量剔除。因此,供电滤波电路成为了每一块主板和显卡必备的电路组成部分,没了它们,我们的电脑就无法正常工作。

我们常针对电脑板卡所说的供电滤波电容器,其本质是利用电容器的基本原理,在电路中通

过并联电容器,为交流成分设立额外通道,将其导入地线,从而得到比较稳定的直流电压。因为是在主电路旁边额外设立的一条小路,故而得名:旁路。

我们可以看到电脑主板上通常采用了多个电容器并联进行供电滤波,而且因需要而分成两级,不过它们的功能都是一样的。由于对电压稳定度的要求较低,通常一级旁路电容器也无需很

高级。

在这里,我们不需要去关心电解质的形态,无需在乎电容器的封装与外壳。真正决定电

容器性能的因素将被重点关注:额定电压、容抗、等效串联电阻(ESR)、等效串联电感(E SL)、介质损耗角(tanδ)、漏电流、额定链波电流、温度范围和寿命。(嗯?竟然没有

电容量?)

额定电压

额定电压应该是一个非常好理解的参数,任何元器件都有一定的工作电压要求。对于电

容器来说,它一般不会存在因低压而不工作的问题,所以它的外壳上所标示的额定电压通常

是指正常工作中的耐压能力。额定电压数值通常会比最大耐压低一些。

目前常见的电容器额定电压有2.5V、4V、6.3V、16V等等。它们适用于不同的工作环境。回忆一下笔者在第一部分所讲述的电容器结构,电容器的耐压能力是由电介质的绝缘强度决定的。电介质就像一堵墙阻隔了电流的前进,但是如果电压过高,电介质就可能无力再阻挡电流的通过,导致电容器因电介质击穿而失效。

这样我们其实也就很好理解主板的CPU供电回路上为何会有两种耐压不同的电容器了。因为由电源输入进来的电压为12V,此时我们通常需要在这里安置一些耐压为16V的电容器,作为一级旁路电容器。接着,经过PW M控制器和MOSFET进行降压、升频后,通常需要电感器和电容器进行滤波。此时电压已经降低,所以通常会选用一些低耐压的电容器。

可能有朋友会感到疑问,既然电容器并不要求最低工作电压,那为什么不干脆都用很高耐压电容器呢?这样不是更耐久么?事实并非如此。对于同类电容器来说,为了获得较高的耐压能力,通常会选择增加电介质厚度。如此以来,尽管耐压能力提高了,但是电容量也会减少,需要增加极板面积来保证电容量,这就增加了成本。同时,过高的耐压值也只能成为摆设,如果电路电压已经令2.5V额定电压(最高耐压>额定电压)的二级旁路电容器不堪重负,那么CPU应该早已阵亡。。。。。。提高了成本却不会带来任何实际效果,这样的事情自然是不值得的。

总的来说,根据电路的电压状况,选择适当额定电压的电容器即可。

容抗

电容器对正弦电流产生的阻碍被称为容抗,通常用XC表示,单位和电阻相同均为欧姆。而我们在进行供电滤波时希望交流成分尽可能完全被旁路掉,若容抗高,所能够被旁路的交流成分就少,所以就需要尽可能减少阻碍、减少容抗。

电容器的容抗并非一个恒定的数值,它与频率(f)和电容量(C)的乘积成反比。这也就是人们看到板卡供电滤波使用大容量电容器就会觉得用料好的主要原因,电容量越大,则容抗越小,所能适应的频率范围更广,滤波效果也就越好。

但我们并不能够因此忽视频率因素,很明显,不同的频率对电容量的要求也不相同。在高频的情况下,不需要很大的电容量就能获得低容抗的效果。

各位还记得近年经常被说起的“数字供电”么?笔者在这里可以明确地说,供电是无法数字化的,这只是一个高频开关供电方式。由于频率远远高于常规的开关供电方式,因此只需要小小的陶瓷电容器就可以获得极低的容抗,完成滤波工作。除了电容器,大家一定也对那块好像芯片一样的电感器的高温有深刻印象吧?因为在高频时电感器产生了高额感应电流,此时电感器就好像一个巨大的电阻,数十安培的电流从此经过,自然会产生不俗的热量。尽管并非“数字化”,高频开关供电的确可以用更小巧的元器件、更少的空间占用来达到和常规开关供电模式相当的效果,不过电感器发热是一个需要关注的问题。

说完了高频,让我们一起来想一想低频时容抗的表现。当频率无限接近于零(直流电),那么容抗将会无限增大,此时直流电面前就像被安置了一个巨大的电阻,从而无法通过。尽管容抗的表现很像电阻,不过由于理想的电容器内部是没有电流通过的,因此容抗不会造成任何发热。

在频率确定的情况下,所以我们可以用电容量来衡量容抗,电容量越高则容抗越低,电容量越低则容抗越高。

ESR与ESL

世界上没有绝对的事情和理想的事物,人们常说理想与现实是有差距的,在电子元器件方面其实也不例外,理想化的元器件仅仅只能存在于我们的理念当中。现实中的元器件通常都会带有一定的ESR和ESL,简单说它们就相当于给电路中额外串联了一个电容器和电感器。

毫无疑问,ESR必然会带来发热以及能量损耗,同时也会对滤波产生阻碍作用,所以各电容器厂商都在追求尽可能低的ESR。目前来说,多数固态电解质电容器的ESR通常都

相关文档
最新文档